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Abstract -Biological data has more variation in type and 

format compared to other types of data. Thus, it poses new 

challenges. However, it encapsulates critical information; 

thus, handling it is of primary interest. Data handling 

includes storage and retrieval of data with associated 

formats and methods of data transfer, data format 

conversion, algorithms that run on the data and the output 

methods including visualization of the results. High 

throughput methods have been yielding biological data at a 

fast pace. This data includes protein-protein interactions, 

gene sequences, gene co-expressions, and protein sequences. 

This data is supplemented with huge amounts of clinical data 

conveniently captured in electronic medical records and the 

wet lab data. We describe the current approaches, each with 

a model system and identify its key contributions. We propose 

some ideas for biological data handling in the future. 

Keywords: biological data handling, cloud computing, data 

integration, data modeling, semantic web, systems biology 

 

1 Introduction 

 The term biological data is used in a broad sense. It 

includes genomics/proteomics data, the data generated from 

experimental biology, diseases data and patient clinical data. 

High throughput screening has been yielding large quantity of 

new data in biology. Micro array analysis provides gene co-

expression data, the next generation sequencing, i.e. NGS, 

yields DNA sequences and so on. Even though various types 

and formats of the data pose challenges the information in the 

data is vital. Biological data is distributed in various sources; 

it has redundancy, different formats and naming conventions. 

A researcher potentially needs the information from various 

sources.  The features that contribute to the difficulties in 

handling of such data are: 1) the quantity of the data, 2) 

various sources, formats and naming conventions, 3) the 

dynamic nature of the data and 4) the complex relationships 

between several data objects which can be of various types. 

 The enormity of biological data renders warehousing 

(i.e. data warehousing), computing, transmission of the data 

over the network difficult owing to higher requirements in 

storage space, computation and bandwidth. Also, integration 

of large quantities of data is resource intensive. Examples of 

the data formats are a flat file such as ―tab delimited format‖ 

or a database dump such as MySQL database dump or an 

excel spreadsheet. A protein can be addressed with various 

names in various databases owing to diverse naming 

conventions. A researcher typically collects genome data, 

literature abstracts, protein information, pathways, and 3D 

structure from Genome database, PubMed, Uniprot, KEGG 

and PDB respectively [42]. New entries of a given object type 

and new relationships are continually discovered.  For 

example, a new protein (of object type ―protein‖) can be 

discovered. Likewise, a previously unknown interaction can 

be detected between a pair of proteins present in the database. 

Thus, the data is dynamic in nature. This causes problems in 

systems with a warehouse or without it i.e. federated system. 

A central repository will be outdated if new data is added to 

external sources after the last update. A federated system 

might become dysfunctional due to schema modification at 

one or more data sources.  

 Keeping these databases up to date and in phase with 

each other is quite challenging, more so in the wake of NGS 

technologies. Consider a system with a warehouse C which 

uses data sources S= {s1,s2,…,sq}. As stated earlier, C can 

have older data compared to S. Also, the data in S can be 

inconsistent. Consider a scenario where a new gene g and a 

protein p coded by it are discovered. Let p interact with a 

known protein q. Say si, sj and sk have protein (with foreign 

key to gene), gene and protein-protein interaction (PPI) data 

respectively. Some of scenarios where the data in S is 

incomplete are: (a) sj is updated with g, si is updated with p 

whereas sk is not updated accordingly (it does not have PPI for 

p and q), (b) sj is updated with g whereas si and sk are not 

correspondingly updated, (c) sj and sk are correctly updated 

whereas si is not correspondingly updated. In (a) just the 

interaction information is missing but it does not have any 

serious inconsistency. In (b) both the protein and the PPI are 

missing which is a minor inconsistency because we do not 

find the protein for a given gene. In (c) the critical link 

between g and the interacting pair p and q is missing. Thus, C 

can have two types of problems; i.e. it can have outdated data 

compared to S or it can be in phase with S and yet inherit 

inconsistency that is inherently present in S. These problems 

point to the need for frequent access to the information across 

different databases which are spread across different Internet 

data sources, consistency check of the data and the practical 

limitation of having large databases (multi-terra bytes) 

warehoused centrally due to the limitation of storage space.  

 Biological data has unique complexity and levels of 

abstraction as detailed in Section 2. The processing of 

biological data involves various tasks that depend on the 

application and the input data. One can broadly subdivide the 

process into the following chronological sequence of four 

tasks: a) data acquisition and preprocessing, b) analysis of 

relationships between data objects c) creating a data model for 

a given application, and d) creating output. 



 Data acquisition refers to acquiring the data from the 

data source(s).  Data is often stored in various formats, e.g. 

flat files, spreadsheets etc. which are not directly conducive to 

computation.  Such data is often converted into a database 

table; this step is preprocessing. Analysis of relationships 

between data objects primarily refers to the domain 

knowledge; e.g. the relationship between: a protein and a 

domain, a gene and protein etc. Analyses of the relationships 

between data objects are represented as structured information 

in database systems. These are read into application-specific 

in-memory organization of data. This application specific data 

organization in database system as well as in-memory data 

structure can be called as the data model of the application. 

Application can process the data model to create secondary 

information by selection (retrieving specific pieces of 

information), aggregation (aggregating information from 

different sources), or mining (for patterns within the data). 

The application presents the results of a query as output.  

 Methods for data acquisition and preprocessing are 

well established and the analysis of relationships is achieved 

with the expertise provided by biologists. We discuss Output 

in some detail. Data modeling and the associated task of data 

integration are more thoroughly covered. Data model which 

comes from the analyses of relationships can be viewed as a 

template; when it is executed, it results in data integration.  

 In Section 2, different approaches for building 

systems are described with a special focus on the emerging 

semantic web methodologies. Section 3 details handling of the 

output. Section 4 gives the features provided by cloud 

computing. Section 5 details a few recent innovative projects. 

Section 6 states key findings from different approaches and 

lists open problems and the work that mitigates some of these 

problems. It also states some desirable features for the future 

biological data handling systems.  

 

2 Approaches for biological systems  

    A system has certain functionality and it is built with 

a specific approach. In this section, we discuss approaches for 

building such systems. Subsections 2.1 and 2.2 explore the 

approaches of the vital aspects of such systems, i.e. data 

integration and data modeling respectively. 

 

2.1 Approaches for data integration 

 Data integration needs for applications vary 

considerably with the user who can be a biologist, 

bioinformatician or a systems biologist. A review of various 

integration approaches is given in [7], where they are labeled 

as light to heavy in terms of integration efforts. 

 Integration techniques which include the use of 

scripts written in Perl and Python [42] exist. Service based 

methods like WSDL an XML format provides a model for 

describing Web services [42]. [20,46] classify data integration 

approaches into warehousing, mediator or view integration 

and also as link or navigational. [46] describes the use of Web 

Services, Distributed Annotation System (DAS) and Globally 

Unique Identifiers in data integration and also proposes an 

approach, termed as ―knuckles-and-nodes approach‖, where in 

the source databases remain independent but a few important 

relationships are stored in special-purpose linking databases.  

In addition the use of scripting, peer-to-peer systems, 

semantic web technologies and workflow-based were 

introduced in [42]. The approaches mentioned in [42, 20, 46] 

overlap with each other in various aspects; i.e. technological 

choice, methodology etc. Also they are not mutually exclusive 

but use or depend on some others for effective data 

integration. Link integrations are used in building systems 

based on either relational model or semantic web technology.  

 Archival databases like NCBI, EMBL, DNA Data 

Bank of Japan, maintained by International Nucleotide 

Sequence Database Collaboration accept data directly from 

sequencing labs and are referred as primary sequence database 

[47]; they aggregate data centrally. Similarly, primary protein 

sequence databases include PIR and UniprotKB (Swiss-

Prot/TrEMBL) which handle the protein sequences. Other 

systems act as value added integrators of this data such as 

Ensembl, UCSC Genome Browser, Uniprot and Model 

organism databases [47]. These provide data in convenient 

formats for further aggregation and analysis. Secondary data 

sources like PROSITE, PRINT, Pfam aggregate data centrally 

and also link to primary data sources by unique identifiers.  

 Most of the primary and secondary databases link to 

other information sources through link integration. Some 

systems are built by power (advanced) users from these 

primary and secondary sources for custom application systems 

[47]; they may be general purpose or special purpose systems 

[37]. We refer to them as tertiary systems, e.g. BioWarehouse 

[35], ATLAS [44] and ONDEX [31]. All of these aggregate 

data. In contrast, TAMBIS [48], BIO-BROKER [1], and 

SEMEDA [32] use a mediator approach i.e. they use a 

wrapper to access original data sources. 

 Some other systems [46] store a part of data in a 

warehouse in addition to the use of mediation for effective 

integration. In [30] another approach was introduced to 

integrate gene expression data and proteins stored in data 

warehouse with annotation data retrieved from public sources 

using sequence retrieval system. The above mentioned 

integration methods [30,46] are also termed as hybrid 

systems. SADI does not store data locally and links with other 

systems using REST-based [15] web services [54].  

 The advantages of warehousing approach are: it 

relies less on network [20], allows faster query performance, 

allows the system to filter, validate, modify, and annotate the 

data obtained from the sources [20], e.g. BioWarehouse [35]. 

It also facilitates the integration of locally derived 

experimental data into the repository. However, it needs large 

storage (the biological data is semi-structured and is not easily 

stored in relational databases (or simply RDBs) [42] and it 

must be synchronized with underlying sources for updates 

[49]. Biological data needs significant computation to be 

stored in the typical format i.e. RDBs.  

 Semantic web is an emerging technology by WWW 

consortium describing it as ―web of data‖ [22]. An informal 

definition for the Semantic web technologies could be 

―comprising of four essential component technologies namely 



RDF, RDFS, OWL and SPARQL‖ [2]. Semantic web uses 

uniform resource identifier, URI, to represent a data object, 

mostly in a triple containing subject, predicate and object. 

This triple, which uses three URIs, is called Resource 

Description Framework (RDF) [23].  A triple store stores this 

triple (RDF data). RDF represents the information or data as a 

graph. RDFS and OWL [24] are ontology languages. 

Querying the RDF graph is done with a querying language 

similar to SQL called SPARQL [26]. A SPARQL query is 

denoted by a graph pattern containing the patterns of triples 

that are similar to RDF triples but are replaced with variables.  

 Current usage of Semantic web technologies for 

biological knowledge management has been described in [2]. 

Knowledge management refers to the process of 

systematically capturing, structuring, retaining and reusing 

information to develop an understanding of how a particular 

system works, and subsequently to convey this information 

meaningfully to other information systems. [2] lists selected 

resources and projects which use Semantic web technologies 

and suggests more prevalent use of it in future systems. 

 Majority of the data is stored in RDBs and it is 

difficult for Semantic web technologies to access them. Thus, 

an application tries to create its own relational to semantic 

mapping and thereby accessing the relational data using SQL. 

Semantic web layer can play a great role in integrating 

relational data into Semantic web technologies, it defines the 

standard vocabularies, formal models and semantic relations 

between RDBs [9]. Datagrid [9] framework along with a set 

of practical semantic tools was used to facilitate the 

integration of heterogeneous RDBs using Semantic web 

technologies. OWL [41] is a technique to extract the 

semantics of a RDB and transform it into RDF/OWL. It 

extracts the schema information of the data source and 

converts it automatically into ontology. With this technique 

every RDB can automatically be an integral part of Semantic 

web. Thus, web applications can access and query data stored 

in RDBs using their own built-in functionality [41]. Jiang et 

al. describe an architecture to expose RDB to Semantic web 

application using Hibernate [18]. OWL ontology is translated 

to java classes and then a runtime SPARQL to hibernate query 

language (HQL) translation algorithm was introduced for 

efficient run time translations [18]. This method suits queries 

without cycles and a subset of SPARQL language [18]. 

 

2.2 Approaches for data modeling 

 Data modeling is considered to be the critical task of 

Biological Data Handling. Some of the open problems in in it 

are covered in [10,14]. Elmasri et al. [10,14] state that 

ordering (e.g. DNA sequences), 3D structures of proteins and 

functional processes (e.g. metabolic pathways) as the main 

characteristics of biological data. Conventional data 

representation does not explicitly include these characteristics. 

However, they are biologically relevant and ideally data 

representation should include a mechanism to represent these 

characteristics. [10,14] propose a new enhanced ER (EER) 

schema, notation to represent the same and give methodology 

to implement the same in a RDB. Ordered relationships are 

modeled by extending the relationship concept in two 

directions 1) allowing related entities to be ordered and 2) 

allowing the repetitions of a relationship instances.  Molecular 

spatial relationship deals with the representation of 3D 

structures in conceptual EER modeling.  Atoms and amino 

acids are modeled with molecular spatial relationships and 

these spatial structures generate the measurement data like 

bond angles and bond distance.  Atom is treated as points and 

its position is represented with coordinates in space. Process 

relationships have three basic entities i.e. input, output and 

catalyst. Inputs are used by the process, the outputs are 

produced by the process and catalysts are needed for the 

process to work. Biological pathways are examples of process 

relationship where an output of one reaction becomes the 

input of another. For example, the output of transcription 

process, mRNA, serves as an input for the subsequent 

translation process.  

 In [10,13] a multilevel EER model for biological 

processes which incorporates the multilevel concepts and 

relationships is proposed. [13] highlights biological examples 

along with their conceptual EER modeling notations to show 

that multilevel modeling can be effectively used in biomedical 

domains and introduces the important concept that at different 

levels of abstraction, data needs to be modeled differently. 

The method in [13] also introduces various approaches for 

data source integration namely horizontal and vertical 

approaches. The advantage of vertical approach over the 

horizontal approach is that it integrates data sources from 

different abstraction levels while the horizontal approach 

facilitates the integration of data source from same level of 

abstraction.  

 In RDB systems, data elements are stored in RDB 

tables and each table contains an entity with primary key and 

attributes. Two different entities are related through foreign-

key relationships between their keys. Such relationships are 

not formally defined with specific names. So, such 

relationships cannot be queried upon. In contrast, Semantic 

web technology uses RDF and the relationship is treated as a 

first class entity (predicate), referenced by a URI and stored 

along with subject and object. In RDF, relationships can also 

be queried (e.g. SPARQL query). This means, the graph of 

persistent RDF nodes contains the full semantic information 

about the entities and the relationship between them.  In RDBs 

custom programs are needed for each database schema and the 

programmer must know the relationship between the tables. 

Likewise, these relationships are specified in the queries. 

However when data is stored as RDF graphs, general purpose 

programs can be written without the knowledge of the 

underlying RDF graphs, and this could provide a general 

purpose querying interfaces to the underlying RDF graphs. 

 

2.2.1 Systems biology and data modeling 

 Systems biology studies introduce another 

dimension, by requiring different search and modeling needs 

depending on the user. [8] Introduces different Systems 

Biology standards that are either accepted or in development. 

E.g. minimum requirements like MIRIAM and MIASE, the 

description formats like SBML, SBRML used to represent 



data and the associated ontologies like SBO, KiSAO and 

TEDDY are used to integrate different models to have a better 

understanding of the complete system. [19] highlights the 

complexity of biological data as one of the major problems 

along with the scale of data generated NGS and the scope of 

the experimental investigations with systems biology. It 

introduces new data integration architecture Addama. An 

approach to integrate information management supporting the 

bottom-up systems biology was introduced in [50]. It 

proposes to build an automated integration system that can 

automatically capture the experimental data and integrate it 

with models.  

 

3 Output methods in data handling  

 Depending on the nature of the application, output 

methods can widely differ. Many systems provide knowledge 

extraction for a human or a computer. Such systems provide 

search/-results interfaces typically based on a query where the 

results are displayed as output [17]. Many systems provide 

structured search capabilities. This is achieved by allowing the 

input keywords to be associated with specific data elements; 

providing matching conditions like >, <, contains etc. and 

search the underlying data for specific matching criteria [34]. 

 Search results have various presentation styles that 

include computer readable formats. For knowledge extraction 

systems, faceted browsing [39] is a suitable style. It is 

effective in showing biologically relevant data where the 

result set can be easily filtered and categorized. BioFacets 

[36] allows a faceted classification i.e. dynamic categorization 

of biological result set. Faceted interfaces go naturally with 

semantic query search and retrieval systems and can help 

modeling the biological data. Often output has inter-related 

information; i.e. gene-gene interactions and pathways; which 

demands visualization to effectively display the search results.  

 Visualization gives insight into the biological process 

and hidden relationships between data elements. A survey of 

visualization tools for biological network analysis highlights 

the pros and cons of each tool [40]. For visualizing the output 

data Cytoscape, Ondex, PATIKA [40] etc. provide excellent 

support. Cytoscape can be enhanced by plugin interfaces [45], 

it supports Semantic web by importing data from triple store 

through simple text table or XML-RDF, loading and 

visualizing RDF data as networks and querying the RDF data 

with SPARQL. It also helps in developing custom Semantic 

web applications with Jena and Sesame. It can also be used 

with other tools like statistical programming language R 

with sna/ igraph package. For GenomeGraphs [12] an add-on 

package for R was developed for visualization of genomic 

datasets.  Addama [19] also uses R for its dynamic 

visualization capabilities. 

  Often visualization systems provide interactive 

visualization capabilities. Querying the Semantic web with 

SPARQL may not be easy for a novice who does not know 

the structure of the ontology. [29] describes a rewriting of 

SPARQL to allow users to write queries from their 

perspective (without knowing the structure of the ontology) 

but it has limitations. A similar approach was described in [6], 

which introduces a semantic approach to process knowledge 

in two phases i.e. constructing a semantic query from the user 

input and displaying the semantic result using scalable vector 

graphics. Here, the results are output as an RDF graph, often 

with interactivity to navigate the RDF graph. For systems that 

output data to be fed into other computer systems, 

communication standards, ontology, data integration and 

minimal specification languages play an important role. 

 

4 Approaches enabled by cloud 

   Various computational solutions to large scale 

biological data handling are explained in [43]; specifically 

cloud computing and heterogeneous computing. Currently, the 

quantity and the storage of genomic data is a vital issue. 

Cloud computing plays a vital role in the management of 

genome informatics [47]. Large datasets that act as a virtual 

disk are stored in a cloud. It inspired projects like Galaxy [51] 

to build tools to easily setup clusters on cloud platforms. 

Problems of large datasets requiring huge storage space, 

processing power and network bandwidth are largely 

mitigated by commercial scale cloud enabled approaches [47]. 

Data source providers can expose the data for many 

consumers, who can access only the requested data through 

service oriented approaches from the cloud. Extension 

systems can co-exist in local systems with the cloud. It may 

be noted that analytical toolbox for biological data like 

Bioconductor [16] and  Galaxy [51] provides prebuilt images 

for the popular commercial cloud platform Amazon Elastic 

Computing Cloud (EC2), thus, eliminating large scale datasets 

and complex software setups on a local network.  

 

5 Examples of data handling systems 

 The study of biological data handling systems yields 

the following aspects.  

-Data is either aggregated or linked to.  

-For non-warehoused systems mediator is needed. 

-Ad hoc data retrieval methods extract data and information 

in unintended ways.  

-Extendibility in functionality (ability to add new functions 

to the system by scripts/ programs).  

-Expandable data models (Open world system).   

-Use of semantic relationships between data elements. 

-Technology choices (Web services, REST) 

-Use of infrastructure (Cloud) 

- Systems Biology requirements 

-Use of output methods 

    Here, we explore a few innovative systems to identify 

the underlying concepts. Sample systems are meant to 

demonstrate such concepts; they are not comprehensive. 

 

5.1 BIO2RDF 

 Bio2rdf project [4] gives the standards for a system 

to use Semantic web technology to cross-link information 

sources and expose services to each other. Since many of the 

existing systems are not enabled with these technologies, 

current implementation of Bio2rdf also transforms the data 



into semantically linked formats, and exposes a semantic 

query front end. That is, it has a warehouse for demonstration 

purposes. It asserts that if the Bio2rdf standards are 

implemented by the systems then warehousing of the data and 

Bio2rdf project itself are not needed. Bio2rdf tries to create a 

network of coherent linked data across the life science 

databases and provides various SPARQL endpoints to query 

the RDF graphs without locally storing the graph [4]. A user 

can define a SPARQL query in a query form and it can be sent 

to the triple store, and the results can be sent back to the user. 

With this approach it is possible to link different databases 

containing the RDF data using the federated and distributed 

SPARQL queries. Bio2rdf successfully integrated 163 million 

documents from a large number of data sources [4].  

 

5.2 SADI 

 Semantic Automated Discovery and Integration, 

SADI is a Semantic Web Service (SWS) framework which 

integrates the data from various sources [54]. It is seen that 

the web services create an implicit biological relation between 

the supplied input and the retrieved output, but SADI links the 

input with the output with a common base identifier and the 

services are annotated thereby explicitly describing the 

semantic relation between them [54].  SADI framework 

attempts to build a virtual database by extracting RDF triples 

through web services, the data can be queried by SPARQL. 

SADI has improves upon BioMoby and SSWAP by having a 

SWS framework that integrates itself more naturally into the 

Semantic web [54]. SHARE is a mediator system which 

enables federated querying where resources are exposed as 

services using the SADI SWS framework [54]. SADI services 

are also REST-like; there is only a standard basic set of HTTP 

methods, i.e. GET and POST [54]. A GET operation on a 

given service returns its semantic description, while a POST 

initiates service execution and returns the same RDF graph 

with the annotations created by the service [11]. 

 CardioSHARE [52] is a unique framework for 

querying distributed data and performing data analysis using 

Semantic web standards. The SPARQL query engine of 

CardioSHARE retrieves the required data dynamically from 

web services [52]. CardioSHARE project is built on the 

strengths of BioMoby [55] and addresses its weakness by 

replacing its syntax with Semantic web ontologies [52]. It is a 

prototype application that accesses SADI services in response 

to SPARQL queries. It was initially designed for the analysis 

of clinical data on heart disease but can be extended to 

integrate any type of biological data [52]. 

 SADI addresses the problem that most of biological 

data is in ―deep web‖ and enables discovery of new 

information from it [54]. SADI proposes a scaled-down 

version of web service usage, especially suited to 

bioinformatics; and thus improves upon the earlier Web 

Services implementations like BioMoby and SSWAP [54]. 

SADI tries to expose analytical services as REST-enabled 

URLs [15] that can be combined to form analytical workflow 

pipelines. Thus, SADI supports and enables ad hoc extension 

of its data models and functionality.  

5.3 ADDAMA 

 A recent article [19] highlights the complexity of 

biological data as a major problem along with the scale of data 

generated and scope of the experimental investigations with 

systems biology. It introduces new data integration 

architecture Addama which has been developed for systems 

biology investigations. Addama tries to integrate and extend 

existing enterprise technologies to enable the rapid 

development of ad-hoc tools, and to provide a robust and 

scalable software infrastructure [19]. The ongoing research 

requires an adaptable system which provides an integration 

framework for the existing software technologies while 

addressing the user requirements which include universal 

access, support of discovery process and adaptation to new 

technologies and usage [19]. Addama meets all the user 

requirements and it does it by allowing a combination of both 

enterprise technologies and organic software development 

models. It supports scientists in the use of heterogeneous data 

types and through the development of related visualization 

and analysis tools. It defines service interfaces to integrate 

selected technologies with the underlying infrastructure [19].  

 

6 Key findings and recommendations 

    The objectives of all systems are similar; so, the best 

aspects of all systems can be combined to yield a better 

approach. Data warehousing still has better performance and 

reliability, and acceptance from academia and industry.  

Relationships between entities are lost when E-R diagrams are 

converted into database schema [33]. These can be restored by 

adding tables to store relationships and multiplicity to model 

RDB tuples as RDF. Each RDB entity can have a reference id, 

as defined in some specific domain-standard ontology. Thus, 

RDB can be ―semantically enriched‖.  

 Warehouse data can achieve data provenance 

(authentication) by storing information about source and 

version; this along with conflict resolution methodologies can 

be used to build automated/semi-automated update cycles. 

Warehousing systems build custom parsers to convert source 

data, e.g. for Uniprot data, BioWarehouse [35] has a parser 

with XMLBeans [3] technology and object to relational 

mapping (ORM) conforming to the DRY principle [27]. A 

class/object model generator that can take OWL based data 

models as input and an ORM toolset that generates 

semantically-enriched RDB schema is desired. 

 Database systems tend to be a closed-world system 

but they present a consistent snapshot of the knowledge. Open 

world data from heterogeneous sources can be inconsistent. 

Warehousing can be enhanced to have knowledge discovery 

(KD) capabilities by providing connectors to open-world 

systems; e.g. SADI allows other SPARQL end points from the 

open web [53]. Results from such queries can checked for 

consistency with the standard snapshot version of information. 

SADI effectively addresses the problem of a researcher 

having to go to multiple websites [10]. SPARQL gives a 

system the capability to extend its knowledge store [38], this 

is highly desirable. 



 The major disadvantage of distributed querying is 

performance [38,46,49] which can be mitigated by caching. 

Extensive research has been performed in the area of caching 

the SPARQL queries [38, 49]. Here the query result is cached 

with an idea of reusing the computed results of previously 

generated queries  avoiding the network usage and increasing 

the robustness of the system by providing a local copy of 

cached data when the original source data is unavailable [49]. 

 The adoption of Semantic web technologies for data 

integration needs productivity enhancing tools for 

programmers. Possibilities for ORM tools to be architecturally 

enhanced to work with RDF and OWL is referred to in [18].

 SPARQL has the potential to be the choice of end 

user for knowledge management system that uses Semantic 

web technologies and maintain semantic relationships. More 

so, if it procures visual query construction methods [6].  

 Bio2rdf converts the data from other formats into 

RDF format using RDFizer [21] whereas SADI leaves the 

data at its original location.  

 ADDAMA stresses the need for an ad hoc extension 

of data stores and functionality [19]. Ad-hoc extensions are 

especially sought if they are easily mastered and are 

programming language independent.  

 We argue that in addition to general purpose query 

capabilities exposed by SPARQL one may build ADDAMA 

style REST-based data access services into underlying 

semantic data stores. Addama also provides the process 

management services layer with REST-like access mechanism 

and also provides for a coordinating central registry service. 

Not all ad hoc data inputs from research communities are 

curated. They are neither sufficiently structured nor formatted 

to organize them into RDB models. They contain very less 

details to organize them into RDF-graph, and much less to be 

mapped to standardized nomenclature systems and ontologies. 

Such data also can be input into analytical algorithms in 

addition to well-structured data from well curated public data, 

Addama supports this use case. ADDAMA uses content 

repositories in addition to SQL databases for storing ad hoc 

data inputs. We note that, for any large scale data handling 

systems to be effective to serve the research community, 

ADDAMA approach is very important. 

 Visualization of experimental results and its analysis 

capability can be provided with programming extensions to 

large scale systems as illustrated by Addama project. Use of 

statistical programming language like R [28] is best suited for 

this purpose.   

 In SADI where the output is mapped as annotation to 

the input data structure, it is possible to build pipelines of 

processes. Also, input and output data structures can be in a 

common model (RDF graph). Analytical process pipelines are 

important for biological research to reduce the time taken for 

knowledge discovery and processing. Further, the addition of 

Cloud enabled approaches, wherein data source providers can 

host the datasets in the cloud and the consumers can access 

only the needed subset of the data through service oriented 

methods, can solve many problems related to the scale of 

biological data and also make the systems reusable thereby 

reducing the duplication  of work. This is our key learning 

from Galaxy [51]. 

  Our general recommendations are stated here. For 

future systems, facetted UI is the best choice for visualizing 

the output. Use of semantic web technologies (controlled 

vocabularies, ontologies and RDF) is highly desirable. Cloud 

computing overcomes the issues of huge local repository and 

outdated data.  With proper design, federated approaches can 

be adapted with minimal deterioration in the data availability 

and system performance. Service oriented approach, with use 

of REST is important for large-scale data integration. 
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