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ABSTRACT 
    Affymetrix gene expression microarray is a popularly 
used platform for differential analysis. The analysis 
pipeline includes five steps: background correction, 
normalization, PM-only correction, and summarization, 
and differential analysis. Using publicly available 
microarray data, we compared the performance of five 
summarization methods: Median, Mean, Median Polish, 
Robust Linear Model, Li-Wong. Our evaluation criterion 
was reproducibility between studies designed to answer 
same scientific questions. Our analysis shows that mean 
value summarization gives smaller number of transcripts 
with inconsistent fold change direction while maintaining 
reproducibility comparable to competing complex 
methods. We conclude that after raw data has been 
preprocessed by the most popularly used pipeline (Robust 
Multiple Regression (RMA) background correction, 
quantile normalization, and PM-only correction), mean 
value summarization may convey a better representation 
of the true expression levels of target transcripts. The 
study suggests that the selection of bioinformatics 
algorithms needs to be application oriented. Sometimes 
simple initiative approach is probably better. 
 
1 INTRODUCTION 
    Microarray technology, based on DNA hybridization to 
measure expression levels of mRNA or to detect Single 
Nucleotide Polymorphism (SNP) and copy number, has 
become an invaluable tool in biomedical research since the 
mid 1990s [1, 2]. One of the popular gene expression 
microarray platforms is Affymetrix where a target 
transcript is typically represented by a probe set consisting 
of 11-16 pairs of short oligos. Each pair consists of a 
perfect match (PM) and a mismatch (MM) oligo. The PM 
probe exactly matches the sequence of a particular standard 
genotype, while the MM differs in a single substitution in 
the central (13th base), intended to distinguish noise caused 
by non-specific hybridization. Transcript expression level 
is a summarization of the signal of individual probes in the 
corresponding probeset [3]. 

Data analysis for Affymetrix microarray generally 
consists of four preprocessing steps: background 
correction, normalization, PM correction and 
summarization. Background correction removes noise 
signals arising from many sources, such as non-specific 
binding, processing bias in wash stage or optical noise 
from the scanner. Normalization rescales intensity from 
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multiple chips to the same level so that gene expression 
levels on different chips can be comparable. PM correction 
controls for non-specific binding between probe and non-
target sequences. The summarization step estimates the 
transcript expression level based on intensity measures of 
probes in the corresponding probe set.  
    There is a rich source of algorithms available to pre-
process raw data from Affymetrix gene expression array. A 
relatively complete list of currently available preprocessing 
steps was tabulated by Irizarry R.A. [4] and Harr B. [5]. 
However, some of these have become obsolete given the 
accumulating evidence of poor performance. For example, 
MAS and subtractmm methods for PM correction were 
shown to consistently yield negative signals, which 
indicates that use of MM probes for detection of non-
specific binding is unreliable [3, 6]. The widely used 
background correction method, robust multi-array average 
(RMA), relies solely on PM values [3]. GCRMA [7] was 
developed to take the effect of GC content on different 
probes into consideration. Bolstad et al. [8] compared 
several normalization methods and showed that quantile 
normalization has advantages in both speed and bias. 
Nowadays, the following pre-processing pipeline, RMA or 
GCRMA background correction—quantile normalization 
—pmonly correction—median polish or Li-Wong 
summarization, has become a standard [4, 5, 9].  
    The performance of various pre-processing methods is 
generally evaluated using spike-in and dilution data series 
[3, 4, 10, 11], MAQC data series [12-15], or based on the 
classification power of the number of differentially 
expressed genes obtained [16]. When using spike-in data, 
the differentially expressed genes are known in advance 
and assumed to be the true targets. However, this 
assumption is not safe in biological questions since it is 
unknown whether a gene expression difference reflects a 
true biological difference or not. This is especially 
important in microarray data analysis because of the high 
background noise and the various sources of variation 
(including but not limited to differences in probe labeling 
efficiency, RNA concentration, and hybridization 
efficiency). Moreover, many known comparison studies are 
based on a single dataset or specific controlling samples. 
This is potentially susceptible to the data structure of 
specific type (or group) of sample, or specific type (or 
batch) of microarray chip. MAQC [12] project spearheaded 
by FDA involved multi-platform and cross-lab comparison. 
However, it is actually based on fixed controlling RNA 
samples. Several existing publications on MAQC project 
did not discuss the performance of different summarization 



methods in true data. It is hard to design a single trail that 
can take all potential confounding factors into 
consideration. In this paper, we compared the performance 
of different summarization pipelines by applying 
competing algorithms on microarray dataset pairs that are 
publicly available and can be used to answer the same 
scientific questions. We aimed to identify the method(s) 
that yield(s) consistent results between the pairs. In the 
following, we first present experimental design and 
evaluation metrics. We then discuss and conclude the study. 
 
2 METHODS 
2.1 Experiment Design 
    The experiment contains three levels of cross validation. 
The first level is different datasets pairs extracted from 
research results, which sheds a light on the possible 
performance difference caused by data structure of specific 
samples. The second level is different microarray platforms, 
which helps to avoid platform specific influence. The last 
level is the use of two different differential analysis 
algorithms, which takes the possible impact of algorithms 
specific effect on the competing methods into consideration. 
    Specifically, we identified three dataset-pairs (six 
datasets in total) from respective Affymetrix microarray 
platforms. The preprocessing pipeline is fixed to RMA—
quantiles—pmonly, and only different summarization 
methods were compared. Five summarization algorithms 
primarily available in the latest Affymetrix built-in 
processing method [17], including median (Avgdiff), mean, 
median polish [10], robust linear model (RLM) [18, 19] 
and Li-Wong (dChip) [20], were compared for 
reproducibility between datasets extracted to address the 
same questions. Two other summarization methods, MAS 
[21] and playerout [22], were not discussed because they 
are less common these days (Table 1).  

Two differential analysis algorithms (significance 
analysis of microarray (SAM) and CyberT) were 
implemented to the processed datasets to get the final result. 
SAM [23] estimates t statistics by adding a small constant 
s0 to denominator to minimize coefficient of variation at 
low expression level. CyberT [24] uses regularized t-test in 
the Bayesian probabilistic framework. We also utilized 
GeneGo webtool to investigate the impact of competing 
methods on consistency of inferred biological pathways.  
 
2.2 Datasets Pairs 
    Raw data were downloaded from the NCBI Gene 
Expression Omnibus (GEO) website. Sample annotations 
were parsed from the sample description files or the 
description column contained in each GSM sample. The 
three dataset pairs used in our analysis are summarized in 
Table 2 and details are presented below. 
 
Pair a - GSE6956 [25] and GSE17356 [26] were designed 
to investigate biological factors that predispose African 
American (AA) men to prostate cancer when compared to 
European American (EA) men. GSE6956 contained 89 
samples from prostate tumor tissue samples (n=69) and 
non-tumor tissue samples (n=20). We used the array data of 
69 tumor samples for our study. Samples in GSE17356 are 
primary prostate cancer epithelial cell cultures (n=27). 

Table 1. Summarization methods 
Summarization 
Method 

Author Year R Package Discussed 
in Paper 

Mean - - - yes 
Median 
(Avgdiff) 

Affymetrix 1999 expresso 
[17] 

yes 

MAS Affymetrix 2002 expresso 
[17] 

no 

Median Polish Irizarry RA 
et al 

2003 expresso 
[17] 

yes 

Li-Wong Li C, Wong 
WH 

2001 expresso 
[17] 

yes 

playerout Emmanuel.
N.Lazaridis 

2002 expresso 
[17] 

no 

Robust Linear 
Model (RLM) 

Sboner A et 
al 

2009 threestep 
(affyPLM) 

yes 

 (n=27). Group1 are prostate cancer samples isolated from 
AA men. Group2 are samples isolated from EA men. 
Fifteen genes were shown to be differentially expressed 
between AA an EA prostate cancer patients in both studies 
(See Table IV in paper reporting GSE17356 [26]). The 
common scientific question is “Which genes are 
differentially expressed between AA and EA men with 
prostate cancer”. 
 
Pair b - GSE6532 [27] is a series with multiple data sources 
and platforms. It was designed in an effort to identify a 
gene classifier for predicting clinical prognosis of 
Tamoxifen-treated estrogen receptor positive (ER+) breast 
cancer patients. GSE6532 has a total of 741 samples 
(Supplementary Table 1). For comparative analysis we 
used 56 samples tested on U133A platform from the John 
Radcliffe Hospital (OXFT) and 81 samples from London, 
United Kingdom, Uppsala University Hospital (KIT). For 
both datasets, only ER+ breast cancer patients treated with 
Tamoxifen were used in our analysis. Group1 is defined as 
individuals with distant metastasis free survival (DMFS) 
<=3 years, and Group2 are those with DMFS>=5 years. 
The common scientific question is “In Tamoxifen-treated 
ER+ breast cancer patients, which genes are differentially 
expressed between individuals with DMFS <=3 and >=5 
years”.  
 
Pair c - GSE5460 [28] was designed to investigate the 
ability of global gene expression in primary breast tumors 
to predict receptor status, histological and other 
characteristics of the tumors. It contains 129 breast cancer 
samples from PLUS2 platform. GSE2109 is from 
expression project for oncology (expO) contributed by the 
International Genomics Consortium (IGC). A total of 2158 
samples from roughly 100 tumor tissues are represented, of 
which 360 samples are from female breast cancer tissue. 
Since detailed phenotypic information is available for the 
two studies, we arbitrarily narrowed down sample 
phenotype to grade III ductal carcinoma to minimize the 
difference between pairing datasets. In the remaining part, 
ER+ samples were set as Group1 and estrogen receptor 
negative (ER-) samples as Group2. The common scientific 
question is “In grade III ductal carcinoma, which genes are 
differentially expressed between ER+ and ER- individuals”. 



Table 2. Construction of comparing datasets 
Datasets 
Pair 

GSE number Microarray 
Platform 

Probe set  
Number 

Group1 status Group2 status Group1 
number 

Group2 
number 

Pair a GSE6956 
GSE17356 

HG-U133A 2.0 22277 AAa EAa 34 35 

14 13 

Pair b GSE6532KIT 
GSE6532OXFT 

HG-U133A 22283 ER+ & TAM 
DMFS<=3 b 

ER+ & TAM 
DMFS>=5 b 

21 35 

24 57 

Pair c GSE2109 
GSE5460 

HG-U133PLUS2 c 22283 ER- ER+ 65 48 

45 18 
a African American and European American men with prostate cancer 
b Tamoxifen (TAM) treated estrogen positive (ER+) breast cancer with distant metastasis free survival (DMFS)  <=3 and >=5 years 
c Plus2 is basically a combination of HG-U133A and HG-U133B. Only HG-U133A probe sets were extracted out from Plus2 for the 
analysis due to a large number of non-gene targeting probe sets in HG-U133B part.
 
2.3 Summarization Algorithms 
    Five summarization algorithms (mean, median, median 
polish, robust linear model (RLM), and Li-Wong) were 
compared in the R environment. A complete list of the 
processing steps is listed in Table 3. Two differential 
analysis methods (SAM and CyberT) were used to get p 
value (use default option). FDR was obtained by applying 
q-value [29] function with default options. The relevant 
software package was downloaded from the 
BioConductor website.  
 
Median 
   The median value of probes in a probe set was used to  
represent summary expression level. The median method 
gives result same as the result by avgdiff approach 
provided in affymetrix built-in processing method [17] . 
 
Mean 
    The mean value of probes in a probe set was used to 
represent summary expression level. 
 
Median Polish 
    The model of median polish can be written as 
ܶ൫ܲܯ൯ ൌ ݁  ܽ  ߝ , where ܶሺܲܯሻ	 represents the 
measure after background correction, normalization, and 
log2 transformation of the PM intensity, ݁ represents the 
log2 scale expression value found on array ݅, ܽ represents 
the log scale affinity effects for probes ݆ , and ߝ 
represents random error. Implementation of median polish 
method is available in expresso function of R package 
affy. 

 

 
Li-Wong 
    Li-Wong method has the following model: ܯܯ ൌ ݒ 
ߙߠ  ܯܲ , andߝ ൌ ݒ  ߙߠ  ߶ߠ    andܯܲ . Hereߝ
 ݅  denote the PM and MM intensity values for arrayܯܯ
and probe pair ݆for this gene, ݒj is the baseline response of 
probe pair ݆  due to nonspecific hybridization, ߠ  is 
expression index for the gene in array ݅, ߙ is the rate of 
increase of the MM response of probe pair ݆, ߶  is the 
additional rate of increase in the corresponding PM 
response, and  ߝ  represents random error. The rates of 
increase are assumed to be nonnegative. The model for 
individual probe responses can be written as ݕୀܲܯ െ
ܯܯ ൌ ߶ߠ  ߝ .In the case of PM-only correction,  
ܯܲ െ  . Implementationܯܲ  is simply replaced byܯܯ
of Li-Wong method is available in expresso function of R 
package affy. 
 
Robust Linear Model 

The RLM method was developed by Hampel F.R.[19]. 
Use of RLM as summarization method was provided in 
threestep function of affyPLM R package (an extension of 
the base affy package).  

 
2.4 Performance Metrics 
    Assume datasets A and B have ܰ  and ܰ  probe sets 
differentially expressed at significance level ௫ . They 
share ܰ௧  probe sets in common. Among ܰ௧  probe 
sets, ௗܰ  values have different fold change (FC) 
direction (i.e., the probe set is up-regulated in one dataset 
and down-regulated in another), and ௦ܰ have the same 
direction. The inconsistent FC proportion (IFP) and 
reproducibility are defined as following 

Table 3. Processing flow for raw CEL file 
 Background  

correction 
Normalization PM correction Summarization Differential Analysis 

Tool 

Analysis 
Method 

RMAa Quantiles PM-only 

Median (avgdiff) 

SAM 
CyberT 

Mean 
Median Polish 
Robust Linear Model (RLM) 
Li-Wong (lw) 

a For RLM method, RMA2 background correction method is used (RMA is not available in threestep function and it is not easy to 
reproduce). 



Table 4. Number of consistent pathways with p<0.05 

a Median Polish        b Robust Linear Model      c Li-Wong      d Only probe sets from HG-U133A used 
 

ܲܨܫ ൌ
ே
ே್

ݕݐ݈ܾ݅݅݅ܿݑ݀ݎܴ݁             ൌ ேೞೌ

ேೌାே್ିேೞೌ
 

2.5 Pathway Consistency and TAP-k Score 
Ranking 
    We fetched the top 1000 significant probe sets from 
each dataset and conducting pathway analysis using the 
GeneGo web tool (GeneGo Inc.). Pathways with P value 
less than 0.05 from the two comparing datasets were used 
for pathway consistency analysis. 
    Threshold Average Precision (TAP-k) [30], a metric 
used in bioinformatics area for comparing retrieval 
efficacy of different search engines, is used to measure 
pathway level consistency. To use TAP-k, a reference 
pathway database was constructed to represent the “true” 
pathways. In our study, a reference pathway is defined as 
those appeared >=3 times among the pathway consistency 
analysis results by using the five summarization methods. 
TAP-k score is used to rank summarization method based 
on concordance rate with the reference pathways.  
 
3 RESULTS 
3.1 Reproducibility and Inconsistent Fold 
Change Direction Proportion 

Figure 1 shows the comparison result of the five 
summarization methods using two differential analysis 
tools. There are five plots for each pair to show the trend: 
IFP vs. ௦ܰ  (the number of consistent probe sets), 
Reproducibility vs. ௦ܰ  , IFP vs. p-value, 
Reproducibility vs. p-value, and ௦ܰ  vs. p-value. In 
datasets pairs a and b, where HG-U133A2 and HG-
U133A were respectively used, mean value 
summarization showed a constantly lower inconsistent 
fold change proportion (IFP) than competing methods 
(red line in Figure 1 a-1, a-3, b-1, b-3). The same 
tendency is observed when using either SAM (solid red 
line) or CyberT (dashed red line) as differential analysis 
tool. The reproducibility of mean strategy is comparable 
to other methods at different significance levels (Figure 1 
a-4, b-4). Li-Wong summarization method produced more 
consistent probe sets when SAM is used (cyan line in 
Figure 1 a-5, b-5), but at the cost of high IFP (cyan line in 
Figure 1 a-3, b-3) and hence poor performance in the plot 
of IFP versus ௦ܰ  (cyan line in Figure 1 a-1, b-1). 
Moreover, the performance of Li-Wong method is more 
sensitive to the two differential analysis strategies 
currently used. As indicated in Figures 1 a-5 and b-5 
(cyan color), Li-Wong identified more consistent probe 

sets when SAM (solid line) is used, but this is not 
reproduced when applying CyberT (dashed line) method.  
Median summarization strategy performs worse in all the 
three dataset pairs we considered here.  
    Pair c has an overall low IFP (near zero when p<0.05) 
and high reproducibility. In Figure 1 c-5, RLM (Blue) and 
Li-Wong (Cyan) methods identified more consistent 
probe sets than other methods when same p value cutoff 
standard is used. However, when plotting reproducibility 
vs. ௦ܰ, we see slightly better performance of median 
polish (Green) and mean (Red) methods (Figure 1 c-2).  
All summarization methods have IFP near to zero when 
௦ܰ is less than 1000 (Figure 1 c-1).  

 
3.2 Genego Pathway Consistency Analysis 
    The reference pathways constructed in the TAP-k score 
ranking test of each dataset pairs were provided as 
supplementary materials. The performance of five 
summarization methods ranked by TAP-k score is 
illustrated in Figure 2 a, b, c. 
    GeneGo pathway consistency analysis showed largely 
variable performance of competing methods depending on 
both the comparing dataset and differential analysis 
method used. In general, our analysis shows mean and Li-
Wong methods have better performance in identifying 
more consistent pathways on pairs a and b. In pair c, 
median and median polish has the best performance 
(Table 4).  
    Mean method (Red) ranked first or second in three 
dataset pairs and its performance is more stable than 
competing methods. RLM (Blue) and Li-Wong (Cyan) 
have high TAP-k score in pair a, but the performance is 
not reproduced in pair c. No obvious alteration in ranking 
was observed between SAM and CyberT. 
 
4 DISCUSSION 

The comparison study of Kerby Shedden [16] based on 
one ovary tumor dataset and one colon tumor dataset 
(both used HG-U133A platform) showed that Trimmed 
mean and Li-Wong methods are more sensitive---detect 
more genes at a given FDR level. However, the number of 
significantly differentially expressed genes detected at 
given FDR level highly depends on the differential 
analysis algorithm used. Li-Wong strategy by SAM 
returned nearly double number of probe sets at a given 
significance level (same when FDR is used) than by 
CyberT (Supplementary Table 2). Moreover, certain 
truncation (in the manner recommended by the developers 
of each method) was implemented in Kerby Shedden’s 

Dataset pair Platform SAM CyberT 
median mean mpa RLMb lwc median mean mpa RLMb lwc 

GSE6956 VS. 
GSE17356 

HG-U133A2 54 84 50 67 100 60 65 68 66 67 

GSE6532OXFT VS. 
GSE6532KIT 

HG-U133A 52 103 69 57 86 51 96 52 48 70 

GSE2109 VS. 
GSE5460 

HG-U133PLUS2d 96 77 90 55 68 90 78 82 48 65 
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target the same genes as platform HG-U133A, we only 
used the probe sets that were covered by HG-U133A 
when analyzing pair c. This also helps to make the 
comparison with the other two pairs consistent. The 
datasets in pair c showed excellent performance in both 
lower IFP and higher reproducibility than the other two 
pairs. We also observed much more number of consistent 
probe sets in pair c. This might be resulted from the large 
biological difference between ER- and ER+ breast 
cancers [28]. Thus the differentially expressed transcripts 
are more easily identifiable. Mean strategy only has 
slightly better performance (comparable to median polish) 
in plot of reproducibility versus ௦ܰ. Its performance in 
other plot and pathway consistency analysis is not 
superior to competing methods. A possible explanation is 
that in situations where obvious biological differences 
exist, the consistency is less affected by the 
summarization methods used. 

It is intriguing that mean summarization, a remarkably 
simple algorithm with the lowest time complexity, 
outperform (dataset pairs a and b) or comparable to (pair c) 
several competing algorithms. Similar argument can be 
found in the 70-gene signature for breast cancer prognosis 
classification developed by Van’t Veer et al. [32]. The 
group sorted the differentially expressed genes between 
relapsed and relapse free breast cancer patients by p value 
and picked the top 70 most significant genes, and used the 
mean expression levels of these 70 genes in relapse free 
group as the signature. This simple strategy has not yet 
been outperformed by other more sophisticated strategies 
[33].  A possible explanation is that complex algorithms 
with too specific kinds of adjustment result in “fit to noise” 
under circumstances where high background noise exists. 
Methods such as Li-Wong iteratively fit a model to the 
probe data from multiple microarrays to exclude outliers. 
These iterations may cause signal distortion. It might help 
to increase the reproducibility of “disease-caused” 
differentially expressed transcripts, but at the cost of high 
proportion of inconsistent results. 
    Note that we used p value rather than FDR as cutoff 
standard because different datasets generate very different 
number of probe sets at the same FDR level. Pair b has 
actually no common probe sets when set FDR to <0.1. 
Additionally, the p values obtained from SAM and 
CyberT are based on regularized t test (by using adjusted 
variance). We thus use p value to do the comparison 
while similar results were obtained when using FDR as 
cutoff standard (obtained by qvalue algorithm [29]).  
 
5 CONCLUSION 
    In the present work, we compared the performance of 
five summarization algorithms on their ability to lower 
IFP and improve reproducibility. While maintaining 
comparable reproducibility, mean summarization strategy 
gives smaller proportion of probe sets with inconsistent 
FC direction in two datasets pairs than several currently 
widely used summarization approaches. Its performance 

is weakened in the paired datasets where high biological 
difference may exist between comparison groups. 
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