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Abstract - Gene set analysis has enhanced the microarray 
data analysis field with biological insights. The first 
introduced and widely used Over-representation analysis 
(ORA) method, has the limitation of the requirement of a 
predetermined differentially expressed genes list. To 
overcome this limitation, distribution based analysis (DBA) 
methods were developed with different analysis steps and null 
hypothesis. To understand the advantages and limitations of 
these methods, we present a comprehensive survey and 
evaluate the performance for nine commonly used gene set 
analysis tools. Methods testing self-contained hypothesis 
generally have better sensitivity and specificity than methods 
testing competitive hypothesis. But most of the methods have 
bias towards larger gene sets with self-contained methods 
more severe. Therefore, better sensitivity and specificity is 
obtained at the tradeoff of bigger bias in self-contained 
methods, and vice versa in competitive methods. We propose a 
combined performance plot to compare these methods, among 
which GSA demonstrated superiority over others. 
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1 Introduction 
 In the last decade, microarray technology largely 
expedited the biological discovery in basic, clinical and 
translational research. Initially, the analysis of microarray 
data was focused on differential expression analysis, where a 
list of genes that show statistically significant expression 
difference between conditions can be identified. However, 
biologists still face difficulties in correlating the target genes 
with biological significance, e.g. identification of signaling 
pathways that were differentially activated or repressed is 
often more interesting than a list of gene names. A gene set 
contains multiple genes sharing similar biological properties, 
e.g. gene ontology terms, signaling pathway, and 
chromosome location. The advantage of analyzing genes as a 
set is that it can detect coordinate changes that are usually 
moderate or weak at single gene level. To achieve a 
biologically relevant interpretation, the target gene list is 
usually compared to a reference gene list, which is typically 
all the genes on the microarray, for enrichment of certain 
gene ontology terms or biological pathways. We refer this 
method as over representation analysis (ORA). Because of the 
arbitrary selection of cutoff at the gene list identification step, 
important findings might be missed and the results are not 

stable. A number of cut-off free gene set analysis methods, 
which provide statistical methods to analyze multiple genes, 
were introduced later on to prevent any arbitrary cutoff. These 
tools are often denoted as distribution based analysis (DBA). 
 Recently, Nam et al. [1] thoroughly summarized and 
classified 26 gene analysis tools based on their null 
hypothesis and statistical methods. But the advantages and 
limitations of these methods are not completely understood. 
Tian et al. [2] suggested that tests based on both null 
hypotheses should be considered equally. Goeman et al. [3] 
further classified gene set analysis methods into three 
categories, self-contained, competitive and mixed. Dinu et al. 
[4] recently compared three self-contained analysis tools, 
SAM-GS [5], global test [6] and ANCOVA global test, and 
concluded that SAM-GS has slightly higher power.  But none 
of them has conducted thorough performance comparison. 
We evaluated these tools, and systemically compared their 
performance using statistical simulation.  
 
2 Methods 
 
2.1 Analysis Tools 

In the current study, we have compared GSEA [7] (both 
gene permutation and phenotype permutation), 
Tian/sigPathway (both gene permutation and phenotype 
permutation), ErmineJ [8] ORA, ErmineJ GSR, GSA [9], 
SAM-GS, SAFE [10], global test and PAGE [11]. Within 
these tools, there are 4 tools (Global_Test, SAFE, SAME-GS, 
and Tian_Pheno) testing the self-contained hypothesis, 5 tools 
(ErmineJ_GSR, ErmineJ_ORA, GSEA_Gene, PAGE, and 
Tian_Gene) testing the competitive hypothesis, and 2 tools 
(GSA, GSEA_Pheno) are mixed.  
 
2.2 Simulation Method 
 Given the diversity of methods implemented in each 
tool, it is very interesting to examine whether their 
performance is also different.  We developed a testing 
framework to systemically compare the performance using 
statistical simulation. We collected 464 signaling and 
metabolic pathways from KEGG and BioCarta, which are two 
commonly used canonical pathway databases. For testing 
purpose, we created 50 pseudo-pathways, each consisting of 
20 pseudo-genes, which are differentially expressed between 
conditions. The major reason to include real pathways is to 



generate some false positives so that we can assess the 
performance of each tool. 
 The simulation data were generated as a 20,000 x 20 
matrix (20,000 genes, 10 normal and 10 treated samples) that 
follows a standard normal distribution. Differentially 
expressed (DE) genes were simulated by adding a small 
constant to the 10 treated samples. The magnitude of increase 
and the number of DE genes were carefully selected to mimic 
different scenarios in real experiments, as addressed in more 
detail in section 3. To prevent any biased results due to any 
particular simulated data set, one hundred independent 
simulation data sets were created for each scenario. These 
simulated data sets were then analyzed by using different 
analysis tools. Default or recommended parameters of each 
tool were used whenever possible. Receiver Operating 
Characteristics (ROC) curve was used to assess the 
performance of the tools based on the gene set ranks 
produced by each analysis tools. The mean and standard 
deviation of the AUCs from 100 simulations were obtained to 
represent the performance of each tool.  

3 Results 
3.1 Effects of number of DE gene 

To examine the performance of the tools under different 
levels of differential expression in the gene sets, we generated 
10%, 20%, 30%, 40% and 50% DE genes in each of the 50 
pseudo-pathways. We also wanted to simulate the 
phenomenon in real microarray experiment that not all the DE 
genes belong to any gene sets, which likely to introduce 
additional level of noise to the data. Therefore, besides the DE 
genes within the pseudo-pathways, additional DE genes were 
created in each simulation data set to fix the number of DE 
genes at 2000. To determine how big the constant should be 
used to create DE genes, we tested 0.5, 1, and 2.5. Changes 
with 1 and 2.5 were so strong that all the tested analysis tools 
were able to achieve an AUC of almost 1. Therefore, we 
decided to use 0.5 as the constant and all the subsequent 
results were generated using this constant.  

  
Figure 1. Performance of ORA method under different cutoffs 

 
We found that the performance of ORA method was 

highly dependent on the selected cutoff.  The performance 
of ORA method increases as the percentage of DE genes 
increases (Figure 1). Totally 5 cutoff values (0.33, 0.67, 1, 
1.5, 2 and 3) were tested. The AUC values range from 0.55 
with 10% DE genes to 0.85 with 50% DE genes with cutoff 

value of 1. More importantly, different cutoff values result in 
quite different performance. Cutoff of 1 has the largest AUC, 
followed by 0.67. Cutoff of 3 gives the lowest AUC, while 
cutoff of 0.33 and 2 resides in the middle.  This result is 
expected because the theoretical t-statistics for DE genes in 
the simulated data set is close to 1.5. 

3.1.1 Comparison of Gene Set Analysis Methods 
 To compare the ability to detect enriched gene sets for 
each analysis methods, 100 simulated data sets were 
generated and analyzed by each of the tools. To accurately 
estimate the false positive and false negative rate, gene sets 
reported as positively and negatively associated with the 
treatment phenotype were combined in all of the tools. The 
average AUCs across the 100 simulated data sets are shown 
in Figure 2 A-E. All the tools perform better with more DE 
genes in the gene sets. Global_Test and SAM_GS perform 
the best when the percentage of DE is low, and 
Sigpath_pheno and GSA perform the best when the 
percentage of DE is high. Note that even we used the best 
cutoff for ORA, it is almost the worst method and only better 
than PAGE and Tian_Gene. PAGE and Tian_Gene have 
almost identical performance. More importantly, we observed 
a general trend that phenotype resampling methods are better 
than gene set resampling methods. As a mixed hypothesis 
testing method, GSA seems to have consistently performance 
across different percentage of DE gene.  

Figure 2. Performance comparison of gene set analysis  tools. Mean and 
standard deviation of Area Under Curve (AUC) from 100 simulated data 
were calculated for each tool. Hierarchical Clustering of gene set analysis 
tools based on average ranks of gene sets in 100 simulated data. A~E shows 
the AUC with 10%, 20%, 30%, 40%, and 50% DE genes respectively. F. The 
plot shows the clustering result using 20% portion of DEG in a gene set. The 
color scale represents the similarity between each tool. 

We next looked at how similar these tools are relative to 
each other. The similarity was determined by Euclidean 
distance between the average ranks of the gene sets across the 
100 simulated data sets. We observed very similar results 
using different percentage of DE genes, and only the data with 
30% DE genes are shown in Figure 2F. These tools can be 
classified into four groups using hierarchical clustering 
method. Global_Test, SAM-GS, GSA, Tian_Pheno and 



GSEA form the biggest group. SAFE and ErmineJ_ORA the 
second group, while PAGE and Tian_Gene form the third. 
ErmineJ_GSR is the most distinct from all other methods. 
GSEA phenotype resampling and gene set resampling method 
form a subgroup, possibly due to its unique random walking 
algorithm. We also noted that the distance between PAGE and 
Tian_Gene is almost 0, which is not surprising because 
standardization based on large number of gene set resampling 
within Tian_Gene is equivalent to the standardization used in 
PAGE. It is unexpected though that ErmineJ_GSR is different 
from all other methods, because it is theorectically the same 
method as Tian_Gene. Its performance is also somewhat 
better than Tian_Gene (Fig. 2F). 
 

 Figure 3. Effect of gene set size. A. The average AUC for different size of 
gene sets are plotted for each tools. B. The ranks for gene sets with different 
sizes. The x-axis is the size of gene sets, and the y-axis is the rank of the gene 
sets based on p-value. 
 
3.1.2 Effects of Gene Set Size 
 To evaluate the effects of gene set size, we generated 
simulation data sets with gene set sizes of 10, 20, 30, 40 and 
50 separately. Figure 3A shows the average AUCs of each 
tool across different gene set sizes with 100 simulations. 
Although to different extent, all of the methods have better 
performance to detect larger gene sets.  
 To further examine whether the analysis tools are biased 
to larger gene set size, we created 5 groups of pseudo gene 
sets, with size equal to 10, 20, 30, 40 and 50 genes 
respectively for each group. Each group contains 50 pseudo-
gene sets. Therefore, there are 714 gene sets in the simulated 
data set, including 250 pseudo-gene sets and 464 real gene 
sets from KEGG and BioCarta. We created DE genes in the 
10 treated samples, in 30% of genes for each of the 250 
pseudo gene sets as well as randomly adding 0.5 in the genes 
not belonging to any gene sets to keep the overall number of 
DE genes being 2000 out of 20,000 total genes. The average 
ranks of gene sets with different sizes from 100 simulations 

were obtained. If the gene set size has no effects, the average 
ranks should be similar for gene sets with different sizes. 
However, as shown in Figure 3B, the gene sets with larger 
sizes rank better than those with smaller sizes, regardless of 
what tools are used. The bias is more severe in methods that 
included a standardization step based on the null distribution 
of ES, such as Tian/sigPathway and GSEA. 
 
3.2 Performance plot 
 After the above simulation study, we conclude that both 
AUC and gene set size are critical factors to evaluate the 
performance of gene set analysis tools. Therefore, we present 
the AUC and gene set size effects together on the same plot 
so that the performance of each tool can be easily compared. 
The x-axis is the average AUC of simulated gene sets with 
10% DE gene background, and y-axis is the slope of ranks 
among different sizes of gene sets. The best tool should have 
high AUC, which means better sensitivity and specificity, and 
low absolute slope, which means less bias to large gene sets. 
Therefore, the best tools should reside at the upper right 
corner of the plot. As shown in Figure 4, tools testing 
competitive hypothesis generally have less bias to gene set 
sizes, but also have lower AUC. In contrary, tools testing self-
contained or mixed hypothesis have more severe bias to gene 
set sizes, but have better AUC.  

 
Figure 4. Performance evaluation of gene set analysis tools. 

 

4 Methods performance on experimental 
data set 

 To confirm our simulation result with real-world 
scenario, we further compared the performance of the 11 gene 
set analysis methods by testing them on the p53 expression 
data on cancer cell lines. The dataset consisted of the 
transcriptional profiles from 17 p53+ and 33 p53 mutant 
cancer cell lines and was downloaded from the GSEA 
website.  We utilize three p53 related pathways to measure 
the performance of pathway methods. More specifically, we 
roughly utilized the sum of the rank of the three p53 related 
pathways based on p-values or normalized enrichment scores 
assigned by each method to test whether these pathways 
appear as the top significant pathways.   
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Figure 5. Performance of gene set analysis tools on p53 dataset. 

 In general, the phenotype-permutation based methods 
Sigpathway_Pheno, SAM-GS, GSA and GSEA identified the 
three pathways as relatively top pathways compared to the 
gene-permutation based methods Sigpathway_Gene, PAGE,  
and EmineJ_GSR (Figure 5). GSEA gene-set permutation 
retains its performance mainly due to the unique random-walk 
strategy.  

5 Discussions 
 In this study, we have systemically compared 11 gene 
set analysis methods. To our knowledge, this is by far the 
most comprehensive comparison study. We confirmed that 
ORA method is highly sensitive to the selected cutoffs, 
which is likely to create very biased conclusion that is 
difficult to reproduce. Even when the best cutoff was used, 
methods based on ORA still have almost the worst sensitivity 
and specificity when compared to other analysis methods. 
The strength of ORA methods is that they have less bias to 
large gene sets. To some extent, we can consider that ORA 
methods are similar to gene set resampling methods, except 
that the latter is non-parametric.  
 We observed that the methods that are self-contained or 
mixed have better sensitivity and specificity than the methods 
that are purely competitive. A possible explanation is that 
gene resampling ignores the correlation structure in the gene 
sets, which might overestimate the variance in the null 
distribution of ES. This is also due to the fact that there are 
10% DE genes in our simulated data sets, and this portion of 
genes results in a higher null ES value in gene resampling 
methods than in phenotype resampling methods. We feel that 
the chosen 10% DE genes is critical in the evaluation because 
it is quite common in real microarray experiments that there 
are significant portion of DE genes not belonging to any 
tested gene sets. Omitting the 10% DE genes in the simulated 
data sets will result in very similar performance between self-
contained and competitive methods.  
 It is quite interesting to observe the bias towards large 
gene set size in most of the tools. This bias still exists even in 
the tools implementing a standardization step. The good 
performance of GSA scores suggests that a better scoring 
system without phenotype resampling can possibly overcome 
this limitation. As pointed out by Nam D and Kim SY, there 
are other factors, such as user friendly interface and species 
support, need to be considered when selecting the best 
analysis tools. 

 In summary, we have conducted systemic comparison 
of popular gene set analysis tools. Our results provide 
valuable information for researchers to understand the 
advantages and limitations of these tools.  
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