
Adaptive Data Structure Management for Grid
Based Simulations in Engineering Applications

Jérôme Frisch, Ralf-Peter Mundani, and Ernst Rank

Abstract—This paper describes a hierarchical adaptive data structure
management used for typical engineering simulations such as temperature
diffusion problems or computational fluid dynamic problems. Sketches for
using an adaptive non-overlapping block structured grid in a distributed
manner are deployed and sample simulations are computed to underline
the used concepts. Furthermore, a small outlook is given to future work
planned in this area, how to improve the implemented version of the code,
as well as how a parallel concept might look like.

Index Terms—data management, adaptive grid, non-overlapping block
structured grid, ghost cells, transient temperature diffusion equation, com-
putational fluid dynamics

I. MOTIVATION

In modern engineering simulations of any kind, accurate ge-
ometric representation is playing a key role for describing a
certain problem. Figure 1 shows a huge, detailed power plant
model containing more than 12,5 million triangles. It can be
seen that both very small but also large triangles are present.
If a detailed computational fluid dynamics simulation around
this power plant should be computed, there is the necessity of
simulating a large volume of surrounding air in order to reduce
the effects of boundary conditions from the enclosing domain
to the plant itself. The easiest way to perform this task is to
uniformly refine the complete computational domain until the
smallest triangle is included or until a given geometric accuracy
is reached. A reasonable resolution would contain more than
2 · 109 uniform hexahedral cells for which the solution of the
CFD problem would take even on huge super computers a quite
long time. The consequence of this uniform refinement is a very
fine grid on places where it is not mandatory from a geometric
point of view. A solution is an adaptive refinement only in ar-
eas where more information is necessary or helpful to increase
simulation results, whereas a coarse grid can be used in areas
of low information density. Unfortunately, this adaptive han-
dling of data asks for a more complex data structure to manage
geometry and boundary conditions.

In this paper, an adaptive data structure management frame-
work based on non-overlapping block structured grids is pre-
sented, in which two engineering applications are tested. The
construction of the block structured grid is based on a recur-
sive hierarchical build-up. The concept is explained and demon-
strated for a transient temperature distribution and for a compu-
tational fluid dynamics scenario.

This paper describes work in progress in order to construct a
data structure and a software framework which is able to deal
with grid refinement and is prepared in such a way that a future
parallel distribution to multiple systems for running a massive
parallel application is possible.

Adaptive grids are quite well studied in literature (c. f. Samet

Chair for Computation in Engineering, Technische Universität München, Ar-
cisstrasse 21, 80290 München, Germany. Corresponding author contact: Phone:
+49 89 289–25128, e-mail: frisch@tum.de

Figure 1. View of a power plant model [1] consisting of 12,748,510 triangular
surfaces organised in 1,185 groups.

[2], Barequet et al. [3]) and applied to specific problems (c. f.
Coelho et al. [4]), but in contrast to Coelho et al., the sub-grids
are surrounded with so called ghost cells as described later in
section II.A, even if they would not be necessary for a compu-
tation running on a machine using a shared memory approach.
The term ‘distributed’ refers to the fact that the data structure
is not allocated as one block in memory, but as a hierarchy of
grids that are all maintained separately and that are ‘coupled’
via update functions (described in section II.B) between two hi-
erarchical levels. In future, different grids reside on different
machines using a distributed computing approach, as state-of-
the-art solutions for engineering simulations, such as fluid dy-
namic problems, are almost always using a parallel approach in
order to cope with the high data amount.

As geometric representation the authors chose a block struc-
tured approach as a trade-off between geometric accuracy and
complexity in data handling. On the one hand, a fully detailed
geometric description using unstructured grids can represent the
geometry with a very high level of detail, using not too much
cells. Unfortunately the data management handling is very com-
plex and the performance is not so high. On the other hand,
structured orthogonal grids have a very easy data handling and
thus, very high performance regarding computation time but
cannot represent the geometry quite accurate. Furthermore, the
generation of input data for a structured block oriented mesh
from an arbitrary surface mesh using an octree based space par-
tition scheme is much easier to automatise than the generation
of an arbitrary unstructured mesh.

II. ADAPTIVE DATA STRUCTURE MANAGEMENT

The concept of the adaptive data structure management is
based on non-overlapping block structured orthogonal grids.
Each block is constructed out of orthogonal, equidistant pseudo-
cells which can be regarded as real data cells describing fluids,
solids, etc. or they may contain a link to a sub-grid. The pos-
sibility of local refinement gives the code the ability to adapt
quite good to a complex geometry while still using orthogonal
grids on which finite difference or finite volume schemes can be
adapted fast.

(a) hierarchical 2D block
oriented data structure

Depth 0 Depth 1 Depth 2

(b) recursive construction sequence of the
2D data structure from the left hand side

Figure 2. 2D block oriented data structure

The implemented code is designed for managing 3D grids.
For the sake of simplicity some of the following examples are
given for 2D grids only even if they can be applied to 3D grids.
A scheme of the block structured grid can be seen in Figure 2.
In this case, the main grid (identifiable by the depth zero), as
well as the sub-grids, have a size of 4x4. These numbers result
from a mere choice for an adequate visualisation. To reduce the
overhead of grid management, a higher choice of cell amounts
in the main grid level is reasonable. The arrows represent links
through a pointer data structure from the respective pseudo-cell
to the sub-grid and back.

In this case, a block structured approach is preferable to a
standard octree, as a high depth would be necessary to acquire
the desired detailed geometry. Furthermore a neighbouring
search algorithm is called very often as a result of using finite
difference stencils which is quite costly for octrees. Hence, we
chose a non-overlapping block structured grid where the sub-
grids are regular and neighbouring relations of finite difference
stencils reduce to index shifting in data array access.

In order to keep the data structure as flexible as possible ac-
cording to adaptive refinements, no links with pointers from sin-
gle cells to neighbouring cells were established, but a ghost cell
scheme was used.

A. Ghost Cell Scheme

The ghost cell scheme introduces one layer of cells all around
the sub-grids as indicated in Figure 3 by gray-shaded cells
around a 4x4 sub-cell grid. From depth zero to depth one there
are two links to different sub-grids. The arrows from cells to
ghost cells on the same depth level are not pointer links, but a
mere indication which cell contents is copied during the update
step described in the next sub-section.

Depth 0

Depth 1

Figure 3. Example of the ghost cell scheme: ghost cells are marked in gray.

B. Update Step

The necessity of performing an update step and the ghost cell
scheme resembles to a parallel computation approach. Using
such a scheme for the design of the code – even in a serial case
– is speeding up the later process of advancing to a parallel ver-
sion.

The update step is performed after each computational step,
meaning that after a specific computational algorithm has been
performed on a sub-grid without following links to sub-cells e.
g., the update function is called. Some inherent synchronisation
is implied by the order of execution of update functions. Hence,
to respect the order, it is necessary to treat the complete block
structured grid in a bottom-up manner, starting on the deepest
sub-grid and ending on the main grid at level zero.

To order the sub-grids in a bottom-up fashion, two data struc-
tures, namely a queue (FIFO) and a stack (LIFO) are used. At
first, both stack and queue are empty and the main grid is added
to the structures. While the queue is used for iterating through
the different sub-grids into the depth, the stack is accumulating
links to the complete data structure in such an order that the
last elements pushed to the stack will be removed first, which
delivers the bottom-up approach.

After the ordering of the pointers to the different sub-grids,
different update procedures have to be chosen according to the
computational desires. In case of a finite difference scheme, the
total mean values for one sub-grid are computed and passed on
to the corresponding parent cell for further processing. By start-
ing from the deepest sub-grid, one can assure that only updated
values are taken into account for performing computations on
the current sub-grid.

Afterwards, cell values are copied to the corresponding
neighbour ghost cells if they exist, as depicted by the arrows
in depth one in Figure 3. Depending on a further subdivision of
the neighbour cells, different copying techniques with or with-
out averaging are applied. Having the surrounded cells as well
as mean valued cells for the next step, a new calculation using
only local values can be performed.

Thus, the main time stepping algorithm can be divided into
two parts: one purely local part where only computation is tak-
ing place and one global part where communication is involved.
Having built up the simulation in such a way, a parallelisation
can be done without big changes.

III. ENGINEERING SIMULATIONS

In the following section, the above mentioned basics will be
applied to typical engineering simulations, namely temperature
diffusion equation (III.A) for solving transient temperature dis-
tribution problems and Navier-Stokes equations (III.B) for solv-
ing computational fluid dynamics problems.

A. Temperature Diffusion Equation

One example of grid based engineering simulations is the
time-dependent temperature diffusion equation

∂

∂t
T = α ·∆T (1)

where T represents the temperature, depending on the time t
and the spatial location, α the thermal diffusivity in [m2/s] and
∆ denoting the Laplace operator. If only a stationary solution is
required, equation (1) reduces to the Laplace equation ∆T = 0.

As numerical discretisation of equation (1), a forward Euler
scheme in time and a central difference scheme in space is used,
corresponding to a FTCS scheme.

(a) grid at t = 1500 (b) temperature at t = 1500

(c) grid at t = 3000 (d) temperature at t = 3000

Figure 4. Computation of the time-dependent temperature diffusion equation
(1) with adaptive grid refinement and time-dependent boundary conditions.

Example

An example of an adaptive computation can be seen in Figure
4, where the time-dependent temperature equation (1) is solved
on a rectangular domain of 16x16x1. In this case, the compu-
tational domain is embedded in z-direction between two plates
with Dirichlet boundary conditions T = 0. This setting was ex-
plicitly chosen over a setup with periodic boundary conditions
in z-direction, as more energy is dissipated from the system and

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.2 0.4 0.6 0.8 1

te
m

p
er

at
u
re

y-axis

uniform (t = 3000)
adaptive (t = 3000)

(a) Temperature along a vertical line through the geometric centre of cavity

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.2 0.4 0.6 0.8 1

te
m

p
er

at
u
re

x-axis

uniform (t = 3000)
adaptive (t = 3000)

(b) Temperature along a horizontal line through the geometric centre of cavity

Figure 5. Comparison of temperature simulation results from a uniform com-
putation (full lines) with results from an adaptive computation (dashed lines) at
the time step t = 3000 of Figure 4(c) and Figure 4(d).

the adaptive coarsening can be better observed. For the sake
of simplicity, only x and y coordinates are mentioned further
on, even if a 3D computation was performed. As material, steel
with a thermal diffusivity α= 1.172 · 10−5 m2/s was chosen.

The boundary cells of the domain have uniform temperature
boundary conditions set to T = 0. Only a given obstacle of
the size of one cell on the top level has a Dirichlet temperature
boundary condition of T = 200. The boundary condition of the
‘hot’ cell is updated every time step t according to the relation
ihot = 8 + 5 · bcos (2πt/1000)c, jhot = 8 + 5 · bsin (2πt/1000)c
and for all indices khot, which means that the ‘hot’ cell rotates
counter-clockwise in the domain and has a period of tperiod =
1000 s. If according to the index (ihot, jhot, khot) a new cell is
selected, all other cells are set to ‘free flow’ meaning that the
fixed Dirichlet boundary is removed, and the temperature of the
cell can change again according to the values computed by the
central difference stencil.

If a higher accuracy than 16x16x1 cells is desired, there are
generally two possibilities. The easiest way is to increase the
domain size uniformly to 128x128x1 e. g. As consequence, the
domain consists now of 16,384 cells but no big changes to the
code have to be made as only a different grid size has to be used.

A second, more complex way is an adaptive refinement as dis-
cussed in section II. Here only cells of interest get a higher res-
olution. In this example, cells from the top-level are refined by
sub-grids of 2x2x1. This value is chosen for better visualisation
results. From the point of view of computational overhead re-
garding grid management, it would be better to choose a higher
value of cells per sub-grid.

According to the computation of the maximal and minimal
temperature gradient between neighbouring cells, adaptive re-
finement or coarsening is applied to give a high accuracy regard-
ing computational results using minimal cell amounts which re-
duces computational time. The example shown in Figure 4 uses
three sub-levels of grids 2x2x1 with an average total amount of
cells of 3,400. This is around 4.8 times less cell usage than in
the uniform case at the same level of accuracy. Unfortunately
the grid management is also more complicated and some aver-
aging of values are applied in regions of coarsening.

Figure 5 shows a qualitative comparison between uniform
and adaptive computation methods in terms of accuracy. The
maximal temperature error from the adaptive to the uniform
computation method in Figure 5(a) is around 12.5% and in Fig-
ure 5(b) about 8.0%. However, the adaptive version is approxi-
mately 1.5 times faster than the uniform computation.

These values can be even sped up by using a numerical more
reasonable block size. As stated before, this example used a
main grid size of 16x16x1 and the sub-grid size was chosen
to 2x2x1 with three subdivision steps. When a sub-grid size
of 4x4x1 is used with two subdivisions, compared to a uni-
form computation using 256x256x1 cells, the computation of
the adaptive grid is 4.3 times faster than the uniform grid using
7.1 times less cells with a maximal error in temperature under
10%. Choosing a higher sub-grid size will be even more rea-
sonable and give better results.

B. Navier-Stokes Equations

As a second example for grid based engineering simulations,
an incompressible, isothermal Newtonian fluid flow without
any acting external forces is simulated using the Navier-Stokes
equations:

~∇ · ~u = 0 , (2)
∂

∂t
~u+

(
~u · ~∇

)
~u = −1

ρ
~∇p+ ν∆~u . (3)

where ~u and p are the unknown velocities and pressure, t rep-
resents the time, ρ the density and ν the viscosity of the fluid.
Further detailed information might be found in Hirsch [5] or
Ferziger and Peric [6].

B.1 Numerical Discretisation Schemes

In the example at hand, a finite volume scheme is used for
spatial discretisations and a finite difference scheme for tem-
poral discretisations. For the sake of simplicity, the first tests
are performed using an explicit Euler scheme for the tempo-
ral discretisations in order to test the above described adaptive
block-oriented data structure. In a later stage it is planned to
adopt a semi-implicit temporal discretisation. Furthermore, a
fractional step or projection method is applied for solving the

(a) Re 100 (b) Re 400

(c) Re 1000 (d) Re 3200

Figure 6. Streamline patterns in the lid-driven cavity with a grid resolution of
101x101 for different Reynolds numbers.

time-dependent incompressible flow equations. This method is
based on a iterative procedure between velocity and pressure
during one time step.

Omitting the pressure term, the momentum equations are
solved for intermediate velocities ~u∗:

~u∗− ~un

∆t
= −

(
~un · ~∇

)
~un + ν∆~un . (4)

The superscript ∗ denotes intermediate values and the super-
script n values at time step n, which are fully known. In the
second step, the pressure term at the next time step n+1 is used
to correct the resultant intermediate velocity field leading to the
velocity field at the new time step n+ 1:

~un+1− ~u∗

∆t
= −1

ρ
~∇pn+1 . (5)

The divergence free velocity field at step n+ 1 can be guaran-
teed by computing the divergence of (5) and applying the conti-
nuity equation (2):

ρ

∆t

(
~∇ · ~un+1− ~∇ · ~u∗

)
= −∆pn+1 (6)

∆pn+1 =
ρ

∆t
~∇ · ~u∗ . (7)

Equation (7) represents a Poisson equation for the pressure,
which has to be solved to compute the velocity field for the next
time step, using (5).

B.2 Staggered versus Collocated Grid Arrangements

While applying a spatial discretisation scheme, it is possi-
ble to choose between different settings. In a staggered grid

approach, not all variables are represented at the same point
in space. Usually partially staggered arrangements are used,
where pressure and other scalar terms are situated at the cell
centre, whereas the velocities are positioned at the respective
cell surfaces. This arrangement has the major advantage that the
velocities are strongly coupled to the pressure values and no os-
cillations occur applying the projection method. Disadvantages
are the more complicated handling in case of non-orthogonal
grids or when applying multigrid solvers.

In collocated grids, all variables are defined in the cell centre
which simplify the usage of non-orthogonal grids or advanced
multigrid solvers. On the other hand, it can be shown that the
solution of equation (7) leads to a so called odd-even decou-
pling which introduces non physical pressure oscillations if no
special care is taken. More details can be found in Hirsch [5] or
Ferziger and Peric [6].

The code described here uses a collocated grid arrangement
due to the fact that in later phases of this project the authors
plan to use sophisticated numerical solvers such as multigrid
methods.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

u
-v

el
o
ci

ty

y-axis

Simulation Re 100
Simulation Re 400

Simulation Re 1000
Reference Re 100
Reference Re 400

Reference Re 1000

(a) u-velocities along a vertical line through the geometric centre of cavity

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

v
-v

el
o
ci

ty

x-axis

Simulation Re 100
Simulation Re 400

Simulation Re 1000
Reference Re 100
Reference Re 400

Reference Re 1000

(b) v-velocities along a horizontal line through the geometric centre of cavity

Figure 7. Comparison of simulation results (lines) with results of Ghia et al.
(points) for the lid-driven cavity

B.3 Validation Using the Lid-Driven Cavity Example

For the validation of the above described code, the lid-driven
cavity example is used. This example consists of a square do-
main of unit length where the upper boundary wall moves with
constant velocity u= 1. Thus, only shear driven forces from the
no-slip boundaries are transferred to the initially resting fluid.
Reference solutions for comparison where taken from Ghia et
al. [7].

Figure 6 shows a streamline plot for different Reynolds num-
bers of Re= 100, Re= 400, Re= 1000, and Re= 3200 com-
puted using the above mentioned code and a grid spacing of
101x101. All the validations and computations were done in a
first step only in two dimensions, even if the data structure is
designed for three dimensions.

For getting a better view of the numerical errors introduced
by the discretisation technique e. g., detailed comparisons were
made in Figure 7(a) and 7(b). It can be seen, that for Reynolds
numberRe= 100 the computed values match the reference val-
ues used by Ghia et al. quite well. But the higher the Reynolds
number is, the higher the divergence between the computed val-
ues and the reference values gets, even if the characteristic be-
haviour can still be observed.

Computations with a higher geometric resolution and a smal-
ler time step size for different Reynolds numbers show that a
finer time step has a much higher impact as soon as the spatial
discretisation is reasonably small. This is a numerical artefact
of using the explicit Euler time scheme for temporal discreti-
sation and shows that for simple tests of the data structure, the
explicit scheme is adequate, but for later real case studies, a
higher temporal discretisation technique has to be used.

Figure 8 shows the magnitude of the velocity vector ~u for an
uniform and an adaptive computation of the lid-driven cavity
example at Re= 100. The base grid is chosen to 21x21 and the
sub-grid size to 5x5 for display reasons and the time step is set
to 10−4 s.

The accuracy of the computation is indicated in Figure 9. It
can be seen, that the coarse grid of 21x21 is not reaching the
reference values of Ghia et al., as the grid is too coarse to de-
liver accurate results. An adaptive mesh refinement as depicted
in Figure 8(b) results in much better accuracy, even if the ref-
erence values are not quite reached. This is due to the interpo-
lation effect of the grid changes from coarse to fine. In order
to keep the computation algorithms as simple as possible, some
trade-off was accepted and a numerical error was introduced. At
the moment, the authors are working on reducing the numerical
error while still keeping a simple scheme regarding numerical
computation and data exchange from the different grid levels.

First parallel computations were done using a shared memory
OpenMP concept. In this first implementation, only compu-
tational intensive nested loops of the Navier-Stokes equations
were parallelised. Hence the update step mentioned in II.A is
still running as serial procedure and is dominating the possible
speedup as well as the parallel efficiency.

Computational results of the parallel speedup and efficiency
are depicted in Figure 10. In order to get a better comparison,
three different architectures and different grid sizes were used.
The used architectures include an Intel Core 2 Quad Q9650
(3.00 GHz), an Intel Core i7 870 (2.93 GHz), and an Intel Xeon

(a) uniform grid

(b) adaptive grid

Figure 8. Magnitude of the velocity vector ~u of an example computation of
the lid-driven cavity on a uniform grid using 105x105 cells with a time step
of ∆t = 10−4 s and an adaptive computation using a base grid of 21x21 and
sub-grids of size 5x5.

E3-1245 (3.30 GHz). Furthermore the same optimisation flags
were used for the Intel compiler on all architectures.

Figure 10 shows that this kind of parallelisation is not optimal
as the efficiency is dropping quite fast as soon as more processes
are used. Hence, another method has to be deployed when more
cores or processes are involved, for which the data structure was
designed to distribute the sub-grids to different processes using
a message passing concept. This parallelisation will be subject
to further investigations.

IV. OUTLOOK TO PLANNED WORK FOR THE FUTURE

As this paper describes work in progress, the numerical er-
ror using an adaptive grid discretisation scheme has still higher
errors than expected. The next steps will accordingly be, to im-
prove the numerical scheme for the distribution of the values
from one grid part to the other, especially in between coarse

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

u
-v

el
o
ci

ty

y-axis

uniform grid
adaptive grid

reference at Re 100

(a) u-velocities along a vertical line through the geometric centre of cavity

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

v
-v

el
o
ci

ty

x-axis

uniform grid
adaptive grid

reference at Re 100

(b) v-velocities along a horizontal line through the geometric centre of cavity

Figure 9. Plots comparing velocities with the reference solution of Ghia et al.
with an adaptive computation on a 21x21 coarse grid only (marked uniform grid
in plots) and an adaptive computation depicted in Figure 8(b) (marked adaptive
grid in plots)

and fine cells.
As mentioned before, a higher order temporal discretisation

scheme has to be implemented in order to increase the time step
size and still get reasonable results.

A next step is to exploit the special design of the code in order
to implement a parallel concept. As mentioned in section II, the
local computations on the grid can be executed in parallel while
the communication step needs global access and, thus, synchro-
nisation between the sub-grids is necessary. A good distribution
of sub-grids to different processes depending on the communi-
cation layout has to be chosen to ensure minimal communica-
tion effort. One master process should not be handling all the
communications but delegate them to separate handlers who or-
ganise communication between the working nodes to ensure an
excellent load balancing and efficient communication patterns
as depicted by Mundani et al. [8].

V. CONCLUSION

In this paper, we have presented an adaptive data structure
management for the simulation of engineering problems such as
the temperature diffusion equation or the Navier-Stokes equa-

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4

sp
ee

d
u

p

processes

ideal speedup
Core2 81x81

Core i7 81x81
Core i7 121x121

Xeon 81x81
Xeon 141x141

(a) parallel speedup

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4

p
ar

al
le

l
ef

fi
ci

en
cy

 [
%

]

processes

Core2 81x81
Core i7 81x81

Core i7 121x121
Xeon 81x81

Xeon 141x141

(b) parallel efficiency

Figure 10. parallel speedup and efficiency computed on shared memory ma-
chines using different architectures and different grid sizes

tions. Example applications were computed as far as the pre-
sented code is implemented at the moment. As soon as the tasks
described in section IV have been finished, next steps will com-
prise the improvement of the numerical algorithms. The adap-
tive implementation of the finite difference grid as well as the
finite volume grid have shown promising results and the authors
look forward to further increase efficiency and handle real world
problems rather than test case scenarios.

The ultimate goal is to compute an adaptive fluid-flow simu-
lation around the power plant model introduced in the motiva-
tion part in order to compare the results in terms of accuracy and
performance between a parallel adaptive computation versus a
pure uniform one.

VI. ACKNOWLEDGMENT

This publication is based on work supported by Award No.
UK-c0020, made by King Abdullah University of Science and
Technology (KAUST).

REFERENCES

[1] University of North Carolina at Chapel Hill, Power Plant Model, 2001.
[2] H. Samet, “The quadtree and related hierarchical data structures,” ACM

Comput. Surv., vol. 16, pp. 187–260, June 1984.

[3] G. Barequet, B. Chazelle, L. J. Guibas, J. S.B. Mitchell, and A. Tal, “Box-
tree: A hierarchical representation for surfaces in 3d,” Computer Graphics
Forum, vol. 15, no. 3, pp. 387–396, 1996.

[4] P. Coelho, J. C. F. Pereira, and M. G. Carvalho, “Calculation of laminar
recirculating flows using a local non-staggered grid refinement system,”
Int. J. Numer. Meth. Fluids, vol. 12, no. 6, pp. 535–557, 1991.

[5] C. Hirsch, Numerical Computation of Internal and External Flows, Volume
1, Butterworth–Heinemann, 2nd edition edition, 2007.

[6] J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics,
Springer, 3rd, rev. ed edition, 2002.

[7] U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re solutions for incompressible
flow using the Navier-Stokes equations and a multigrid method,” Journal
of Computational Physics, vol. 48, no. 3, pp. 387 – 411, 1982.

[8] R.-P. Mundani, A. Düster, J. Knezevic, A. Niggl, and E. Rank, “Dynamic
load balancing strategies for hierarchical p-FEM solvers,” in Proc. of the
16th EuroPVM/MPI Conference. 2009, Springer.

