
ARTransform: Visualization of Three Dimensional

Geometric Transformations in Augmented Reality

Environment

Kah Pin Ng, Guat Yew Tan

School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia

Abstract - Three dimensional (3D) geometric transformations

are basic and important skills when working in computer

graphics related areas. Traditional ways in learning the skills

include forcing the 3D results to be demonstrated on 2D

output media thus challenge the imaginations of the viewers.

This paper presents ARTransform – an augmented reality

(AR) application for 3D geometric transformations analysis.

ARTransform animates 3D geometric transformations in real

environment, which enables the viewers to move around the

transforming objects and make closer observations. Graphical

user interface control panels are developed to provide user-

specified geometric transformations and animations.

ARTransform adopts the concept of keeping the learning curve

gentle to enable the viewers to spend more time in

transformation analysis, thus, user interaction is achieved by

conventional input devices via keyboard and mouse.

ARTransform is still at its infancy and much work remains to

be done. User-test on the application will be carried out when

more features are added to the application.

Keywords: Augmented Reality, Geometric Transformation

1 Motivation and Related Work

 Geometric transformation is an important component in

computer graphics related areas, such as animation, computer

vision, image processing, geometric modeling, pattern

recognition, etc. It deals with changing the geometric

descriptions of an object in terms of position, orientation or

size, and adopts the nature of affine geometry where the

object’s properties remain unchanged after the transformation

[1]. The traditional way to view the geometric transformation

is paper-based, i.e. using pen and paper to draw and animate

the transformed object with the imagination of the viewer.

Nowadays, more common and sophisticated ways are using

virtual reality (VR) and computer animation to create motion

parallax especially while transforming a three-dimensional

(3D) object, to achieve the depth illusion. Geometric

transformation functions are the most basic functions

available in almost all well-known graphics packages, e.g.

Mathematica, MATLAB, AutoCAD, 3D Studio Max, Maya,

Lightwave 3D, etc. The OpenGL tutorial developed by Nate

Robin animates OpenGL’s geometric transformation

functions by rolling the mouse over the functions parameters

on the screen to change the position or shape of the object’s

local axes [2]. However, examples mentioned above display

their 3D outputs on a two-dimensional (2D) screen. One

major limitation is that, only the front face of the object can

be seen, the back of the object can be analyzed visually only

by “turning” the object with a keyboard/mouse interactively.

An alternative is to display the object in wireframe view on

the computer screen, but the wireframe creates too many lines

which will confuse the viewer eventually. In consideration of

the drawbacks to represent 3D objects on 2D devices,

researchers have been actively working towards a solution for

3D object representation in 3D environment, and this is where

Augmented Reality (AR) becomes the overwhelming

research focus.

 The ability of AR to bring the 3D objects into real

environment has made it a useful tool in spatial skill training

[3]. Construct3D developed in Vienna University of

Technology focuses on the education in mathematical and

geometry construction process to high school students [4],

University of Washington uses AR to teach their third year

students earth-sun relationships and found significant overall

improvements in students’ understandings after the AR

exercises [5].

 In this paper, we propose an application called

ARTransform to visualize the spatial geometric

transformation by taking the advantage of viewer’s mobility

offered by AR to animate the object transformations in the

real world. By moving freely in the room, the viewer can see

and analyze step-by-step changes in orientation, shape, size

and position of the transforming object. The project was

inspired while teaching Computer Graphics course to our

undergraduate students by using OpenGL’s geometric

transformation functions. Confusions were always caused by

the 3D geometric transformations especially when involving a

series of scaling and rotation. By displaying the animated

transformation in AR, we believe that the viewer’s mobility

will help him/her achieve the best learning results.

2 Geometric Transformation Overview

 In general, geometric transformation can be classified

into two categories, viewing and modeling transformations

which deal with changing of the camera/viewer’s positions

and changing of the object’s position respectively [6]. The

first version of our project focuses on modeling

transformation. The modeling transformation can be

expressed as

P' = M∙P . (1)

where P' denotes the transformed coordinates after composite

transformation M applied to the original coordinates, P. The

composite transformation is formed by,

M = Mn∙Mn-1∙Mn-2∙ … ∙M3∙M2∙M1 . (2)

where Mk , k  { 1, 2, …, n}, denotes individual geometric

transformation. The transformation sequence is written in

reverse order, i.e. from right to left, being M1 and Mn the first

and the last transformations respectively, to be applied to an

object. Thus, if an object is rotated  anti-clockwise about a

space line parallel to the z-axis, with equations x=xr and y=yr;

then it is scaled to (sx, sy, sz) of its original size, by referring to

a fixed point (xf, yf, zf), finally translated (tx, ty, tz) units; the

transformation sequence is

T(tx, ty, tz) ∙ T(xf, yf, zf) ∙ S(sx, sy, sz) ∙ T(–xf, –yf, –zf) ∙

T(xr, yr, 0) ∙ R(0, 0, ) ∙ T(–xr, –yr, 0) .

(3)

 In OpenGL, the above transformation statements are

written as,

glTranslatef(tx, ty, tz);

glTranslatef(xf, yf, zf);
glScalef(sx, sy, sz);
glTranslatef(-xf, -yf, -zf);
glTranslatef(xr, yr, 0);
glRotatef(theta, 0, 0, 1);
glTranslatef(-xr, -yr, 0);

 Note that the statements in OpenGL require the last

transformation to be executed first. Traditionally, we learnt

that when an object undergoes a series of geometric

transformations, the coordinates of the object are changed

depending on types of transformations applied to, and causing

the changes in shape and size of the transformed object. This

type of transformation is called fixed coordinate system

transformation. However, anecdotal evidence showed that

this concept is confusing while following the execution

sequence by using OpenGL statements, as the intermediate

transformed object obtained in OpenGL’s execution sequence

is the exact reverse of the fixed coordinate system

transformation.

 An alternate and better way to solve the conceptual

confusion is to use local coordinate system transformation. In

this case, the local coordinate system of the object is

transformed while maintaining the coordinates of the object,

instead of applying the transformation operations on the

object coordinates as mentioned in fixed coordinate system

transformation. The local coordinate system transformations

work well by following the sequence of the transformation

statements in OpenGL. Each intermediate transformed object

is displayed based on the execution sequence as noted.

Though the sequence of writing the transformation and the

final result are the same, the concept is changed to view the

transformation from a different perspective.

3 Application design

 Conceptually, ARTransform is designed based on local

coordinate system transformation to view in detail the

geometric transformations step-by-step. It is built on

ARToolkit for its freely available source codes, after

analyzing the set of AR tools available [7]. The created AR

objects and their transformations are displayed on the

ARToolkit marker. Though a normal PC camera is sufficed,

we opt to use the 3DVisor’s Z800 Pro AR head mounted

display to view the transformed objects, mainly to take

advantage of the viewer’s six degree of freedom offered by

AR.

(a)

(b)

Fig. 1. Graphical user interface control panels: (a) TRANSCP;

(b) ANIMCP.

 The aim of ARTransform is to enable the viewer to be

focus and grasp the concept of 3D geometric transformation

easily and thus we keep manipulation of ARTransform simple

during our design and development stages. Further, in order

to minimize the abrupt change in user interaction habit, the

viewer is guided to adapt to AR environment in stages by

using the familiar classic input methods via keyboard and

mouse in the first version of ARTransform. For logical input,

we have developed two types of easy-to-understand graphical

user interface control panels, i.e. transformation control panel

(TRANSCP) and animation control panel (ANIMCP).

TRANSCP contains options to enable the users to specify

geometric transformation desired, ANIMCP contains buttons

to animate the transformation edited in TRANSCP. Fig. 1

shows the TRANSCP for keyboard input and ANIMCP

which can be displayed in the real environment for mouse

input.

 After transformation operations have been specified by

the user in TRANSCP, each transformation is stored as a

single entry in a table named transData. Space line

rotation and fixed point scaling are decomposed into 3 basic

geometric transformations, i.e. translation, rotation/scaling,

and translation again; before they are stored as linked-lists of

three entries in table transData. The desired color of the

transformed object is also specified via TRANSCP. Fig. 2(a)

shows the attributes for an entry of the table. In Fig. 2(b),

index 0 shows a simple translation; index 1 shows

decomposition of a composite transformation – fixed point

scaling at (50.0, 0.0, –50.0), into three entries; index 2 shows

decomposition of a rotation about a space line parallel to z-

axis, with equation x=50 and y=50, into three other entries.

 The initial version of ARTransform offers a set of basic

functions on the ANIMCP to animate the transformations,

including start, stop, pause, continue, forward,

backward/undo and step-by-step view of the transformations.

The design of the animation control buttons adopts the design

concept of the buttons on a movie player. The viewer can

analyze the same transformation over and over again until

he/she has completely understood.

Fig. 3. A student with HMD is observing the transformations

animations on ARTransform.

 Fig. 3 shows a student with head mounted device

observing the transformation animation. Each transformation

to be observed is displayed on the top left-hand-corner

position in the real environment.

4 Example

 Based on the anecdotal evidence collected from the

students’ feedback in the Computer Graphics course, the main

confusion in geometric transformation is caused by applying

a series of scaling and rotation immediately one after another.

In this section, we demonstrate an example involving rotation

about a space line parallel to one of the coordinate axes,

followed by fixed point scaling, which was mentioned in

sections 2 and 3. The series of transformations are defined as:

rotation of 90 anti-clockwise about the space line parallel to

z-axis with equations x=50 and y=50; scaling of (1, 2, 1) by

referring to a fixed point (50, 0, –50), and finally translation

of (–50, –50, 50) units. Each transformation is given a

different color to distinguish from the previous

transformations.

 The OpenGL statements in transformation sequence is

given as follows,

glTranslatef (-50.0, -50.0, 50.0);
glTranslatef (50.0, 0.0, -50.0);
glScalef (1.0, 2.0, 1.0);
glTranslatef (-50.0, 0.0, 50.0);
glTranslatef (50.0, 50.0, 0.0);
glRotatef (90.0, 0.0, 0.0, 1.0);
glTranslatef (-50.0, -50.0, 0.0);

 The output given by ARTransform application is

displayed in Fig. 4. Fig. 4(a) – (d) show step-by-step

transformations. Fig. 4(a) shows the original object in red.

Fig. 4(b) shows the translation of (–50.0, –50.0, 50.0) units in

each x-, y- and z-directions resulting in green object. Fig. 4(c)

shows previously transformed green object is scaled to (1, 2,

1) of its original size at a fixed point (50, 0, –50) and resulting

in yellow object. Fig. 4(d) shows previously transformed

yellow object is rotated anti-clockwise about a space line

parallel to z-axis with equations x=50 and y=50, resulting in

magenta object. In this example, the original object in red is

displayed as a consistent reference to the transformed objects.

The x-, y- and z-grid lines of the original object are turned on,

each grid space denotes 100 units and thus the transformed

object’s location and size can be analyzed when comparing

with the original object.

5 Conclusions and Future Work

 The hypothesis of seeing the 3D geometric

transformations in the real environment can improve the

viewer’s understanding of geometric transformation was

supported by the anecdotal evidence from our students’

feedback at the end of the Computer Graphics course each

year. In the feedback, the students expressed that the

whiteboard teaching method of geometric transformation

challenged their imagination and concentration, and that they

were always lost in the 2D whiteboard space. Computer aided

teaching in virtual reality is easier to understand compared to

whiteboard, however, there was a strong urge to pull the

object and its transformations out of the 2D display for closer

analysis, especially when the original and the transformed

objects were blocking each other.

 At the moment, ARTransform is still at its infancy and

we have not yet used it widely for students’ learning purpose.

Much works remain to be carried out. In our next version, we

plan to include animated graphical explanations on 3D

viewing attributes and characteristics, for example,

eye/camera position, projection reference point, look-at point,

perspective and orthographic transformations with frustum

and parallelogram respectively. All animations will be carried

out in real environment. The new version will also enhance

the user interaction by adding a 3D mouse to interact directly

with the AR object. For the new enhancements, the original

aim of maintaining the learning curve gentle is kept in mind

during the implementation.

6 Acknowledgement

 This work is jointly sponsored by Universiti Sains

Malaysia’s Fellowship and Short Term Grant under reference

number FPP 2010/0860 (P3427).

prev

blue

translation

-50.0

-50.0

50.0

0

next

NULL

NULL prev

green

translation

50.0

0.0

-50.0

0

next

NULL

NULL

prev

green

scaling

1.0

2.0

1.0

0

next

prev

green

translation

-50.0

0.0

50.0

0

next

NULL

prev

yellow

translation

50.0

50.0

0.0

0

next

NULL

NULL

prev

yellow

rotation

0.0

0.0

1.0

90

next

prev

yellow

translation

-50.0

-50.0

0.0

0

next

NULL

index 0 1 2 ...

prev

color

mode

x

y

z

angle

next

(a)

(b)

transData table

Fig. 2. Structures of transData Table: (a) Attributes of one entry in transData; (b) Index 0 shows simple

transformation, indices 1 and 2 show decomposition of composite transformations to linked-lists.

(a)

(c)

(b)

(d)

Fig. 4. Step-by-step transformations: (a) Original object; (b) Translation of (–50, –50, 50); (c) Scaling of (1, 2, 1) at fixed point

(50, 0, –50); (d) Rotation of 90 anti-clockwise about space parallel to z-axis with equations x=50 and y=50.

7 References

[1] Hearn, D., Baker, P.: Computer Graphics with OpenGL,
3rd Ed. Pearson Prentice Hall (2004)

[2] Nate Robin’s OpenGL Tutor,
http://www.xmission.com/~nate/tutors.html

[3] Dünser, A., Steinbügl, K., Kaufmann, H., Glück, J.:
Virtual and augmented reality as spatial ability training
tools. In: 7th ACM SIGCHI New Zealand chapter's
international conference on Computer-human
interaction: design centered HCI. ACM Press, New
Zealand (2006)

[4] Kaufmann, H.: Construct3D: An Augmented Reality
Application for Mathematics and Geometry Education.

In: 10th International Conference on Multimedia, pp.
656 – 657. ACM Press, France (2002)

[5] Shelton, B. E., Hedley, N. R.: Using Augmented Reality
for Teaching Earth-Sun Relationships to Undergraduate
Geography Students. In: 1st IEEE international
Augmented Reality Toolkit Workshop, Germany (2002)

[6] Shreiner, D., The Khronos OpenGL ARB Working
Group: OpenGL Programming Guide 7th Ed.: The
Official Guide to Learning OpenGL, Ver 3.0 and 3.1.
Addison-Wesley Professional (2010)

[7] Ng, K.P., Tan, G.Y., Iman, L.Y.: Overview of

Augmented Reality Tools. In: 18th National Symposium

in Mathematical Science (SKSM), Malaysia (2010)

