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Abstract - Although a number of scientific advances have  
been made in the area of structural biology, a few obstacles  
continue  to  impede  our  ability  to  quickly  and  efficiently  
characterize  protein  structure-function  relationships.  
Probability  Density  Profile  Analysis  (PDPA) is  a  method  
which rapidly quantifies the structural novelty of a protein,  
based  on  the  statistical  analyses  of  a  minimal  amount  of  
empirical  data.  Here  we  present  findings  related  to  the  
sensitivity and range of applicability of PDPA. Our results  
support  the  conclusion  that  two dimensional  PDPA (2D-
PDPA) can reliably be utilized for identification of a protein  
structure  to  within  3Å  of  the  known  structure,  using  a  
library of existing structures. Furthermore, the sensitivity of  
2D-PDPA  has  been  tested  using  proteins  containing  
different  secondary  structural  characteristics  (α,  β,  and 
α/β) and  our  preliminary  investigations  support  the  
conclusion  that  2D-PDPA  is  equally  applicable  to  all  
general classes of proteins.
 
Keywords: Residual  Dipolar  Couplings,  Parzen  Density 
Estimation, Probability Density Profile Analysis, Structural 
Homology Detections

1 Introduction
Proteins are often referred to as the working molecules of 

a cell, performing many important structural, functional and 
regulatory  processes  [1].  Yet,  revealing  the  function  of 
proteins  is  a  particularly  challenging  problem.  Sequence-
based approaches are an option, but identifying functionally 
characterized homologs is only feasible for less than half of 
the proteins predicted from genome sequencing projects [2] 
and is often compounded by the fact that proteins tend to be 
multi-functional [3]. Since a protein's structure often dictates 
its  function,  an  alternative  approach  is  to  determine  the 
structure  of  the  protein  of  interest  in  order  to  identify 
functionally important sites [3]. This is believed to provide a 
solution for many of the remaining proteins, since structure 
is more evolutionarily conserved than sequence [2, 3]. 

Although  the  characterization  of  any  protein  adds  to 
repositories  of  structural  data,  most  structural  biologists 
would concur that novel structures are particularly important 
for  a  number  of  reasons:  they  generate  models  of  similar 
proteins for comparison; identify evolutionary relationships; 
further contribute to our understanding of protein function 
and  mechanism;  and  allow  for  the  fold  of  other  family 
members to be inferred [4-6]. Considering the evolutionary 
mechanisms responsible for the generation of new structures 
in proteins, it has been speculated that there may be a limited 

number  of  unique  protein  folds  -  as  few as  ten  thousand 
families [7-9]. Currently the Protein Data Bank (PDB; [10]) 
consists  of  nearly  68,000  protein  structures,  but  less  than 
1,400  families  are  represented  and  approximately  no  new 
fold  families  have  been  reported  since  2008  [11,  12]. 
Ideally, solved protein structures for new protein families [6] 
would be used as templates for in silico structure prediction 
methods [4, 13] and the results of both solved and predicted 
structures would in turn be used to infer function [2, 14, 15]. 
However, such an approach requires new, efficient and cost-
effective  computational  methods  for  target  selection  and 
structure determination. 

Traditional methods of structure determination, such as 
X-ray  crystallography  and  NMR  spectroscopy,  are 
expensive  and  time-consuming  techniques.  Previously  we 
presented  a  method,  referred  to  as  Probability  Density 
Profile  Analysis  (PDPA),  which  rapidly  quantifies  the 
structural novelty of a protein using only a minimal amount 
of empirical data. PDPA is a potentially important tool that 
provides  investigators  with  fast,  cost-effective,  easy  to 
interpret  results  while  also  further  contributing  to  our 
understanding of structure-function relationships in proteins. 
The interpretation of PDPA scores, as well as the effective 
applicable range of PDPA, had not been known previously. 
In  this  report,  we  provide  the  means  to  interpret  PDPA 
results and establish both the sensitivity and applicability of 
this method [19, 23].

2 Methods

2.1 Residual Dipolar Coupling (RDC)

Residual Dipolar  Couplings  are  the  result  of  dipolar 
interactions in  a  partially  ordered  system  [16]  and are 
defined in Equation (1):

Dij=Dmax . 〈 3cos2
−1
2 〉  (1)

In this equation,  Dij is the magnitude of calculated RDC 
in hertz that is between two ½ spin nuclei in the presence of  
a magnetic field; θ signifies the angle between the magnetic 
field vector and the inter-spin vector (nuclei i and j); brackets 
represent the time average for a specific coupling; and  Dmax 

denotes the maximum magnitude of a coupling that is further 
defined in Equation (2).
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In Equation (2), µ0 signifies the magnetic permeability; γi 

and γj are the gyromagnetic ratios of two nuclei (i and j); r is 
the  intranuclear  distance  between  two  nuclei;  and  h is 
Planck's constant.

The RDC equation can be manipulated into a matrix form 
(Equation (4)) as shown in Equation (3):

Dij=v ij . S . v ij
T  (3)

S=[
S xx S xy S xz

S xy S yy S yz

S xz S yz S zz
]  (4)

   
A  unit  vector  that  joins  two  corresponding  nuclei  is 

represented by vij and S is the traceless and symmetric Saupe 
order  tensor  matrix  (OTM)  [17].  S  can  be  further 
decomposed  into S=RS ' RT such  that  R is  a  Euler 
rotation  matrix,  whose  columns are  the eigenvectors  of  S; 
and  S'  (Equation  5)  is  a  traceless  diagonal  matrix  of  the 
eigenvalues of S, whose diagonal elements S' xx,S' yy ,S' zz  
are the principle order parameters (POP).  

S =[
S ' xx 0 0

0 S ' yy 0
0 0 S ' zz

]  (5)

  
The  rotation  matrix  R  can be  decomposed into  three 

different rotations related to x, y and z as shown in Equation 
(6):

R , ,=Rz Ry  Rz  (6)

                      
Using  the  previous  equations,  the  order  tensor  can  be 

rewritten  in  five  parameters:  S' xx ,S' yy ,α,β,γ .  This 
particular  parameterization  is  used  in  our  experiment  to 
generate RDC data sets.

2.2 1D-PDP Analysis

Our initial work with PDPA was conducted using  One 
Dimensional  Probability  Density  Profile  Analysis  (1D-
PDPA)  and was  based on unassigned  RDC data from one 
alignment  medium  [18].  This proof of  concept  established 
the  feasibility  of  identifying  homologous  structures  from 
unassigned  RDC data,  however  it  lacked  the  potential  for 
large scale applications. In summary, 1D-PDPA established 
structural  similarity  on  the  basis  of  comparing  the 
distribution of experimental  and computed RDC data.  1D-

PDPA requires a  collection  of  experimental  unassigned 
RDCs as well as a library of potential structures.

2.3 2D-PDPA

2D-PDPA extends the analysis of 1D-PDPA by utilizing 
RDC data from two alignment media. The additional set of 
experimental  RDC data  has  obvious  advantages  over  1D-
PDPA. 2D-PDPA limits the search space to seven parameters 
[19] and is capable of generating a more accurate and unique 
PDP  for  a  given  structure.  A  2D-PDPA  analysis  session 
requires a collection of RDC data from two alignment media 
along  with  a  library  of  homologous structures.  A  two 
dimensional  Parzen  density  estimation  (or  kernel  density 
estimation) is used to generate a two dimensional PDP (2D-
PDP) by considering both alignment  media  [19]. Figure  1 
illustrates  a  sample  2D-PDP  for  the  protein  Pf2048,  a 
structure  which  has  not  yet  been  characterized.  The two 
dimensional distribution of RDCs that is generated from the 
experimental data is denoted as the query PDP (qPDP) and is 
used, in addition to the estimated order tensors, as input to 
the 2D-PDPA. Incorporation of RDC data from the second 
alignment medium requires an extension of the search space 
by three more variables representing possible orientations of 
the second alignment medium with respect to the first one. 
Traditional  inclusion  of  these  three  additional  variables 
would  have  increased  computation  time  by  a  factor  of 
2.5657e+09.  This  intractable  increase  in  computation  time 
has been eliminated based on new technology that has been 
recently introduced [19, 20].

Figure 1. An example 2D-PDP signature for a protein (Pf2048) of 
unknown structure. 

2D-PDPA  calculates  PDP  for  every  rotation  and  a 
scoring method is used to find the best structure in terms of 
the  similarity  to  the qPDP. To calculate  fitness  scores  we 
consider three metric systems: Manhattan Block, Chi-Square, 
and Modified Chi-Square. The Manhattan Block method is 
defined in Equation (7):

S qPDP , cPDP =
i∈M

∣qi−ci∣  (7)

 
In Equation (7), qi represents the ith value of qPDP and ci 

represents the ith value of computed PDP (cPDP). M denotes 
the number of sampled points in both query and calculated 



PDP sets. The Chi-Square method is defined in Equations (8) 
and (9):


2

i  qi , ci =
q i−c i

2

q i

 (8)

  


2
qPDP , cPDP=∑

i ∈M
 i

2
q i , c i  (9)

  
In Equation (8), qi represents the ith value of qPDP and ci 

represents  the  ith value  of  cPDP.  Due  to  the  asymmetric 
nature of the χ2 metric 2

A , B≠
2
B , A  , a modified 

Chi-Square has been introduced and shown in Equation (10):


2

m qPDP , cPDP=
[

2
 qPDP , cPDP

2
cPDP , qPDP  ]

2
 (10)

In equation (10), mχ2 denotes the modified χ2 metric and 
qPDP and  cPDP represent the experimental and computed 
PDPs, respectively.  The modified  χ2 metric is a symmetric 
measure  of  distance  and  it  therefore  constitutes  a  formal 
metric space. During our early investigations,  no preference 
was given to any one of the scoring metrics described above. 
However, based on the investigation that is presented here, 
the  Manhattan Block metric was able to demonstrate slightly 
better  results  (shown  in  Figure  3a-c)  in  terms  of  the 
distribution of scores over bb-rmsd and as well as greater R2 

values. 

2.4 Data Preparation

In this experiment,  three reference proteins of different 
sizes and structural types (Table 1) were utilized in order to 
assess the sensitivity and selectivity of 2D-PDPA. This step 
is necessary due to the influence of secondary structures on 
orientation of the backbone N-H vectors. Traditionally, RDC 
data from helical  regions have  been  reported to carry less 
information  relative  to  other  secondary  strcutres.  The 
proteins listed in (Table 1), were obtained from PDB  [10]; 
Figure  2 provides  a  cartoon  representation  of  each  of  the 
structures listed in Table 1.

Table 1. Protein structures obtained from the Protein Data Bank.
Protein Secondary 

Structure
Number of 
Residues

CATH 
Classification

1A1Z α 91 1.10.533

1OUR  β 114 2.60.120.400

1GB1 α/β 56 3.10.20.10

For each protein structure listed in  Table 1, a set of one 
thousand  structural  variations  were  created  by  randomly 
altering the backbone  φ  and  ψ torsion angles. Each dataset 
represented structural variations in the range of 0-8  Å with 
respect  to  the  corresponding  reference  structure  and  were 
generated in the PDB file format. To obtain the RDC data for 
the three reference proteins, we utilized REDCAT [21]. The 
assignment  information  was  discarded  prior  to  providing 

these  data  to  2D-PDPA.  The  PDB files  were  exported  in 
REDCAT [21]  to  retrieve  the  RDC data  in  the  2D-PDPA 
program.  Two  sets  of  15N-1H backbone  RDC  data, 
representing  two typical  alignment  media,  were  calculated 
for each reference protein by using REDCAT and the initial 
order  parameters  shown  in  Table  2.  The  RDC sets  were 
calculated  separately  under  three  conditions:  with  one  set 
containing  no  error,  the  second  set  corrupted  through  the 
addition of uniform noise in the range of ±1Hz, and the third 
set consisted of randomly eliminating 15% of RDC data that 
is normally expected during pragmatic conditions. The first 
set serves to simulate the ideal conditions (no error) versus 
the  real  conditions  (±1Hz  and  15%  of  RDC gap  for  the 
second and third sets).

1A1Z 1OUR 1G1B

Figure 2. Illustrates the structures listed in Table 1.

Table 2. List of initial order parameters used to calculate two RDC 
sets.

Sxx Syy Szz Alpha Beta Gamma

Set1 3.00e-4 5.00e-4 -8.00e-4 0º 0º 0º

Set2 -4.00e-4 -6.00e-4 1.00e-3 40º 50º -60º

The 2D Parzen Density Estimation [18] program was used to 
analyze RDC data and to create  the  2D Probability Density 
Profile (2D-PDPA) [16] finger prints of each protein.  Order 
tensors were calculated in two ways: First, the optimal 2D 
order  tensors  are  obtained  from  REDCAT using  structure 
and  calculated  RDC  data;  Second,  order  tensors  are 
estimated using RDC data from two alignment media  [22]. 
These  two  approaches represent  a  transition from ideal  to 
more pragmatic conditions. 

3 Results and Discussion

3.1 Experiment 1

The  main  objective  of  this  experiment  was to  identify 
differences between the various metrics in order to establish 
the  most  appropriate  metric  for use.  Experiment  1  used 
protein  1GB1 and  its  corresponding  calculated  RDC data, 
using no error or noise to demonstrate the ideal conditions. 
The experiment was repeated 3 times with different metrics 
each  time.  Order  tensor  matrices  were  obtained  from 
REDCAT [21] for each RDC set (Table 3).

The relationship between 2D-PDPA structure scores and 
bb-rmsd for the one thousand variable structures generated is 
shown for each metric in  Figure 3; the corresponding least 
squares  regression  logarithmic  line  and  R2  values  are  also 
shown for  each  metric.  For bb-rmsd values  up  to 2.5Å,  a 
linear correlation between PDPA scores and bb-rmsd exists 



(Figure 3).  For structures  with bb-rmsd greater  than 2.5Å, 
PDPA scores  remain  in  the  same  range:  [0.8-1]  for 
Manhattan Block, [2-3] for Modified Chi-Square,  and [10-
15]  for  Chi-Square  (Figure  3).  For  all  metrics  tested,  the 
Manhattan Block obtained the highest R2 value (0.65, Figure
3). Therefore,  the Manhattan-Black metric  was selected and 
utilized exclusively for all remaining experiments. 

Table 3. List of order parameters for each RDC set (alignment  
medium) obtained from REDCAT. 

Order 
Tensor

No Error
(1G1B)

±1Hz Error
(1G1B)

15 RDC 
Gap

(1G1B)

±1Hz Error
(1A1Z)

±1Hz Error
(1OUR)

Sxx1 3e−4 2.966e−4 2.967e−4 3.091e−4 3.022e−4

Syy1 4e−4 5.08e−4 5.061e−4 4.985e−4 5.053e−4

Sxx2 7.99e−5 9.624e−5 9.726e−5 8.665e−5 −3.235e−5

Sxy2 3.89e−4 3.863e−4 3.795e−4 3.936e−4 4.05e−4

Sxz2 5.42e−4 5.412e−4 5.428e−4 5.44e−4 6.325e−4

Syy2 −1.70e−4 −1.784e−4 −1.82e−4 −1.856e−4 −5.998e−5

Syz2 5.414e−4 5.445e−4 5.396e−4 5.369e−4 4.348e−4

Figure 3. Calculated 2D-PDPA scores vs bb-rmsd using different  
scoring methods for 1GB1 protein: (a) Block scoring method, (b)  

Chi-square scoring method, and (c) Modified chi-square scoring  
method. 

3.2 Experiment 2

The  objective  of  this  experiment  was  to  study  the 
behavior of 2D-PDPA as a function of experimental noise. 
Experiment 2 used 1GB1 and calculated the RDC data using 
±1Hz  error  to  demonstrate  noisy  conditions.  Order  tensor 
matrices  were obtained from REDCAT  [21] for each RDC 
set (Table 3).

Figure 4 shows the relationship between the 2D-PDPA's 
score  (Manhattan-Block  distance)  for  one  thousand 
structures  and their corresponding bb-rmsd with respect  to 
the original structure; the least squares regression line and R2  

for the data are also shown in Figure 4.

Figure 4. Calculated 2D-PDPA scores vs bb-rmsd using  
Manhattan Block metric for 1GB1 with ±1hz error added. 

This experiment was repeated by randomly removing 15 
(28%) RDC values from both synthetic RDC data sets. Order 
tensor matrices were obtained from REDCAT for each RDC 
set (Table 3). The plot of the 2D-PDPA scores using block 
metric against the bb-rmsd is seen in Figure 5 along with the 
least squares regression line and R2  value. The PDPA scores 
increase  as  a  result  of  the random removal  of  RDC data, 
however a correlation still  exists between PDPA score and 
bb-rmsd (R2= 0.573, Figure 5).

Figure 5. Calculated 2D-PDPA scores vs bb-rmsd using  
Manhattan Block metric for 1GB1 with 15 (28%) of RDC data  

removed from RDC sets.
 



3.3 Experiment 3

Experiment 3 used protein 1A1Z, which is an  α−helical 
structure,  and  calculated  the  RDC  data  with ±1Hz  of 
uniformly  added  error.  Order  tensors  were  obtained  from 
REDCAT for each RDC set (Table 3).  Figure 6 shows the 
correlation  between  the  bb-rmsd of  the  structures  and  the 
2D-PDPA scores; leasts squares linear regression line and R2 

values are included. 

Figure 6. Calculated 2D-PDPA scores vs bb-rmsd using  
Manhattan Block metric for 1A1Z with ±1hz error added. 

3.4 Experiment 4

Experiment  4  used  protein  1OUR  and  calculated  the 
RDC data using ±1Hz error to demonstrate noisy conditions. 
Order tensor matrices were obtained from REDCAT [21]for 
each  RDC set  (Table  3).  Figure  7 shows the  relationship 
between one thousand 2D-PDP structure scores and bb-rmsd 
with  the  Manhattan  Block  metric.  The  least  squares 
regression line and the R2 value are also shown in Figure 7. 

Figure 7. Calculated 2D-PDPA scores vs bb-rmsd using  
Manhattan Block metric for 1OUR with ±1hz error added. 

4 Conclusion
2D-PDPA is a powerful method which can be utilized to 

identify homologous structures using  only  a minimal set of 
experimental  data  prior  to  a  full  structure  determination 
protocol.  Therefore, 2D-PDPA  is  a  viable  method  for 
ascertaining  a  protein's  structural  novelty  to  within  3Å, 
relative  to  the  existing  library  of  structures.  The  main 
contribution  of  our  method  demonstrates  the  correlation 

between  scored  PDP  and  bb-rmsd  of  the  corresponding 
structure. This also confirms the reliability of the 2D-PDPA 
identification  and  scoring,  up  to  a  threshold  of  3Å.  To 
conduct our experiments we chose 3 structures representing 
three distinct  CATH families. The experiment repeated for 
RDCs with no error and RDCs with error and missing data 
has  confirmed  2D-PDPA's  capability  for  pragmatic 
conditions. In all cases, the correlation between bb-rmsd and 
calculated PDP scores are clear. In the case of noisy RDCs 
data,  our  experiments  show  a  slight  shift  of  2D-PDPA's 
score, yet a correlation is maintained. A-priori determination 
of score thresholds allows for interpretation and reliability of 
the 2D-PDPA's performance. The observed threshold of 3Å 
also extends the use of the presented method to confirmation 
of computationally modeled structures. A hybrid approach of 
2D-PDPA based selection of best computed structures can be 
envisioned,  which  allows  for  combined  strengths  of 
computational  and  experimental  methods  of  structure 
determination while maintaining low cost.  
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