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Abstract— Protein structure prediction is the problem of

finding the functional conformation of proteins given only

their amino acid sequence. The HP model is an abstract

formulation of this problem, which captures the fact that

hydrophobicity is the major driving force in the protein

folding process. It represents a hard combinatorial opti-

mization problem, widely addressed with metaheuristics.

The conventional energy function of the HP model does

not provide an effective discrimination among candidate

solutions. Therefore, alternative energy formulations have

been proposed. We inquire into the effectiveness of several

of such alternative approaches. The discrimination potential

of each of the studied functions is analyzed as well as their

impact on the behavior of a basic local search algorithm.

1. Introduction
Proteins are at the heart of cellular function, carrying most

of the key processes associated with life. The functional
properties of a protein are dictated by its three-dimensional
conformation. To fully understand the biological roles of a
protein it is imperative, therefore, to determine its structure.

The Protein Structure Prediction (PSP) problem aims to
determine the native conformation of proteins given only
their linear chain of amino acids. Such a structure is as-
sumed to be the one minimizing the overall free energy
[1]. Solving PSP at atomic resolution requires a prohibitive
computational effort even for relatively small proteins. Thus,
simplified protein models have emerged as valuable tools for
studying the most general principles of the folding process.

One of such simplified formulations of PSP is the HP
model [2, 3]. However, even a so abstract model represents
a hard combinatorial optimization problem which has been
proved to be NP-complete [4, 5]. This has widely motivated
the use of metaheuristics to address this problem [6].

Metaheuristics rely on an effective evaluation scheme to
guide the search process. However, the conventional energy
function of the HP model enables a very poor discrimination.
Thus, no preferences can be set among potential solutions,
leading the search to be oriented almost at random. This
problem is expected to have a major impact on the perfor-
mance of local search algorithms. The low discrimination
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of the conventional function produces large plateaus in the
energy landscape, on which local search strategies could fail
to detect a promising search direction [7].

Alternative HP energy functions have been proposed to
improve the performance of search algorithms [7]–[12]. Nev-
ertheless, there are no reported results on the advantages of
using most of such approaches. In this paper, a comparative
study is presented where seven different formulations of
the HP energy function are considered. The discrimination
potential of these approaches is first analyzed. Then, the
effectiveness of each of the studied functions to guide the
search process is evaluated. A basic local search algorithm
was adopted for this sake.

This paper is organized as follows. The HP model is
defined in Section 2. In Section 3, the studied approaches are
described. Our experimental results are discussed in Section
4. Finally, Section 5 concludes.

2. The HP model

Amino acids, the building blocks of proteins, can be clas-
sified on the basis of their affinity for water. Hydrophilic or
polar amino acids (P ) are usually found at the outer surface
of proteins. By interacting with the aqueous environment,
these residues contribute to the solubility of the molecule.
In contrast, hydrophobic or nonpolar residues (H) tend to
pack on the inside of proteins, where they interact with one
another to form a water-insoluble core. These properties of
the amino acids represent, therefore, one of the major driving
forces responsible for the folded state of proteins.

In the Hydrophobic-Polar (HP) model, proposed by Dill in
1985 [2, 3], proteins are represented as sequences of the form
S ∈ {H,P}L, where L denotes the number of amino acids.
The subsets of H and P residues in S are here referred to as
SH and SP , respectively. Valid conformations are modeled
as Self-Avoiding Walks of the HP sequence S on a lattice.
That is, 1) lattice nodes are labeled by the amino acids, 2)
a lattice node can be assigned to at most one residue and 3)
adjacent residues in S are also adjacent in the lattice. This
study focuses on the two-dimensional square lattice.

By emulating hydrophobic interactions, the HP model
aims to find a valid conformation where the number of H-
H topological contacts (HHtc) is maximized. Two residues



si, sj ∈ S are said to form a topological contact, denoted by
tc(si, sj), if they are nonconsecutive in S (i.e., |i− j| ≥ 2)
but adjacent in the lattice. The free-energy function in the
HP model is defined as the negative of HHtc; maximizing
HHtc is equivalent to minimize such an energy function.

Formally, PSP in the HP model is defined as the prob-
lem of finding the conformation c∗ ∈ C(S) such that
ED85(c

∗) = min{ED85(c) | c ∈ C(S)}, where C(S) is
the set of all valid conformations of S. ED85(c) denotes the
free energy of conformation c, which is given by:1

ED85(c) =
∑

si,sj∈SH

e(si, sj) (1)

where

e(si, sj) =

{

−1 if tc(si, sj)
0 otherwise

An example of the optimal conformation for an HP protein
of length L = 20 on the square lattice is shown in Figure 1.
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Fig. 1: Optimal conformation for sequence HPHPPHHPH-
PPHPHHPPHPH of length L = 20. Black and white balls
denote H and P residues, respectively. H-H topological
contacts (HHtc) have been numbered. The free energy of
this conformation is ED85(c) = −9, since HHtc = 9.

Despite its apparent simplicity, finding the optimal confor-
mation for a protein in the HP model is a hard combinatorial
optimization problem, proved to be NP-complete [4, 5].

3. Alternative HP energy functions

This section describes the alternative HP energy functions
considered for this study. A three-letter acronym has been
assigned to each of the studied approaches. The acronyms
are based on first author’s initial and publication year.

3.1 Krasnogor et al., 1999 (K99)

In the conventional HP energy function, only H-H topo-
logical contacts (HHtc) contribute to the quality assessment
of conformations. Given two conformations with the same
HHtc value, it is possible, however, that one of them has bet-
ter characteristics (more compact) than the other. Krasnogor

1The acronym D85 is used to distinguish this conventional function from
the other approaches considered in this study.

et al. [7] proposed the following distance-dependent energy
function:

EK99(c) =
∑

si,sj∈SH

e(si, sj) (2)

where

e(si, sj) =

{

−1 if tc(si, sj)
−1/(d(si, sj)

k|SH |) otherwise

where d(si, sj) denotes the distance between residues si and
sj . In [7], the value of k = 4 was used for the square lattice.

In [7], no significant improvements were achieved when
using the modified energy function. As the authors pointed
out, the superiority of the approach is expected to become
more evident for larger instances and, particularly, when
local search strategies are implemented. The relevance of
using this proposal needs to be further investigated.

3.2 Custódio et al., 2004 (C04)

The conventional HP energy function maximizes only
H-H interactions, thus the positioning of P residues is not
directly optimized. This may result in unnatural structures
for sequences with long P segments and, especially, when
P segments are located at the ends of the chain.

Custódio et al. [8] proposed a modified energy function
based on the assumption that it may be preferable for an
H residue to have a P neighbor than to be in contact
with the aqueous solvent. In the proposed function, the
energy of a conformation is computed as the weighted
sum of the number of hydrophobic-hydrophobic (HHc),
hydrophobic-polar (HPc) and hydrophobic-solvent contacts
(HSc).2 Formally:

EC04(c) = ω1HHc + ω2HPc + ω3HSc (3)

where ω1, ω2 and ω3 denote the relative importance of HHc,
HPc and HSc.

In [8], the proposed function allowed to improve the
performance of a genetic algorithm for some of the adopted
test cases.

3.3 Lopes and Scapin, 2006 (L06)

Lopes and Scapin [9] proposed an energy function which
is based on the concept of radius of gyration. The radius of
gyration is a measure of the compactness of conformations;
the more compact the conformation, the smaller the value
for this measure. The proposed function is given by:

EL06(c) = HnLB ·RadiusH ·RadiusP (4)

The HnLB term comprises the number of H-H topological
contacts (HHtc) and a penalty factor which accounts for the
violation of the self-avoiding constraint. Formally:

HnLB = HHtc− (NC · PW ) (5)

2A free lattice location is said to be occupied by the solvent.



where NC is the number of collisions and the penalty weight
PW can be computed as PW = (0.033 · L) + 1.33 [13].

Before defining the RadiusH and RadiusP terms, let us
first define RgH as the radius of gyration for H residues:

RgH =

√

√

√

√

√

∑

s∈SH

[

(xs − X̄)2 + (ys − Ȳ )2
]

|SH |
(6)

where xs and ys are the coordinates of residue s while X̄ and
Ȳ denote the mean coordinates for H residues. Analogously,
we can compute RgP , the radius of gyration for P residues,
by considering only P rather than H residues in (6).

The RadiusH term measures how compact the hydropho-
bic core of the conformation is. This term is given by:

RadiusH = MaxRgH −RgH (7)

where MaxRgH is the radius of gyration of a totally
unfolded conformation; i.e., the maximum possible RgH
value.

Finally, the RadiusP term aims to push P residues away
from the hydrophobic core. Given the previously defined
RgH and RgP measures, the RadiusP term is computed
as:

RadiusP =

{

1 if (RgP −RgH) ≥ 0
1

1−(RgP−RgH) otherwise (8)

RadiusP lies in the range [0, 1]. A value of (RgP −
RgH) > 0 means that P residues are more exposed than H
residues. This is a convenient scenario, so the RadiusP term
has no contribution to the final energy value (RadiusP = 1).
Otherwise, (RgP − RgH) < 0 suggests H residues to be
more spread than the P ones, so the energy value of the
conformation is decreased. Note that (4) is to be maximized.

In [9, 13], no results are provided on the impact of using
this function rather than the conventional approach.

3.4 Berenboym and Avigal, 2008 (B08)

Berenboym and Avigal [10] proposed an alternative en-
ergy function, called by them the global energy. In this func-
tion, each pair of nonconsecutive H residues contributes to
the energy value, even if they are not topological neighbors:

EB08(c) =
∑

si,sj∈SH

e(si, sj) (9)

where

e(si, sj) =

{

−1
(xsi

−xsj
)2+(ysi

−ysj
)2 if |i− j| ≥ 2

0 otherwise

In [10], the effects of using a local search operator
within a genetic algorithm were investigated for both, the
conventional and the proposed energy functions. However,
an explicit comparison to demonstrate the advantages of
using a particular energy function was not reported.

3.5 Cébrian et al., 2008 (C08)

Cébrian et al. [11] proposed an alternative formulation of
the HP energy function which measures the deviation from
the unit distance (i.e., topological contact distance) for each
pair of H residues. Let d(si, sj)

2 = (xsi
− xsj

)2 + (ysi
−

ysj
)2 be the distance between residues si and sj , and let

dv(si, sj) = d(si, sj)
2−1 denote its deviation from the unit

distance. The energy value of a conformation c is given by:

EC08(c) =
∑

si,sj∈SH

dv(si, sj)
k (10)

where k ≥ 1 is a parameter of the function, whose larger
values give more weight to unit distances. We used k = 2,
since this value seems to provide the best behavior based
on the results reported in [11]. EC08(c

∗) = 0 would refer
to the ideal (potentially unrealistic) scenario where all pairs
of H residues are at a unit distance in conformation c∗.
In [11], no experimental results were reported about the
benefits of using the proposed energy function instead of
the conventional one.

3.6 Islam and Chetty, 2009 (I09)

Islam and Chetty [12] proposed a modified HP function
based on two measures: H-compliance and P -compliance.

H-compliance measures the proximity of H residues
to the center of a hypothetical rectangle enclosing all H
residues, denoted by the reference point (xr, yr). Formally:

H-comp(c) =

∑

s∈SH

(xr − xs)
2 + (yr − ys)

2

|SH |
(11)

where xs and ys denote the lattice coordinates of the s
residue.

P -compliance is a measure of how close P residues are
to the boundaries of a hypothetical rectangle enclosing all P
residues, defined by xmin, xmax, ymin and ymax. Formally:

P -comp(c) =

∑

s∈SP

min

{

|xmin − xs|, |xmax − xs|,
|ymin − ys|, |ymax − ys|

}

|SP |
(12)

Finally, the energy of a given conformation c is defined
as:

EI09(c) = αED85(c) + H-comp(c) + P -comp(c) (13)

where ED85(c) is the conventional HP energy function (see
Section 2) and α is a high value integer constant to ensure
this will be the dominant term in (13). We used α = 10, 000.

In [12], the advantages of using the proposed energy
function were demonstrated for a 85-length HP benchmark
sequence. However, the impact of using this function should
be carefully investigated for a larger set of test cases.



4. Experimental Results
In this section, we investigate the effectiveness of the stud-

ied approaches. Note, however, that even when an alternative
evaluation function is used, the goal of the optimization
process remains to maximize HHtc, which is the singular
objective in the HP model. In this study, the exclusive
purpose for using alternative energy functions is to guide the
search process in a more effective manner. Table 1 presents
the 9 HP benchmark sequences adopted for this study.

Table 1: Benchmarks, length (L) and optimal value (HHtc∗).
Sequence L HHtc∗

S1 HPHP2H2PHP2HPH2P2HPH 20 9
S2 P2HP2H2P4H2P4H2P4H2 25 8
S3 P3H2P2H2P5H7P2H2P4H2P2HP2 36 14
S4 P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48 23
S5 H2(PH)4H3P(HP3)3(P3H)3PH4(PH)4H 50 21
S6 P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 36
S7 H12PHPH(P2H2P2H2P2H)3PHPH12 64 42
S8 H4P4H12P6(H12P3)3HP2H2P2H2P2HPH 85 53
S9 P6HPH2P5H3PH5PH2P4H2P2H2PH5P

H10PH2PH7P11H7P2HPH3P6HPH2

100 48

4.1 Degree of discrimination

The discrimination strategy directly impacts the perfor-
mance of search algorithms. That is, if it is not possible to
set preferences among solutions the search process will be
guided practically at random.

The degree of discrimination that each of the studied func-
tions provides is investigated. We analyzed the distribution
of ranks that these approaches induce on a set of candidate
solutions. A ranking expresses the relationship among a set
of items according to a given property. In the context of this
study, potential conformations are ranked according to their
quality. The first rank is assigned to the best solution, the
next rank to the second best solution, and so on. Solutions
with the same quality will share the same rank.

We adopted the relative entropy (RE) measure proposed
by Corne and Knowles [14]. Given a set of n ranked
solutions (there are at most n ranks, and at least 1), the
relative entropy of the distribution of ranks D is defined as:

RE(D) =

∑

r

D(r)

n
log(

D(r)

n
)

log(1/n)
(14)

where D(r) denotes the number of solutions with rank r.
RE(D) tends to 1 as approaching to the ideal situation
where each solution has a different rank (i.e., the maximum
possible discrimination). On the other hand, when all the
solutions share the same ranking position (i.e., the poorest
discrimination), RE(D) takes a value of zero.

In this experiment, 1, 000 different valid structures were
generated at random. For each of the studied energy func-
tions, these solutions were evaluated and ranked to finally
compute the RE measure. We performed 100 repetitions of
this experiment for all the benchmarks. The box plots in
Figure 2 present the overall statistics of this experiment.

D85 K99 C04 L06 B08 C08 I09
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Fig. 2: Relative entropy (RE). Overall statistics.

From Figure 2, it is possible to note that the conventional
HP function, D85, achieved the lowest RE values. This
confirms the poor discrimination capabilities of this function,
which has been the main factor motivating the exploration of
alternative approaches. C04 showed the worst performance
among the alternative functions. Function L06 achieved high
RE values most of the time, but the outliers indicate a low
performance of this function for some of the benchmarks.
Finally, it is important to remark the high discrimination
provided by functions B08, K99, C08 and I09.

The above results can be better understood by analyzing
Figure 3. This figure presents the histograms with the
distribution of ranks achieved by each function for the first
repetition of this experiment regarding sequence S1. From
this figure, it is possible to note how poor the distribution
of ranks achieved by function D85 is. Only five different
ranking positions were enough to classify the 1, 000 gener-
ated solutions. It can be seen a peak where there are almost
400 solutions sharing the same rank. In fact, no matter the
amount of generated solutions, the maximum number of
ranks which can be assigned through function D85 is 9, since
HHtc∗ = 9 for this benchmark sequence (S1). The second
worst scenario is presented by function C04, where less than
40 different ranking positions were required, out of which
two were each assigned to at around 100 conformations.

Functions L06 and I09 showed an increased discrimi-
nation, since about 720 and 650 ranking positions were
occupied to classify the totality of solutions, respectively. In
the case of function I09, a maximum of eight solutions were
assigned to the same rank. On the other hand, the histogram
for L06 presents a high peak indicating that there are about
250 equally ranked conformations. Function L06 is defined
as the product of three terms, out of which one corresponds
to HHtc (see Section 3.3). All solutions for which HHtc = 0
will have the same energy value, 0. To some extent, this can
be seen as a drawback. Function L06 will not be able to
discriminate among these solutions even if some of them
have better chances than others to further improve.

Finally, the histograms for B08, K99 and C08 confirm
the high degree of discrimination these approaches provide.
We can see that function C08 allowed roughly 950 different
ranks to be assigned. B08 showed the strongest discrim-
ination among all the studied functions, followed by K99.
The corresponding histograms for these functions reveal that
almost all solutions were mapped to a different rank. Only
a few ranks were assigned to at most two solutions.
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Fig. 3: Density of the distribution of ranks achieved by the
studied evaluation functions. Sequence S1, run 1.

4.2 Search performance

We implemented a Steepest Descent Hill Climbing algo-
rithm (SDHC) to evaluate the effectiveness of the studied
energy functions at guiding the search process. SDHC is
a parameter-free algorithm, whose motivation in this study
is to avoid affecting (neither negatively nor positively) the
performance of the approaches through parameter settings.
Given that SDHC is a local search technique, functions pro-
viding a finer discrimination are expected to perform better.
As pointed out by Krasnogor et al. [7], a poor discrimination
will produce large plateaus in the energy landscape, on
which local search strategies could fail to identify a descent
direction. Algorithm 1 describes the implemented SDHC.

The algorithm starts with a valid conformation generated
at random, denoted by c. Once c is generated, we identify c′,
the best conformation among all defined in the neighborhood
of c, N(c). Then, solutions c and c′ are compared with
respect to their energy values. At this point is where the

Algorithm 1 Steepest Descent Hill Climbing (SDHC).
BEGIN SDHC()

1: c← getRandomV alidSolution()
2: loop

3: c′ ← getBest(N(c))
4: if E(c′) < E(c) then

5: c← c′

6: else

7: Stop()
END

different energy functions come to play a decisive role in
the behavior of the algorithm. If c′ has a better energy value
than c (E(c′) < E(c)), then a replacement occurs and the
process repeats. Otherwise, the process ends, since given
the current solution and the adopted neighborhood it is not
possible to achieve an improvement (c is locally optimal).

An internal coordinates representation with absolute
moves was adopted [15]. Candidate conformations are en-
coded as sequences in {U, D, L, R}L−1, denoting the up,
down, left and right possible locations for a residue with re-
gard to the preceding one (solutions are decoded to Cartesian
coordinates for evaluation). The implemented neighborhood
structure N(c) is defined by all solutions that can be reached
through 1-variable perturbations of c. Given a sequence of
length L, the size of such a neighborhood is |N(c)| =
3(L−1). However, only valid conformations are considered.

It is important to remark that the aim of using the SDHC
algorithm is not to improve the state-of-the-art results for
this problem. In this study, SDHC serves only as a tool to
measure the impact of using each of the energy functions.

The behavior of the SDHC algorithm was evaluated
when using each of the studied functions. A total of 100
independent executions were performed for all the adopted
benchmarks. The results of this experiment are presented
in Figure 4. Each plot in this figure shows the average
number of H-H topological contacts (HHtc) achieved by the
algorithm as the search progressed (iteration by iteration).

From Figure 4, it is possible to derive some general
conclusions. The poorest performance for this experiment
was presented by function C08, whose results were even
worse than those of function D85 in most of the considered
test cases. This behavior can be explained by the fact
that function C08 is not consistent with the conventional
objective of the HP model. As stated at the beginning
of Section 4, even when alternative functions are used to
guide the search process, the goal remains to maximize
HHtc; or, which is equivalent, to minimize function D85.
The alternative function should not contradict D85 when
discriminating among potential conformations, otherwise we
will probably be pursuing a different optimum. Nevertheless,
given two conformations c1 and c2, it is possible the case
where ED85(c1) < ED85(c2) but EC08(c1) > EC08(c2),
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Fig. 4: Results of the SDHC algorithm. Achieved number of H-H topological contacts (HHtc) at each iteration. Average
of 100 independent executions.

which is a contradiction.3 An example of this scenario is
presented in Figure 5. This can be seen as a drawback,
so function C08 is not expected to steer the search in an
effective manner. Such an important issue needs to be further
explored for all the studied approaches.

c1: ULLDRDLDLLDDRURRURU c2: LUUULURRRDRDLLDRRRU
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Fig. 5: C08 contradicts D85, since ED85(c1) = −7 <
ED85(c2) = 0 but EC08(c1) = 5548 > EC08(c2) = 5308..

As expected, function D85 showed a low performance for

3Note that the case where ED85(c1) = ED85(c2) but E(c1) 6= E(c2)
is not a contradiction. This is a convenient scenario, since the aim of using
the alternative function E is to enable a more fine-grained discrimination.

this experiment. For all instances, the algorithm achieved the
lowest number of iterations due to the poor discrimination
this function provides. Function D85 exposed the second
worst overall behavior. C04 reached slight improvements,
but its limited performance was comparable with that of
function D85 in some cases. Note that functions D85 and
C04 were previously identified in Section 4.1 because of
their low discrimination capabilities. To some extent, this ex-
plains the poor performance presented by these approaches.

Functions K99 and B08 behaved similarly for the smallest
benchmarks, but their performance curves diverged as the
size of the problem was increased. The results of B08
deteriorated for the largest test cases, while the increasing
performance of K99 allowed this function to compete at the
top of the ranking. L06 obtained very competitive results
most of the time. Finally, we can highlight the outstanding
behavior that function I09 consistently showed for all the
considered test cases. Our results indicate that the best
performers were I09, L06 and K99, in this order.

Functions I09, K99, B08 and C08 were all identified
in Section 4.1 to provide a strong discrimination. How-
ever, only K99 and I09 are among the best performers of



this experiment. That some equally discriminative functions
performed better than others suggests that more important
than the strength is the effectiveness of the discrimination
(intensity does not imply effectiveness).

5. Conclusions and Future Work
The conventional energy function of the HP model enables

a very poor discrimination among potential conformations.
Nevertheless, an effective evaluation scheme is an essential
requirement for metaheuristics in order to guide the search
process towards promising regions of the solutions space.
Alternative HP energy functions have been proposed to
enhance the performance of search algorithms. However, for
most of these approaches there are not reported experimental
results where the benefits of their usage are demonstrated.

This paper presented the results of a comparative study
where seven different formulations of the HP energy function
were considered. Our first experiment was concerned with
the analysis of the degree of discrimination that each of
these functions provides. The obtained results confirmed the
poor discrimination capabilities of the conventional function,
which has been the main motivation for exploring alterna-
tive approaches. All the alternative functions demonstrated
to provide a more fine-grained discrimination. The most
discriminative function according to our results is B08,
followed by the K99, C08 and I09 approaches, in this order.

In our second experiment, we evaluated the impact of us-
ing the studied functions on the performance of a parameter-
free local optimizer. The aim of using a parameter-free
algorithm was to avoid influencing the behavior of the
approaches through parameter settings. In general, most of
the alternative functions allowed to increase the performance
of the implemented algorithm. As expected, the conventional
D85 function exhibited a low performance for this experi-
ment. However, the C08 approach behaved even worse for
most of the adopted test cases. On the other hand, functions
I09, L06 and K99 consistently achieved very competitive
results, being the best performers in this test.

From this study, it is possible to derive some general
conclusions. First, intensity of discrimination does not neces-
sarily imply effectiveness at guiding the search process. Even
when functions I09, K99, B08 and C08 were all identified to
provide a strong discrimination, only I09 and K99 behaved
favorably. In contrast, B08 and particularly C08 presented
a limited search performance. That the less discriminative
approaches (D85 and C04) showed a low overall perfor-
mance confirmed, however, that a tighter evaluation scheme
is important to improve the behavior of search algorithms.

The fact that D85 consistently exposed a poor perfor-
mance supports the relevance of exploring the use of al-
ternative approaches. To the best of our knowledge, this
research is producing the first results that have been reported
in this direction. Nevertheless, this research is in progress.
The preliminary results presented in this paper suggest that

functions I09, L06 and K99 are very promising approaches
for studies on the HP model. However, the impact of using
these approaches needs to be further investigated for more
sophisticated search algorithms. Also, it is important to
extend this study to the three-dimensional cubic lattice, or to
other lattice configurations (for example, the face-centered
cubic lattice), in order to generalize our conclusions.
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