Dynamics of HIV-1 Associated Kaposi Sarcoma During HAART Therapy

Frank Nani and Mingxian Jin Department of Mathematics and Computer Science Fayetteville State University, Fayetteville, NC 28301, USA

Abstract –*The techniques of mathematical modeling and investigative computer simulations are used to study the qualitative aspects of the patho-physiodynamics of HIV-1 associated Kaposi sarcoma (KS) during Highly Active Anti-Retroviral Therapy (HAART) of AIDS. Using a system of non-linear deterministic differential equations, the model incorporates the biologically measurable and clinically relevant immunological interactions and parameters. In particular, the computer simulations elucidate the role of CD8*⁺ *T lymphocyte in the annihilation and persistence of Kaposi sarcoma during HAART.*

Keywords: Kaposi sarcoma, mathematical modeling, HAART efficacy, computer simulations, persistence of Kaposi Sarcoma

1 Introduction

Human Herpes Virus 8 (HHV8) acts in association with HIV-1 to induce lympho-proliferation and Kaposi sarcoma (KS) in AIDS patients. The clinical and histo-pathological aspects of KS have been documented by Kemény et al. [3], Lesbordes et al. [5], and Zhu et al. [11].

The role of $CD8^+$ T lymphocytes in regulating the growth of KS has been investigated by Li et al. [6] and Stebbing et al [8]. The use of adoptive immunotherapy with activated autologous $CD8^+$ T cells with interleukin-2 infusion in treatment of AIDS was described in a paper by Klimas et al. [4], Touloumi et al. [9], and Urassa et al. [10]. The patho-physio-dynamics of KS during HAART has been clinically investigated by Bihl et al. [1], and Dupont et al. [2].

In the current research, we shall present a mathematical model of the patho-physio-dynamics of KS associated with AIDS during HAART. This paper is extension of our earlier mathematical model on HIV-1 AIDS dynamics during latency phase [7]. Investigative computer simulations will be used to elucidate the effect of adoptive transfer of CD8⁺ T cells on Kaposi sarcoma dynamics during HAART. This research is one of the major attempts to construct a clinically plausible mathematical model which incorporates HAART therapy, HIV-1 induced AIDS dynamics, and Kaposi sarcoma.

2 Parameters

In this section, the model parameters, constants, and variables are presented as modified from [7].

- x_1 : the number density of non-HIV-1-infected CD4⁺ helper T-lymphocytes per unit volume at any time *t*
- x_2 : the number density of HIV-1 infected CD4⁺ helper T-lymphocytes per unit volume at any time *t*
- x_3 : the number density of HIV-1 virions in the blood plasma per unit volume at any time t
- x_4 : the number density of HIV-1 specific CD8⁺ cytotoxic T-lymphocytes per unit volume at any time t
- x_5 : the concentration of drug molecules of the HAART treatment protocol at any time t
- *x*₆:The number of Kaposi sarcoma cancer cells in the AIDS patient at any time *t* during HAART
- S_1 : rate of supply of un-infected CD4⁺ T₄-lymphocytes
- S_2 : rate of supply of latently infected CD4⁺ T₄-lymphocytes
- S₃: rate of supply of HIV-1 virions from macrophage, monocytes, microglial cells and other lymphoid tissue different from T₄-lymphocytes
- S_4 : rate of supply of CD8⁺ T₈ lymphocytes from the thymus
- D: rate of HAART drug infusion by transdermal delivery
- *a_i*, *b_i*: constant associated with activation of lymphocytes by cytokine interleukin-2 (IL-2) (*i* =1, 2, 3, 4)
- α_i : constant associated with HIV-1 infection of CD4⁺ T₄ helper cells (*i* =1, 2, 3)
- $\beta_{1:}$ the number of HIV-1 virions produced per day by replication and budding in CD4⁺ T₄ helper cells
- β_2 : rate constant associated with replication and "budding" of HIV-1 in syncytia CD4⁺ T₄ helper cells per day per microliter (μl) and released into the blood plasma
- $\beta_{3:}$ the number of HIV-1 virions produced per day by replication and "budding" in non-syncytia CD4⁺ T₄ helper cells and released into the blood plasma
- η_i : constant depicting the rate of which HIV-1 virions incapacitate the CD8⁺ T₈ cytotoxic cells (*i* =1, 2)
- (σ_0, λ_0) : Michaelis-Menten metabolic rate constants associated with HAART drug elimination
- (σ_i, λ_i) : Michaelis-Menten metabolic rate constants associated with HAART drug pharmacokinetics (*i* =2, 3)

- (σ_4, λ_4) : Michaelis-Menten metabolic rate constants associated with cytolytic action of CD8⁺ against Kaposi Sarcoma cancer cells
- γ₄: constant depicting the cytolytic efficacy of CD8⁺ T cells against Kaposi sarcoma cancer cells
- ξ_i : cytotoxic coefficient where $0 \le \xi_i \le 1$ (i = 2, 3)
- q_i : constant depicting competition between infected and un-infected CD4⁺ T₄ helper cells (i = 1, 2)
- k_i : constant depicting degradation, loss of clonogenicity or "death" (i = 1, 2, 3, 4)
- e_{i0} : constant depicting death or degradation or removal by apoptosis (programmed cell death) (i = 1, 2, 3, 4)
- *K_i*: constant associated with the killing rate of infected CD4⁺ T₄ cells by CD8⁺ T₈ cytotoxic lymphocytes (i = 1, 2) All the parameters are positive
- *c_i*: kinetic constants depicting logistic tumor growth for Kaposi sarcoma

3 Model Equations

The following system of non-linear deterministic ordinary differential equations models the patho-physiological dynamics of HIV-1 induced AIDS virions and associated Kaposi sarcoma cancer cells, CD4⁺ (infected and non-infected) T cells, and CD8⁺ T cells during HAART therapy.

$$\begin{cases} \dot{x}_{1} = S_{1} + a_{1}x_{1}^{2}e^{-b_{1}x_{1}} - \alpha_{1}x_{1}x_{3} - q_{1}x_{1}x_{2} - k_{1}x_{1} - e_{10} \\ \dot{x}_{2} = S_{2} + a_{2}x_{1}x_{2}e^{-b_{2}x_{1}} + \alpha_{2}x_{1}x_{3} - q_{2}x_{1}x_{2} - k_{2}x_{2} - \beta_{1}x_{3} \\ -K_{1}x_{2}x_{4} - e_{20} - \frac{\xi_{2}\sigma_{2}x_{2}x_{5}}{\lambda_{2} + x_{5}} \\ \dot{x}_{3} = S_{3} + \beta_{2}x_{2}x_{3} + \beta_{3}x_{3} - \alpha_{3}x_{1}x_{3} - \eta_{1}x_{3}x_{4} - k_{3}x_{3} - e_{30} \\ - \frac{\xi_{3}\sigma_{3}x_{3}x_{5}}{\lambda_{3} + x_{5}} \\ \dot{x}_{4} = S_{4} + a_{4}x_{1}x_{4}e^{-b_{4}x_{1}} - K_{2}x_{2}x_{4} - \eta_{2}x_{3}x_{4} - \gamma_{4}\frac{\sigma_{4}x_{4}x_{6}}{\lambda_{4} + x_{4}} \\ -k_{4}x_{4} - e_{40} \\ \dot{x}_{5} = D|\lceil\sin nt\rceil| - \frac{\sigma_{0}x_{5}}{\lambda_{0} + x_{5}} - \frac{\sigma_{2}x_{2}x_{5}}{\lambda_{2} + x_{5}} - \frac{\sigma_{3}x_{3}x_{5}}{\lambda_{3} + x_{5}} \\ \dot{x}_{6} = c_{1}x_{6} - c_{2}x_{5}^{2} - \frac{\sigma_{4}x_{4}x_{6}}{\lambda_{4} + x_{4}} \\ x_{i}(t_{0}) = x_{i0} \quad for \quad i = \{1, 2, 3, 4, 5, 6\} \end{cases}$$
(3.1)

4 Simulation results and discussion

A brief summary of the simulation results will be presented in this section. Figure 1 and Figure 2 correspond respectively to hypothetical HIV-1 KS patient's physiological parametric configurations P_1 (Table 1) and P_2 (Table 2).

(i) Hypothetical clinical case $\#1[Figure 1, P_1]$:

It is observed that HAART treatment successfully annihilates the HIV-1 virions in the blood plasma and reduces the number density of HIV-1 infected CD4⁺ T cells, whereas the non-infected CD4⁺ T cells proliferate to clinically efficacious levels. On the other hand, the HIV-1 specific CD8⁺ T cells are eliminated and consequently the Kaposi sarcoma proliferates out of control.

(ii) Hypothetical clinical case #2 [Figure 1, P_1']:

In this scenario, the physiological parametric configuration is the same as that of P_1 except that there is an adoptive transfer of 2000 units of ex-vivo interlenkin-2 activated CD8⁺ cytotoxic T cells. In P_1' , the S_4 value is now assigned to a value of 2000 instead of 10 as in P_1 . The therapeutic outcome is clinically efficacious because the Kaposi sarcoma is annihilated.

(iii) Hypothetical clinical case #3[Figure 2, P_2]:

This scenario discusses the effect of HIV-1 latent viral reservoirs on the treatment outcome. In particular, S_3 is set to a value of 1000, depicting the influx of 1000 HIV-1 virions from reservoirs such as microglial cells, macrophages and dendritic cells. It is observed that even though the HAART dose rate D is increased to 4000 units, there is a subsequent therapeutic failure because the non-infected CD4⁺ cell number plummets as HIV-1 virions overwhelm the immune system. On the other hand, the adoptive transferred 2000 units of CD8⁺ cells are able to keep the Kaposi sarcoma cancer cells under the clinically detectable level of 1000 cells.

(iv) Hypothetical clinical case #4 [Figure 2, P_2']:

The physiological parametric configuration is the same as that of P_2 except for the fact that the HAART drug dose rate D is increased to 5000 units, and the non-infected CD4⁺ T cells (x_1) are given an extra boost of interleukin-2 (IL-2) dose and as such the value of a1 is now 0.45. The outcome is clinically efficacious because the plasma HIV-1 virions (x_3), the HIV-1 infected CD4⁺ T cells (x_2), and the KS cancer cells are kept under the clinically detectable level of 1000 cells, whereas the non-HIV-1 infected CD4⁺ T cells (x_1) repopulate to clinically efficacious level.

5 Summary

Our research can be summarized in the following statements:

- (i) It is possible for HAART therapy to annihilate the HIV virions without necessarily eliminating KS.
- (ii) Adoptive transfer of CD8⁺ T cells at a predetermined dose rate can annihilate KS cancer cells.

(iii) It will require both HAART and adoptive transfer CD8⁺ T cells incubated with IL-2 to decimate both HIV-1 virions and the Kaposi sarcoma cancer cells.

TABLE 1. Hypothetica	I AIDS Patient Parametric	Configuration P_1
21		<u> </u>

$S_{1} = 800 / day/\mu l$ $a_{1} = 0.15 / day/cell/\mu l$ $b_{1} = 0.01 / cell/\mu l$ $\alpha_{1} =$ $0.5 / day/virions/\mu l$ $k_{1} = 0.0005 / day/\mu l$ $q_{1} =$ $0.00045 / day/\mu l/cell$ $e_{10} =$	$\begin{split} S_2 &= 800 / \text{day} / \mu l \\ a_2 &= 0.11 / \text{day/cell} / \mu l \\ b_2 &= 0.004 / \text{cell} / \mu l \\ a_2 &= 0.5 / \text{day} / \text{virions} / \mu l \\ k_2 &= 0.005 / \text{day} / \mu l \\ q_2 &= 0.00001 / \text{day} / \mu l / \text{cell} \\ \beta_1 &= 1.5 \\ \text{virions} / \text{CD4}^+ / \text{day} \\ K_1 &= 0.0001 / \text{day} / \mu l \end{split}$	$S_{3} = 10 / \text{day}/\mu l$ $\beta_{2} =$ 0.0085 virions/CD4 ⁺ /day/\mu l $\beta_{3} = 2.75 \text{ virions/CD4+/day}$ $\alpha_{3} = 0.027 / \text{day}/\text{virions}/\mu l$ $k_{3} = 0.0001 / \text{day}$ $\rho_{1} = 0.055$ $\xi_{2} = 0.85$	$\begin{array}{c} S_4 = 10 \ /day/\mu l \\ a_4 = 0.35 \\ /day/cell/\mu l \\ b_4 = 0.01/cell/\mu l \\ K_2 = 0.0024 \ /day/\mu l \\ k_4 = 0.08/day/\mu l \\ e_{40} = 0.0002 \\ cells/day/\mu l \\ \eta_2 = 0.055 \end{array}$	D = 4000 units $\sigma_0 = 0.5 \text{ mg/day}$ $\sigma_2 = 30 \text{ mg/day}$ $\sigma_3 = 5 \text{ mg/day}$ $\lambda_0 = 5 \text{ mg/L}$ $\lambda_2 = 10 \text{ mg/L}$ $\lambda_3 = 0.015 \text{ mg/L}$ $x_{50} = 1500$ $\text{cells/}\mu l$	$\begin{array}{c} c_1 = 6.405 \\ c_2 = 0.00075 \\ \sigma_4 = 7 \ mg/day \\ \lambda_4 = 5.5 \ mg/L \\ x_{60} = \\ 2500 \text{ cells} \end{array}$
$0.00045/day/\mu l/cell$ $e_{10} =$ $0.0025 \text{ cells/day/}\mu l$ $x_{10} = 500 \text{ cells/}\mu l$	Virions/CD4 ⁺ /day $K_1 = 0.0001/\text{day}/\mu l$ $e_{20} = 0.0005 \text{ cells/day}/\mu l$ $x_{20} = 400 \text{ cells}/\mu l$	$\eta_1 = 0.055 \xi_2 = 0.85 \xi_3 = 0.0001 x_{30} = 1000 \text{ virions/}\mu l$	cells/day/ μl $\eta_2 = 0.055$ $\gamma_4 = 0.15$ $x_{40} = 1500$ cells/ μl	$x_{50} = 1500$ cells/ μl n = 5	

Figure 1 Simulation results using parametric configurations P_1 vs. P_1' (P_1' is the modified P_1 : same as P_1 except $S_4 = 2000$. The time axis unit is months.)

TABLE 2.	Hypothetical	AIDS	Patient	Parametric	Configuration	P_{2}
	J					

$S_1 = 800 / \text{day} / \mu l$	$S_2 = 800 / \text{day} / \mu l$	$S_3 = 1000 / \text{day} / \mu l$	$S_4 = 2000 / \text{day} / \mu l$	D = 4000 units	$c_1 = 6.405$
$a_1 = 0.15 / \text{day/cell} / \mu l$	$a_2 = 0.11 / \text{day/cell}/\mu l$	$\beta_2 = 0.0085$	$a_4 = 0.35$	$\sigma_0 = 0.5 \ mg/day$	$c_2 = 0.00075$
$b_1 = 0.01 / \text{cell} / \mu l$	$b_2 = 0.004/\text{cell}/\mu l$	virons/CD4 ⁺ /day/µl	/day/cell/µl	$\sigma_2 = 30 mg/day$	$\sigma_4 = 7 mg/day$
$\alpha_1 =$	$\alpha_2 = 0.5/\text{day/virions}/\mu l$	$\beta_3 = 2.75 \text{ virions/CD4}^+/\text{day}$	$b_4 = 0.01/\text{cell}/\mu l$	$\sigma_3 = 5 mg/day$	$\lambda_4 = 5.5 mg/L$
0.5/day/virions/µl	$k_2 = 0.005/\text{day}/\mu l$	$\alpha_3 = 0.027/\text{day/virions}/\mu l$	$K_2 = 0.0024 /\text{day}/\mu l$	$\lambda_0 = 5 mg/L$	$x_{60} =$
$k_1 = 0.0005/\text{day}/\mu l$	$q_2 = 0.00001/\text{day}/\mu l/\text{cell}$	$k_3 = 0.0001/\text{day}$	$k_4 = 0.08/\text{day}/\mu l$	$\lambda_2 = 10 mg/L$	2500cells
$q_1 =$	$\beta_1 = 1.5$	$e_{30} = 0.0001 / \text{day}$	$e_{40} = 0.0002$	$\lambda_3 = 0.015 mg/L$	
0.00045/day/µl/cell	virons/CD4 ⁺ /day	$\eta_1 = 0.055$	cells/day/µl	$x_{50} = 1500$	
$e_{10} = 0.0025$	$K_1 = 0.0001/\text{day}/\mu l$	$\xi_2 = 0.85$	$\eta_2 = 0.055$	cells/µl	
cells/day/µl	$e_{20} = 0.0005 \text{ cells/day/}\mu l$	$\xi_3 = 0.0001$	$\gamma_4 = 0.15$	<i>n</i> = 5	
$x_{10} = 500 \text{ cells}/\mu l$	$x_{20} = 400 \text{ cells/}\mu l$	$x_{30} = 1000 \text{ virions}/\mu l$	$x_{40} = 1500 \text{ cells}/\mu l$		
	20 ,				

Figure 2 Simulation results using parametric configurations P_2 vs. P_2' (P_2' is the modified P_2 : same as P_2 except a_1 =0.45, D=5000. The time axis unit is months.)

6 References

- [1] F. Bihl, et al, "Kaposi's sarcoma-associated herpes virus-specific immune reconstitution and antiviral effect of combined HAART/chemotherapy in HIV clade C-infected individuals with Kaposi's sarcoma", AIDS (London, England), 21(10), pp. 1245-1252, June 2007
- [2] C. Dupont, E. Vasseur, et al., "Long-term efficacy on Kaposi's sarcoma of highly active antiretroviral therapy in a cohort of HIV-positive patients. CISIH 92. Centre d'information et de soins de l'immunodéficience humaine", AIDS, 14(8), pp. 987-93, May 26, 2000
- [3] L. Kemény, et al., "Human herpes virus 8 in classic Kaposi sarcoma", Acta Microbiologica et immunologica Hungarica, 43(4), pp.391-395, 1996
- [4] N. Klimas, et al., "Clinical and immunological changes in AIDS patients following adoptive therapy with activated autologous CD8 T cells and interlukin-2 infusion", AIDS, 8(8), pp.1073-81, Aug. 1994
- [5] J. L. Lesbordes, et al., "Clinical and histopathological aspects of Kaposi's sarcoma in Africa: relationship with HIV serology", Annales de l'Institut Pasteur, Virology, 139(2), pp.197-203, Apr-Jun 1988
- [6] T. Li, Z. Qiu, A. Wang, and R. Sheng, "T-lymphocyte immune in HIV-infected people and AIDS patients in

China", Zhonghua Yi Xue Za Zhi, 82(20), pp.1391-5, Oct 2002

- [7] F. Nani and M. Jin, "Mathematical modeling and simulation of latency phase HIV-1 dynamics", Int'l Conf. Bioinformatics and Computational Biology (BIOCOMP'10), vol. II, pp. 428-434, July 2010
- [8] J. Stebbing, A. Sanitt, A. Teague, T. Powles, M. Nelson, B. Gazzard, M. Bower, "CD8 count measurement has independent prognostic significance in individuals with AIDS-Kaposi sarcoma", Journal of Clinical Oncology, 2007 ASCO Annual Meeting Proceedings Part I. Vol 25, No. 18S (June 20 Supplement):20500, 2007
- [9] G. Touloumi, et al., "The role of immunosuppression and immune-activation in classic Kaposi's sarcoma", International Journal of Cancer, 82(6), pp. 817-21, 1999
- [10] W. K. Urassa, et al., "Immunological profile of endemic and epidemic Kaposi's sarcoma patients in Dar-es-Salaam, Tanzania", International Journal of Molecular Medicine, 1(6):979-82, 1998
- [11] B. Zhu, N.P. Wu, S. Hoxtermann, A. Bader, and N. Brockmeyer, "Immune activation in AIDS related Kaposi's sarcoma", Zhejiang da xue xue bao = Journal of Zhejiang University, Medical science, 32(2), pp. 101-103, Apr 2003