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Abstract: Dizzy is a chemical kinetics simulation software 
framework. On up gradating this package to simulate the 
dynamics of complex gene regulatory networks. Using 
Tauleap simplex and Tauleap complex algorithms, 
implemented in Java. Procedure have been improved for 
determining the maximum leap size which accelerates the 
speed of simulation. This paper focuses mainly on simulating 
Genetic Regulatory Networks using stochastic methods of 
simulation and introducing τ to accelerate the speed of 
simulation. 
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1. Introduction: Simulation is a powerful approach for 
understanding the complexity of biological systems. Recently, 
several successful attempts have been made for simulating 
complex biological processes like gene regulatory networks, 
metabolic pathways and cell signaling pathways[1][2] .The 
network models have not only generated experimentally 
verifiable hypothesis but have also provided valuable-insights 
into the behavior of complex biological systems. Many recent 
studies have confirmed the phenotypic variability of organisms 
to an inherent stochasticity that operates at a basel level of gene 
expression. Due to this reason, development of novel 
mathematical representations and efficient algorithms are 
critical for successful simulation of  biological systems. Genetic 
Regulatory Networks (GRNs) control cellular state form and 
functions. They are responsible for executing embryonic 
developmental programs and, changing cellular state and 
metabolic processes based on environmental conditions. A 
specific example is the early cell specification process within 
the sea urchins embryo. GRNs typically involve feedback 
interactions among multiple genes [2][3].  The situation is 
frequently more complex in adult organisms, where feedback 
loops intertwine genetic networks closely.  
Signaling and metabolic events change the state of a GRN, 
which in turn modifies the structure of the upstream [3]. 
BioTapestry is a software tool for modeling the genetic 
regulatory networks. The application of Bio-tapestry tool to 
enable computerized modeling of GRNs, we can model a 
network consisting of only up to 50 genes. I have upgraded the 
tool by using Kinetic Logic Model Framework and a number of 
other algorithms such that a GRN model of more then 186 genes 
can now be obtained. The output of BioTapestry  is used as an 

input to Dizzy  package in order to simulate the modeled GRNs. 
On extending  the Dizzy software tool by using stochastic 
Tauleap complex method in order to simulate GRNs. This paper 
is divided into different sections. Section 2 comprises a brief 
overview of the Dizzy software system, whereas in section 3 
explains the different simulation algorithms and in section 4 the 
Simulation Methodology is described. In section 5,a new Tau 
selection procedure is proposed , in sections 6 sea urchins gene 
expression data  and finally in section 7 we have discuss the 
results and conclusions.  
 
2. Overview of the Dizzy Software System 
 In this section, we give an overview of the major features of 
Dizzy, a software framework for simulating the dynamics of 
complex Genetic Regulatory Network systems. Dizzy provides a 
collection of simulators for solving the dynamics of a model. 
Features of Dizzy simulator are: 
 
a.  Modular simulation framework: Dizzy employs a modular 
design in which each simulator is a software unit that conforms 
to a simple, well-defined interface specification. This 
architecture facilitates an iterative model development cycle in 
which the model is analyzed using various simulation 
algorithms [4].  
 
b. Templates reusable and hierarchical model elements: 
Dizzy's model definition language permits the definition of 
reusable, parameterized model elements called templates. This 
enables the construction of a prepackaged library of templates 
that can simplify the task constructing a complex model.  
 
 
c.  Multi-step and delayed reaction processes: Dizzy enables 
the simulation of complex multi-step processes such as 
elongation and translocation during transcription or translation, 
through two methods. One may define it as a multi-step reaction 
process, a reaction process with an intrinsic, phenomenological 
time delay [5][6]. 
 
d.  Estimation of steady-state stochastic noise: Dizzy provides a 
feature for estimating or calculating the steady-state stochastic 
fluctuations of the species in a biochemical model, requiring 
only the solution of the deterministic dynamics [7][8]. 
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e.  Integrated, graphical, and portable software framework: 
Dizzy has several important software features including 
integration with external software tools, a graphical user 
interface (GUI) and a high level of portability.Many software 
tools are available for solving the deterministic and stochastic 
dynamics of complex biochemical networks but not for GRNs. 
A detailed overview of the most common algorithms for 
simulating GRNs is presented in section 3. We compare some of 
the most widely used simulation software tools against a 
specific list of simulation algorithms and features described 
above.To the best of our knowledge, Dizzy is the only software 
tool available that includes all the features enumerated above. In 
addition, it includes novel implementations of the number of 
simulation algorithms[9].  
 
3. Simulation  Algorithms: A  Number of algorithms can be  
used for simulating the GRNs. These can be divided into two  
broad categories: a. Deterministic and  b. Stochastic Algorithms 
 
a. Deterministic Algorithms: 
If no noise or any stochastic variations are present in the 
process, then we may use Deterministic Algorithms to solve a 
group of non-linear differential equations. If the system includes 
both very fast and very slow dynamics, that is some reactions 
are much faster then others, the system is called stiff. Stiff 
systems are hard to simulate since the fast dynamics require for 
short step size and the slow dynamics increase the total 
simulation time interval. Using a small step size, the simulation 
of the whole process becomes very slow[10]. Consequently, 
some numerical algorithms are developed especially for the 
simulation of this kind of systems. The deterministic algorithms 
available in Dizzy are listed below. 
i. Fifth order Runge-Kutta Method: This method is particularly 
useful for simulating models in which a derivative function is 
discontinuous & the step size is adaptively controlled, based on 
a fourth order error estimation formula. Both relative and 
absolute error tolerances may be independently specified, as 
well as the initial step size[11].  
ii. Fifth  Order RK Fixed: In this method, the differential 
equations are solved using a finite difference method, with a 
fixed step-size. The step size is specified by the user, as a 
fraction of the total time interval for the simulation.  
iii. ODE to Java-dopr54-adaptive: In this algorithm control 
adaptive step-size  is used. Implemented by Murray Patterson 
and Raymond Spiteri.  
iv. ODE to Java-imex443-stiff: An implicit-explicit ODE solver 
with step doubling. Works well for models with a high degree of 
stiffness. 
 
 
b.  Stochastic Algorithms: 
Gene regulation is an inherently stochastic process, which 
cannot be exactly simulated by deterministic algorithms. In 
addition, the stochastic algorithms are designed for continuous 
changes in the state[12]. Some genes in the network may be 
weakly expressed but  the model must handle the exact numbers 
of genes. In these cases the stochastic simulation methods have 
to be used .For biological systems involving genes of small 

populations, the stochastic simulation algorithm (SSA) derived 
by Gillespie is an essentially exact procedure for studying noise 
in gene networks systems[13][14]. However, the computational 
load of the SSA is often very high when it is applied to simulate 
large biological systems. Thus, it is imperative to design 
efficient numerical methods for simulating stochastic Gene 
Regulation Networks. There are two significant approaches for 
reducing the computational time of SSA describe in 
methodology section. In dizzy, the following stochastic 
algorithms are realized[15]  
i. Gibson-Bruck :  An algorithm used for simulating the large 
scale models but are less dynamic.   
ii. Gillespie :  This algorithm is useful for simple systems with 
less complexity 
iii. Tauleap-Simple: An approximate accelerated stochastic 
simulator implemented using the Gillespie Tau-Leap algorithm. 
This implementation is intended for models in which the models 
are less complex.  
iv. Tauleap-Complex: An approximate accelerated stochastic 
simulator implemented using the 
Gillespie Tauleap algorithm. This implementation is used  for 
large complex models. 
4. Simulation Methodology 
In a Genetic Regulatory Networks system, the state vector X(t) 
= (X1(t), …,XN(t)), where Xi(t) is the number of gene of species 
Si in the system at time t, evolves stochastically because of the 
inherent random interactions of genes. Random genes 
interactions give rise to random chemical transmutations in 
accordance with some specified set of reaction channels 
{Ρ1,...,ΡΜ}The dynamics of genes Rj are mathematically defined 
by a propensity function aj together with a state-change vector vj 
= (v1j,…,vnj) :aj(X)dt gives the probability that one Rj reaction 
will occur in state X during the next infinitesimal time interval 
dt, and τ ijgives the change in the Si molecular population 
produced by one Rj reaction[16]. 
 For simulating the stochastic evolution of X(t) , there exist 
several exact procedures that actualize every molecular reaction 
event[17][18]. But efforts to model the complex biological 
networks inside living cells, where small number of genes can 
set the stage for major stochastic effects[19] ,have revealed the 
need for faster, possibly less meticulous stochastic simulation 
strategies.The newly proposed “leaping” methodology attempts 
to sacrifice accuracy for greater speed, and to do so in a way that 
segues as the system size becomes infinite to standard solution 
methods for the conventional deterministic reaction rate 
equation. The “τ -leap method,” for instance, tries to leap down 
the history axis of the system by some chosen time τ that 
encompasses many reaction events. But theoretical 
considerations demand that the size of τ be constrained by a 
Leap Condition, which says that the state change in any leap 
should be small enough that no propensity function will 
experience a macroscopically significant change in its value. 
The mathematical rationale for the τ -leap method [19] is the 
fact that, to the extent that the Leap Condition is satisfied, then 
given X(t) τ x , the number of times Kj(τ x) that genes Rj will be 
express in (t, t  τ ) can be approximated by a Poisson random 
variable: 



  

K j( τ; x) ≈ρ j ( aj( x), τ)    (1)       
This is so because the generic Poisson random variable  ρ(a, τ ) 
can be defined as the number of events that will occur in a time 

τ , given that the probability for an event to occur in the next 
infinitesimal time dt is adt , where a can be any non-negative 

constant. 
This last requirement is approximately ensured by the Leap 
Condition, and the consequent approximation (1) allows us to 
estimate the state change in the leap, 

X(t+τ)− x ≡ Λ(τ; x) = ∑
=

M

j 1

Kj(τ; x) υj                              (2) 

by simple Poisson sampling[8]. But for this approach to be 
practicable, we need a reliable, expeditious, and preferably 
automatic way of determining the largest value of τ that is 
compatible with the Leap Condition.A plausible mathematical 
framing of the leap condition would be require the leap time τ to 
be such that 
  | a j (x +  Λ(   τ; x )) − aj( x) |  ≤ ε a0(x) ,    

∀j =1,....,_ M   (3)     
where τ is a pre-specified error control parameter. But of 
course, smaller values of τ also imply shorter leaps, and 
therefore longer simulation times. How can we find the largest 
value of ε that is consistent with (3) for a specified value of τ? 
This would be a reasonably straightforward problem were it not 
for the fact that the left-hand side of (3) is a random variable 
(since Λ (τ ;x) is a random variable). In any case, we would like 
to make our determination of τ without performing repeated 
“trial” leaps, checking after each one to see if condition (3) is 
satisfied and adjusting τ accordingly, such a post-leap procedure 
not only would consume much time and many random numbers, 
but it might also discriminate against statistically rare but 
nonetheless legitimate large changes in the system’s state.In this 
section we present a new τ -selection procedure that is more 
robust. 
 
6. Sea Urchins Gene Expression Data 

5. The New Tau-Selection Procedure 
The new τ -selection procedure requires us to determine in 
advance first the M2 functions 
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This obviously represents some computational overhead, but the 
task is not quite as daunting as it might at first appear, the 
functional dependence of aj on each xi is  typically be very 
simple often constant, sometimes linear,but rarely more then 
quadratic. Furthermore, for large systems the matrix νij will 
typically be sparse. In any case, with the functions (4) and (5) 
determined, then given a current state X(t) =x , the largest τ that 
is compatible with the Leap Condition (3) is taken to be 
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Acceptance of this τ -value is, however, subject to the provision 
that if it is less then a few multiples of 1/ a0 (x) , which is the 
mean time step for the exact stochastic simulation algorithm . 



  

7. Results and Conclusions  

 

Fig.1 A screen capture of the Dizzy program showing a simulation of a model of genetic regulatory  network consisting of different 
number of genes in sea urchin’s embryo. 
 
 

 

Fig.2  Simulation of GRN consisting of  9 genes of sea urchins embryo 



  

 

 

 

Figure 3. Simulation of GRN consisting of  17 genes of sea urchins embryo 

 
 
 
 
 
 
 
 
 
 

Algorithms Computational cost Modeling Knowledge Speed Accuracy 

Tauleap Simplex High Medium Fast High 

Tauleap Complex Low High Very Fast Medium 

 

Table1: Comparison of various stochastic simulating algorithms 

 



  

In this paper we have presented a comprehensive software tool 
for conducting stochastic simulations of the dynamics of 
complex gene regulatory networks. The tool is particularly well 
suited for simulating the dynamics of integrated large-scale 
genetic, metabolic and signaling networks. In this paper we have 
implemented & tested  various forms of stochastic algorithms 
and their application to simulation of biological systems. Each 
algorithm imposes a certain constraint on the computational 
power, knowledge of the system and input of the numerical 
parameters. In addition, the algorithms provide different 
abstractions of the system and produce solutions with very 
accuracy. Tauleap methods, Tauleap Simplex and Tauleap 
Complex algorithms  are among the fastest simulation 
algorithms. However, due to various numerical treatments to the 
algorithms, both Tauleap methods require substantial modeling 
knowledge to ensure the accuracy of the solutions. Besides that, 
both the algorithms are efficient algorithms, which increase the 

speed of simulation without sacrificing the accuracy of 
solutions.   
As the number of genes in a network increases the network 
becomes more complex because the connecting lines start criss 
crossing leads to more complex network.By simulating these  
genetic regulatory networks we can choose the less complex 
network that corresponds to the less complex biological system 
and our aim in systems biology is to find the less complex 
system so that we can use that, in preventive medicine because 
gene target prediction becomes easier. If we compare the results 
obtained in fig.2 and figure 3 which shows that we can easily 
choose the less complex network because as the number of 
genes increases the lines in graphs starts overlapping 
consequently our graphs becomes more complex, that indicates 
more complex network. In this way we have simulated the 
GRNs. 
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