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ABSTRACT
Stereo vision technology is becoming more and more
commonplace in the movie and gaming industries. It
has applications in many other fields as well, one of
these is viewing scientific data. We develop a stereo
vision system using commodity priced hardware and
portable graphics software. Hardware and software
details are described, as well as some resulting visu-
alisations and performance issues. C++ and OpenGL
are employed to create the stereo visualisation, using
Nvidia 3D glasses and a professional GPU graphics
card and driver. Key code fragments are presented,
and we discuss some of the difficulties in setting up the
stereo vision for scientific use. We also present some
ideas for future development of scientific visualisation
of voxel data in stereo.
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1 Introduction

Volume rendering[1, 2, 3, 4, 5] of scientific data sets
is a challenging problem, particularly for interactive
simulation. It is computationally expensive but very
valuable to be able to interact directly with a simula-
tion program to steer it through a non-trivial parame-
ter space but also to detect and analyse subtle spatial
features that emerge - particularly in complex systems
simulations.

A number of sophisticated visualisation algorithms
and techniques[6, 7] involving cut-away surface
identification[8] and shading[9, 10] have been devel-
oped bit it is also possible to support various user-
interactive ways of navigating through a solid model.
Expensive state-of-the art interactive environments
have now been feasible for immersive visualisation for
some years[11] , but only very recently has it been eco-

Figure 1: The authors using the stereo visualisation
system with a test data set.

nomically feasible to build a stereo visualisation sys-
tem from commodity priced desktop components and
portable graphics software.

A simple program – known as “cubes” [12] – was de-
veloped in OpenGL[13] and C++ and allows a user to
load in two- or three dimensional hyperbrick files and to
render them in a number of simple ways, with options
to transform, shift, rotate the data set, cut-away sec-
tions of it to see inside, selectively render only some of
the voxel values present, and to produce various output
graphics formats including raw portable pixel maps as
well as input files suitable for use in more sophisticated
rendering tools such as vtk[14] or povray[15].

This present paper describes how we added stereo-
scopic 3d support to the ’Cubes’ program to further en-
hance visualisation of the hyperbrick data sets. Stereo-
scopic vision is already becoming prominent in the
video gaming and movie industries, however it has also
been applied in areas such as vehicle detection [16],
medical practices [17] [18], and manufacturing [19], and
it would be interesting if the technique could be used
to better visualise and understand scientific data sets.
For example, a scientist could be ”inside” the data set
adjusting the parameters, gaining insights immediately
on what is happening as the data changes.



While only fairly recently (the last 5 years or so) gain-
ing mainstream success in the arts[20], and in the video
gaming and movie industries, the stereoscopic vision
problem has been around for a far greater amount of
time. In 1838, Charles Wheatstone [21] realized that
each eye viewed an object from slightly different posi-
tions; the images projected onto each eye differ in the
horizontal position, thus giving the illusion of depth
(this is known as horizontal, retinal or binocular dis-
parity). Da Vinci[22] also recognized this phenomenon
and stated this as a reason why painters would never
be able to realistically portray depth on a single can-
vas. More recently, stereoscopic vision was used in
conjunction with photography to produce stereograms
(stereo images seen through a stereoscope), and later
”autostereograms” such as the popular Magic Eye pic-
tures.

The original ’Cubes’ was written in the C/C++ pro-
gramming language using the OpenGL and GLUT li-
braries, and it therefore made sense to code the stereo-
scopic 3d programming in the same language using the
same graphics API. OpenGL has built-in stereo func-
tionality which can be used well if the required hard-
ware can be found. This paper will firstly describe the
sort of voxel data sets that we are attempting to vi-
sualise (Section 2) and in Section 3 we describe the
hardware and software necessary to view the program
in stereo, as well as giving some key code fragments.
In Section 4 we present some results in the form of
screenshots and in Section 5 discuss the perceived per-
formance. Finally we offer some conclusions and areas
for further research in Section 6. work in the

2 Volume Datasets

For simplicity we employ an easily coded and portable
file format for passing voxel data between simulation
programs and our stereo visualisation system. The hy-
perbrick file format[12] – with file ending “.hbrk” – was
inspired by the incredibly useful portable pixmap for-
mat family (often known as “NetPBM”) designed by
Poskanzer and developed by Henderson[23]. The ppm
and pbm formats have been available to programmers
for over two decades and their value is largely due to
their simplicity. One can off the top of one’s head code
up C/C++/Java to generate, or read and write these
formats. The “H1” hyperbrick format is a generalisa-
tion of the pgm 2D greymap image file format, for the
case of 3D (and in principle even higher dimensional)
data.

Figure 2 shows the .hbrk file format, consisting of a two
character textual header “H1” followed by a newline
and an optional series of comment lines starting with a
hash character. The subsequent integer – in this case a

H1
# a comment or header l ine
1
3 64 64 32
hyper−r a s t e r−of−raw−unsigned−chars

Figure 2: The .hbrk hyperbrick file format for a 3-
d data set of unsigned chars with spatial extent x =
64× y = 64× z = 32, where the x-coordinate changes
fastest, and z slowest.

size of “1” denotes the number of bytes in each payload
entity. If one wanted voxels to be allowed to take on 224
different levels - like portable pixmap pixels, then one
could use a size of “3” to denote three bytes per voxel.
The next line gives the dimensionality d of the hyper-
brick – usually d = 3 for examples discussed in this
document, followed by exactly d integer edge lengths
in order of increasing significance – so in the example
shown Lx = 64, Ly = 64, Lz = 32. This line is termi-
nated by a newline and the remainder of the “.hbrk”
file is a set of binary characters in the “hyper-raster”
order implied by the dimensionality and lengths. So
in the example theix index would move fastest, the iy
next fastest and so forth.

3 Stereo Rendering

In order to run a graphics simulation in stereoscopic
3d in OpenGL the computer needs to be set up us-
ing the right hardware - specifically a graphics card
able to support OpenGL Stereo. Standard consumer
graphics cards (such as Nvidia GeForce) do not support
this. Nvidia Quadro cards are professional versions of
the Nvidia GeForce cards and contain additional sup-
port for various professional software packages such as
Maya and 3ds Max. It is puzzling why open source
software such as OpenGL Stereo are included in this
package and do not just come standard in all graphics
cards. Hopefully this will change in the future. For our
program, Quadro cards need to also come with quad-
buffering support. Quad-buffering allows the OpenGL
program to render and swap buffers for each eye (back
and front buffers for right and left sides makes four
buffers in total). This allows for a smooth picture in
each eye and each left or right set of buffers can only be
seen through the corresponding eye when seen through
the glasses. Unfortunately only a select few Quadro
cards support quad-buffering (specifically the Quadro
FX range, such as the Quadro FX 5800, FX 3700 and
the older FX 380).

The glasses used are the standard Nvidia 3d Vision
shutter glasses such as those featured in Figure 3 (left).



Figure 3: NVidia stereo 3D glasses and Infra Red trans-
mitter which synchronizes the glasses’ shutter rate with
the monitor’s frame rate

The glasses lenses are able to flicker on and off very
quickly (undetectable by the human eye) and an in-
frared transmitter Figure 3(Right) is used to synchro-
nize the glasses with the frame rate of the running
application. Also needed to view the stereo program
smoothly is a monitor with high refresh rate capabil-
ities, as the glasses shuttering each image separately
for each eye will effectively halve the frame rate of the
program that would be otherwise be running in non-
stereo mode. A monitor with a refresh rate of at least
120 hertz (typical monitors display at only 60 hertz) is
good enough for a nice, smooth display (we used the
Samsung 2233 RZ model). If the monitor does not have
the required refresh rate the images will seem choppy
and flicker constantly.

Nvidia 3d Vision is currently only compatible with
Windows and (more recently) Linux operating systems.
While ideally we would have liked to make the program
on a Linux machine, the hardware required to run it on
a Linux machine was very expensive so we chose to run
it on Windows - specifically Windows 7 32 bit, however
it can work on all versions of Windows 7, Vista and XP.
We used an Nvidia Quadro FX 380 graphics card with
driver version 266.45. OpenGL version 3.7 or higher
is needed, as OpenGL Stereo requires OpenGL Game
Mode to work, which was introduced in the 3.7 update.

Figure 4: The Nvidia Quadro FX 380 graphics card

We employed the Nvidia Quadro FX 380 graphics card

(as shown in figure 4). This device is capable of manag-
ing two screens although for the purposes of the work
reported here we only employed a single 120Hz screen.
Nvidia manufacture a range of more powerful Quadro
cards, but this was the most affordable one that could
drive the stereo glasses system.

The C/C++ and OpenGL code used to render the hy-
perbricks in stereo is based on the code explained in
[24]. Although one might think that rendering an ob-
ject in stereo might be much more complicated than
rendering simply in 2D, it is not so difficult. Instead
of rendering the hyperbrick image on a single buffer,
the program renders two images on two buffers, each
image seen from a slightly different viewpoint. Algo-
rithm 1 shows a generalized method of rendering ob-
jects in stereo.

Algorithm 1 the general method of rendering a hy-
perbrick in stereo

if rendering in stereo then
update stereo camera, normals, viewpoints
select right buffer

render hyperbrick

select left buffer

render hyperbrick

end if
for all buffer in buffers do
swap buffer

end for

Each buffer (left and right) is only seen by the corre-
sponding lens in the stereo glasses. If one were to shut
one eye, a full 2D image of the hypercube would still
be seen through the other. Because of the slightly dif-
ferent viewpoints from each eye, an illusion of depth is
achieved and thus the rendering in stereo is complete.
These different viewpoints are the key to rendering a
good stereo image - if they are not correct, the image
may appear to have ’shadows’ from the other buffer,
in general just be an unconvincing 3D image, or even
just appear to be rendered in 2D. Note that both left
and right buffers are swapped after the hyperbrick has
been rendered - this is not to say that the left buffer is
swapped with the right buffer and vice versa, rather,
the left buffer is swapped with another buffer on the
left and the same with the right. Usually this swapping
of buffers refers to each set of left and right buffers as
back and front, making four buffers altogether: back
left, back right, front left and front right, and hence
the term ’quad-buffering’. As stated previously, this
technique allows the program to render smoothly, in
the same way as the double-buffering technique allows
non-stereo graphics programs to render smoothly.

So how do we calculate the viewpoints in order to get a
convincing 3d stereo projection? As described in [24],



there are two main ways of doing this. The first is what
is known as the ”toe-in” method, where both camera
views are pointed at a single focal point, the second
is what is known as the ”off axis” method, where the
views of each camera are parallel to each other. The
”off-axis” method is considered the superior of the two
methods as the discomfort levels are lower than the
toe-in method due to the fact it does not introduce a
vertical parallax [25].

Figure 5: The off-axis stereo projection geometry.

Figure 5 demonstrates the geometry for the ”off-axis”
method to project the image in stereo 3D, showing the
key distances of eye-separation and approximate eye-
screen distance.

The code listed in Figure 6 shows how one would typ-
ically select the left buffer to be ready for render-
ing. The function glFrustrum() is used to calculate the
correct viewing projection for the left ”eye” and the
glLookat() function is used to position the ”eye” in the
correct place and pointing in the correct direction. All
variables not declared in the function (they are mem-
bers of the camera class) are directly dependent on the
camera’s position, focal length, aperture and eye sep-
aration variables, all of which can be altered slightly
by the user to get the optimum 3D image. The code
for selecting the right buffer is very similar, with only
minor changes to the glLookat() function making sure
the right ”eye” is ”mirrored” to the left counterpart.

4 Stereo Visualisation Results

The resulting stereo visualisation of the Cubes data
sets was successful. It is difficult to show the results
properly on paper for obvious reasons; it is not possible
to show proper stereo 3d displays on paper. The Cubes
program can load in any compatible hyperbrick data
set in standard non-stereo mode, and the user is able
to toggle stereo mode on and off as needed. The code to
display the Cubes data in stereo is completely separate

void Camera : : L e f tB u f f e r ( ){
glDrawBuffer (GL BACK LEFT) ;
g lC l ea r (GL COLOR BUFFER BIT |

GL DEPTH BUFFER BIT ) ;
glMatrixMode (GL PROJECTION) ;
g lLoadIdent i ty ( ) ;
double r a t i o = scrWidth / scrHe ight ;
double wd2 = near ∗ tan (RAD∗ aper ture / 2 ) ;
double n d f l = near / foca lLength ;
double l e f t = −r a t i o ∗ wd2 + 0 .5
∗ eyeSeparat ion ∗ n d f l ;

double r i g h t = r a t i o ∗ wd2 + 0 .5
∗ eyeSeparat ion ∗ n d f l ;

double top = wd2 ;
double bottom = −wd2 ;
glFrustrum ( l e f t , r i ght , bottom , top ,

near , f a r ) ;
glMatrixMode (GL MODELVIEW) ;
g lLoadIdent i ty ( ) ;
g lLookat(−Pos . x−norm . x , −Pos . y−norm . y ,

−Pos . z−norm . z ,
−norm . x , −norm . y , −norm . z ,
Up . x , Up. y , Up. z ) ;

g lRota t e f (−Rotation . x , 1 . 0 , 0 . 0 , 0 . 0 ) ;
g lRota t e f ( Rotation . y , 0 . 0 , 1 . 0 , 0 . 0 ) ;

}

Figure 6: OpenGL Code outline for preparing Left
“eye” buffer for rendering.

to the Cubes program code itself, and no functionality
was sacrificed in order to display it in stereo. Any
hyperbrick data set can be rendered in stereo, provided
the same data set is rendered on each buffer, as shown
in Algorithm 1 .

Figure 7: The ’scaffold’ predefined test data set as it
would appear on screen to the naked eye.

For the stereo display to be most effective it is rec-
ommended that the Cubes rendering properties be



changed to a sphere rendering model, with grids and
frames surrounding the voxels removed and only non-
zero data visible. It is also recommended to have some
sort of lighting model switched on for added effect.
While these properties produce the best results when
viewing the data in stereo, these properties can be
changed and the stereo display will still work. These
properties are the ones chosen for the following screen-
shots showing some examples of the program.

Figure 7 shows the pre-defined test data set ”Scaffold”
as how it might appear on screen to the naked eye; this
is not a true representation of how it would look, as
the image would appear slightly ’faded’ as each buffer
flickered on and off. Because at any one time only one
buffer is being displayed, it was necessary to render
the images of both eyes on only one buffer when tak-
ing screenshots, otherwise only the currently displayed
buffer would be shown and the image would appear as
it would in a non-stereo display mode. The scaffold
is simply a hyperbrick of voxels, rendered as Phong-
lit[6] spheres, and with all but the edge voxels switched
off, and with the x-y-z axes coloured red-green-blue to
aid orientation. This data set illustrates well how the
stereo display works - the image for each eye is not
simply displaced horizontally by a certain amount, but
rather the object is viewed at slightly different angles
for each eye. This is shown in the scaffold data set by
the cube’s edges being almost but not quite parallel
to each other. The camera’s aperture angle can be in-
creased to show this more clearly (this would give the
effect of the camera moving closer to the object, or in
stereo mode the object would appear further outwards
of the screen and closer to the person viewing it).

A typical scientific use of stereoscopic vision is to aid
identification of phenomena taking place in a simula-
tion. The example we resent here is discussed fur-
ther in[26] and involves growing a model of electro-
deposition on a physical surface. Figure 9 shows the
red particles grown on a green flat surface. The tendrils
are hard to analyse and to see what is taking place in
the simulated model. Cluster labeling techniques are
used to identify separate clusters of connected tendrils,
and the “biggest” is visualised separately in Figure 8.
The stereo technology allows a much greater sense of
the structure and morphology of the simulation that is
possible with flat or shaded monocular rendering.

Figure 8 shows the different images for each eye - the
left buffer is coloured blue while the right is coloured
red. It features the hyperbrick ”biggest”, referring to
the biggest tree generated by an invasion percolation.
This data set is particularly effective in being displayed
in stereo, as the voxels can be shifted in the x, y and
z directions at the user’s discretion. This allows parts
of the hyperbrick to appear in the extreme front, back,
top, bottom or sides which looks great in stereo mode.

Figure 8: Red and blue colours for each eye for the
predefined dataset ’biggest’ - which is a cluster pulled
out of a larger simulation dataset.

In Figure 8 the small group of voxels to the left and bot-
tom of the image appear extremely close to the viewer,
while the rest of the data set is much further away.

Figure 9: The ’original’ hyperbrick dataset from a sur-
face deposition simulation - showing how difficult it is
to identify the structure of the individual clusters.

Figure 9 features the ”original” hyperbrick dataset, re-
ferring to the entire data set generated by the epitaxial
growth model (the ”biggest” data set in Figure 8 is part
of this data set). This data set was a lot more dense
and contained a lot more voxels than most other hy-
perbricks, however the stereo display still worked fine.
Because of the heavy clustering it was not practical to
display a screenshot of both buffers, as it would be dif-
ficult to distinguish which voxels belonged to the left
and right buffers. It is important to mention that this
data set really challenged the graphics cards capabil-



ities; displaying so many voxels as spheres as well as
adding lighting effects and stereo buffering meant the
program ran very slowly on the Quadro FX 380.

5 Discussion

In general the program performed well, however as the
number of voxels in the hyperbrick is increased (for
example a 64 x 64 hyperbrick instead of the standard
16 x 16) the performance levels decline. As mentioned
previously, this is most noticeable when rendering the
individual voxels as spheres, and even more so when
lighting is turned on. This is mainly due to the fact
that the graphics card which we used (Quadro FX 380)
was a much older model and thus could not keep up
with the large workload; however, rendering such large
amounts of voxels as spheres and under lights can be
taxing on even good graphics cards, and rendering the
images twice to obtain the stereo image effect only adds
to the workload. It would be good to see if we can find
a way to reduce that while still maintaining a clear and
convincing looking stereo image.

Another thing to note is that different people seemed to
prefer different settings for the stereo camera in order
to get the most comfortable image. For this reason
the focal length, aperture and eye separation settings
for the camera were enabled to be changed on the fly
by the user using keyboard support while they were
viewing the stereo image.

Figure 10: A sequence of voxel sets from simulation of
a 32×32×32 cell Kawasaki spin-exchange model. The
particles clump together with time.

It is useful to view stereo-rendered animation se-
quences. Our system supports this by allowing a set of
voxel sets to be cycled through dynamically. Typically
a few thousand hyperbrick voxel set can be loaded in
memory and used in this way. Figure 10 hows some
sample renderings of a sequence of 1024 time-steps
from a simulation of the Kawasaki Ising model[27] on a
323 lattice. In this model the red and white “spins” are
initialised randomly and with time, the system anneals
to forms clumping structures, whose precise shape de-
pends upon the model parameters. Stereo visualisation
aids identification of the clumping regimes and insights

into the structures formed.

6 Conclusions

We have shown how a capability for stereo visualisa-
tion of voxel data can be readily implemented with
commodity hardware and portable graphics software.
Our cubes system offers this capability and users can
choose whether to enable the stereo feature or not at
run time. The stereo camera’s focal lengths needed
to be changed depending on the person viewing the
program, otherwise the visualisation would leave a
’shadow’ effect in each eye. Keyboard support for this
was added. Although the stereo vision works well, it is
only compatible with specific graphics cards (we used
the Nvidia Quadro FX 380). The graphics card needs
both OpenGL stereo support and quad-buffering sup-
port. OpenGL stereo support comes with all Quadro
cards, which are the ’professional’ equivalent to the
Nvidia GeForce consumer cards. Quad-buffering sup-
port allows OpenGL to write to four buffers instead of
just two. Only a selection of Quadro cards have this
support. Hopefully in the future all or most graph-
ics cards will come built in with both of these func-
tionalities as stereo 3d becomes more prominent in the
industry.

For future work it would be desirable to run the simula-
tion on a Linux box. We believe the current generation
Nvidia Quadro cards now support Linux. Other inter-
esting interactive commodity-priced hardware such as
Microsoft’s Kinect device offer some promise for en-
hanced user-interactivity with a running simulation.
Haptic devices such as the Kinect would allow users to
manipulate or navigate the voxel data set using hand
movements or other methods. It should be possible
to take into account the user’s head movements, and
as the user moves around the image the projection
would rotate accordingly, giving the effect of a ’vir-
tual reality’ environment. Several studies have been
done [28][29][30] using this method. It has been found
that coupling this method with stereo vision techniques
gives better results than stereo vision on its own, so
some experiments on the Cubes program using this
method would be very interesting to do.

In summary, it is now economically and technically fea-
sible to expect to have stereo vision and other user
interactive devices commonly available on desktops to
enhance the interactive experience and computational
steering of a simulation experiment.
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