
Paralellization of Needleman-Wunsch String 
Alignment Method 

 

Jaime Seguel 
Department of Electrical and Computer Engineering 

University of Puerto Rico at Mayaguez 
Mayaguez, Puerto Rico 
Jaime.seguel@upr.edu 

Carlos Torres 
Department of Electrical and Computer Engineering 

University of Puerto Rico at Mayaguez 
Mayaguez, Puerto Rico 
Carlos.torres9@upr.edu

 
 

Abstract— The identification of homologies between protein 
sequences is a central problem in molecular biology and several 
algorithms have been proposed for accomplishing this task. The 
Needleman-Wunsch Algorithm and its close variant, the Smith-
Waterman dynamic programming methods, solve the problem 
exactly in quadratic time and space. However, due to the massive 
amount of data involved in sequence-to-database of sequences 
comparisons, heuristic methods such as BLAST, are used instead. 
This article explores the design of a parallel version of 
Needleman-Wunsch based on a divide-and-conquer idea derived 
from an algorithm first proposed by Hirschberg, for the 
identification of the longest common substring of two strings.    

Keywords: string alignment, dynamic programming, divide-
and-conquer, recursion, parallel computation. 

I.  INTRODUCTION 
The identification of homologies between protein 

sequences is a central problem in molecular biology. In 
computational terms, the problem is stated as the search of an 
optimal alignment between a pair of strings over the 20-
character amino acid alphabet. An alignment of a pair of 
strings S1=x1…xm and S2=y1…yn, is a 2 ! q matrix A[i, j], 
where i = 1, 2 and q " max{m, n}; whose entries are the 
characters of the amino acid alphabet or a gap symbol  “ – ”. 
In addition, A satisfies: 

 
i. For each i = 1, 2 and j, A[i, j] is a character of the 

protein alphabet or either A[1, j] = –  or A[2, j] = 
–, but not both; 

ii. If all gap symbols are removed and each empty cell is 
filled by left shifting by one all the cells to its 
right, then  A[1, j] = xj and A[2, j] = yj  
 

The similarity is quantified with respect to a substitution 
matrix that establishes the rate at which a character in the 
amino acid alphabet changes to each of the other characters in 
the same alphabet, over time. We denote the substitution rate 
of pair of characters xk and yj as r(xk, yj). A gap penalty, in 
turn, is a numerical cost imposed for the insertion of the gap 
symbol in either A[1, j] or A[2, j]. Gap penalties may be 
assigned as a constant per gap symbol inserted, or as an affine 
gap penalty containing separate costs for initiating and for 

extending the gap with consecutive gap symbol insertions. For 
the sake of simplicity, we consider solely constant gap 
penalties. The score of an alignment is the sum of the rate of 
substitution of each pair of aligned characters minus a gap 
penalty per each character that is aligned with the gap symbol. 
The higher the score, the better the alignment. For example, 
let’s consider the alignment of the pair (S1, S2); with S1 = 
PAWHEAE and S2 = HEAGAWGHEE [1]. The next 
alignment is optimal with respect to the BLOSUM50 
substitution matrix and a penalty gap of # = -8.  

TABLE I. AN OPTIMAL ALIGNMENT OF S1 AND S2 

 

This alignment, which reaches the optimal score of 1, is not 
necessarily unique. Indeed, in this particular case as in many 
others, there are other alignments that reach the same score.  

A. Dynamic Programming 
An exhaustive search for an optimal alignment takes 

exponential time. Needleman and Wunsch [2] introduced a 
quadratic time and space dynamic programming method 
known today as the Needleman-Wunsch algorithm (NWA). 
NWA computes an optimal alignment in two main steps. The 
first step uses a recursive formula to fill in, usually row-by-row 
or column-by-column; a dynamic programming matrix D . The 
next pseudo-code describes this process. 

Step 1: Computation of the Dynamic Programming Matrix 
For each k, 0 ! k ! m; 
     D[k, 0] ! k"# 
For each j, 0 ! j ! n;  
     D[0, j] ! j"#  
For each k, 1 ! k ! m; 
    For each j, 1 ! j ! n; 

D[k, j]!max{D[k-1, j-1]+r(xk, yj), D[k-1,j]+#, D[k,j-1]+#} 
 

Matrix D contains the optimal scores for the alignment of 
all subsequences of S1 and S2 that start at x1 and y1; 

H E A G  A W G  H E –  E 

–  –  P –  A W –  H E A E 



respectively. The last entry in this matrix, this is D[m, n], is the 
optimal score for the alignment of S1 and S2 . The second step 
of NWA backtracks the path of solutions of the subsequence 
alignments that led to the optimal score D[m, n]. We refer to a 
path of indices of D that results from this process as backtrack-
path or b-path. Backtracking is summarized in the next pseudo 
code. 

Step 2: Computation of a b-path 
b-path!{[m, n], [0, 0]} 
While [k, j] $ [0, 0]  is in b-path 

If D[k, j]=D[k-1,j-1]+r(xk,yj) 
b-path! b-path ! {[k-1,j-1]}; 

      Else if D[k, j]=D[k-1,j]+# 
b-path! b-path !"{[k-1, j]}; 

      Else if D[k, j]=D[k,j-1]+# 
b-path!b-path !"#[k, j-1]};  
 

The actual alignment follows from the b-path by applying 
the next rule: 

If [k-1, j-1] and [k, j] are in the b-path, xk is aligned with yj 
If [k-1, j] and [k, j] are in the b-path, xk is aligned with –  
If [k, j -1] and [k, j] are in the b-path, yj is aligned with –  
 

NWA solves the global alignment problem, which is, the 
optimal alignment of the whole S1 and S2 input sequences. 
However, in many biological instances, sequences share only 
segments of meaningful similarity. These may vary from short 
regions to large domains of recognizable similarity. The so-
called local alignment problem is the problem of identifying 
the segments in S1 and S2 with the highest alignment score. An 
exact algorithmic solution of the local alignment problem is the 
Smith-Waterman algorithm (SWA) due to Smith and 
Waterman [3]. The SWA is a variant of the NWA that replaces 
negative scores with zeroes masking thus, segments of low 
similarity score. SWA dynamic programming and backtracking 
steps are similar to the ones in NWA except that backtracking 
starts from the indices of the entry with the highest score in the 
whole matrix D, and ends right before the first 0 encountered 
while performing the backtracking process. Thus, unlike b-
paths, local backtracking paths or lb-path are not necessarily 
anchored in [m, n] and [0, 0]. This difference has deep 
algorithmic consequences.  

B. Some Previous Parallelization Attempts 
Filing D with either NWA or SWA takes O(mn) time and 

space. Backtracking, in turn, is accomplished in O(m + n) time. 
Although most implementations do not store D, the information 
needed to backtrack the optimal alignment still takes O(mn) 
space. Due to the large size of protein sequences and protein 
databases, SWA is often replaced with the heuristic BLAST [4] 
(Basic Local Alignment Sequence Tool) algorithm. Unlike 
BLAST, whose heuristics is well suited for parallelization; the 
parallelization of NWA and SWA is limited by the recursive 
nature of their core processes. Some NWA and SWA 
parallelization attempts exploit the fact that each entry in D 
depends solely on its northern, western and northwestern 

neighbors. Thus, entries lying in the same anti-diagonal of D 
can be computed in parallel. This method is referred as the 
wave-front computation of D and is sometimes attributed to 
Gotoh [5] in the literature. Hsien-Yu Liao [6] et. al. use the 
wave-front computation to pipeline the search for an optimal 
alignment of a query sequence and the sequences in a database. 
The idea is to slide the front-wave across an enhanced scoring 
matrix whose rows correspond with the query sequence while 
the columns, to the concatenation of all the sequences in the 
database. Such concatenation is expected to diminish the 
latency incurred in starting each new comparison. Another 
method, introduced by Fa Zheng [7] et. al. splits the query 
sequence S1 into a fixed number of sequences of approximately 
the same length. Each sub-sequence of S1 is aligned with S2 
independently. A drawback in this method is that the scores 
matrices, which are computed in parallel, do not always 
correspond to sub-problems of the original alignment problem. 
Thus, in order to retrieve the alignment from the computed 
matrices, the authors propose what they called combine and 
extend method; which compromises the sensitivity of the result. 

Most attempts to speedup NWA or SWA concentrate in 
the computation of the score matrix. This article takes a more 
integral approach. The starting point in our search for a 
parallel method is a non-recursive alternative to backtracking. 
The proposed alternative is based on symmetry properties that 
arise when matrix D is compared D*, the dynamic 
programming matrix of the alignment of S1* and S2*, which 
are the original sequences S1 and S2 but in reversed order.  

II. PROPERTIES OF THE DYNAMIC PROGRAMMING MATRIX 
Hirschberg [8] introduced an O(m + n) space algorithm for 

finding the longest common sub-string of a pair of strings. His 
method relies on the rather obvious fact that the longest 
common sub-string of S1 and S2 is the same as the longest 
common sub-string of S1* and S2*. Hirschberg’s idea has been 
extended to the calculation of the edit distances between pairs 
of sequences and to the global alignment of a pair of 
sequences. The authors did not find in the literature any 
extension of Hirschberg’s method to the parallelization of 
NWA. This section develops the mathematical foundations of 
Hirschberg-NWA space saving algorithm, and describes it in a 
way that makes it more suitable for the parallel NWA 
discussed in section III.  

A. The D-D* symmetry 
The mathematical facts that allow the use of Hirschberg’s 

ideas in the solution of the problem of the global alignment of 
a pair of sequences are stated below. 

Lemma 1.  The optimal alignment of a pair (S1, S2) in 
reversed order is an optimal alignment for the pair (S1*, S2*); 
and vice versa. 

The next theorem is crucial in the parallelization and space 
saving strategy of NWA to be discussed in the next section. 

Supported by NIH-MARC “Assisting Bioinformatics Efforts at Minority   
I  Institutions” and NIH-RISE “RISE-4-BEST” 



Theorem 1. Let D and D* be the score matrices 
produced with NWA for the pairs (S1, S2) and (S1*, S2*), 
respectively. Then, for each 0 ! k ! m and each 0 ! j ! n, 

i. D[k, j] + D*[m – k, n – j] ! D[m , n] 

ii. D[k, j] + D*[m – k, n – j] = D[m, n] if and only if 
[k, j] is in a b – path. 

Proof. The proof of assertion i. is by induction on k and j. For 
the base case we set k = 0 and j = 0. Thus, the statement to be 
proved is D[0, 0] + D*[m, n] $ D[m , n]. This statement is true 
because, after Lemma 1, D[m, n] = D*[m , n] and  D[0, 0] = 0. 
We assume now that there is a pair of indices k, j for which 
D[k, j] + D*[m – k, n – j] $ S[m, n] and prove that under this 
assumption the statement:  

(a) D[k + 1, j] + D*[m – k – 1, n – j] $ D[m, n], and 

(b) D[k, j + 1] + D*[m – k, n – j – 1] $ D[m , n], and 

(c) D[k + 1, j + 1] + D*[m – k – 1, n – j – 1] $ D[m, n], 

is also true. The proof of claim (a) is as follows. Since by 
definition of the NW recursion D[k + 1, j] $ D[k , j] + #, we 
have that  

D[k + 1, j] + D*[m – k – 1, n – j] $  

D[k , j] + # + D*[m – k – 1, n – j] $  

D[k, j] + D*[m – k, n – j] $ D[m, n].  

Sub-statement (b) is proved similarly. In order to demonstrate 
claim (c) let B[k, j] be the entry for the pair (xk, yj) in the 
substitution matrix. Then, 

D[k + 1, j + 1] + D*[m – k – 1, n – j – 1] $  

D[k, j] + B[k + 1, j + 1] + D*[m – k – 1, n – j – 1] $  

D[k, j] + D[m – k, n – j] $ D[m ,n].  

Assertion ii is a direct consequence of Lemma 1.  

The index relation ([k, j], [m – k, n – j}) is referred as D-D* 
symmetry and the entries D[k, j] and D*[m – k, n – j] as D-D* 
symmetric entries.  

B. The O(m + n) Space Hirschberg-NWA 
Theorem 1 provides the mathematical basis for a space 

saving Hirschberg-NWA (HNWA). This method, which 
follows the divide-and-conquer paradigm, uses Step 1 of NWA 
repeatedly, each time over sequences of approximately half the 
size of the previous ones, to divide the problem in sub-
problems, until a predetermined sub-problem size is reached. 
Only the last column of each intermediate sub-problem 
dynamic programming matrices D and D* are temporarily 
stored to determine the indices [k, j] that satisfy statement ii of 
Theorem 1. Once [k, j] is known, the problem is split in two 
sub-problems. Indeed, because of the general form of a b-path, 
the indices [r, s] of the b-path segment from [0, 0] to [k, j] must 
satisfy 0 $ r $ k. Similarly, the indices [r, s] of the b-path 
segment from [k, j] to [m, n] must satisfy k $ r $ m. Thus, the 
search for the next indices that satisfy statement ii of Theorem 
1 is reduced to the upper leftmost k ! j block D[r, s], 0 $ r $ k, 
0 $ s $ j; and the lower rightmost (m – k)  ! (n – j) block, this 

is, D[r, s], k $ r $ m, j $ s $ n. This splitting identifies a pair of 
subsequences of S1 and S2, which are aligned in the global 
alignment of S1 and S2, except perhaps for the introduction of 
gaps. By selecting j as close as possible to the middle of the 
subsequence of S2, the corresponding blocks in the dynamic 
programming matrix are of similar size in the average case. 
This process of splitting sequences in subsequences, which we 
refer as the divide phase, is repeated on each of the newly 
identified subsequence up until a predetermined subsequence 
length is reached. The divide phase ends with the application of 
NWA to each of the subsequences of predetermined size. It is 
easy to demonstrate that the divide phase can still be performed 
in O(mn) time, although with a higher constant. The cost in 
memory space, in turn, is reduced in the best case (i.e. one 
point subsequences) to O(m + n). The conquer phase of the 
method is also linear in time and space as it consists basically 
in pasting together the b-path segments computed at the end of 
the divide phase.  

C. A Case Study 
We illustrate the base divide and conquer technique of 

HNWA with the problem of finding an optimal alignment for 
S1 = HEAGAWGHEE and S2 = PAWHEAE. Before the 
illustration of the divide phase it is worth remarking that Step 
1 of NWA can be modified to compute the rightmost column 
of D in-place, this is using only the storage space of one 
column. This is an essential element in HNWA memory space 
reduction strategy. The next pseudo code, which illustrates 
such in-place computation, uses a one-dimensional array C[k], 
0 $ k $ m; to store intermediate and final result. 

Step 1.a. In-place computation of the rightmost column of D 
For k = 1 to m 
 Aux2 ! C[k] 
 If Aux2 + #  > Aux1 + r(xk, character) 
  C[k] ! Aux2 + #  
 Else 
  C[k] ! Aux1 + r(xk, character) 
 If C[k] < C[k – 1] + #  
  C[k] ! C[k – 1] +# 
 If C[k] < 0 
  C[k] ! 0 
 Aux1 ! Aux2   
Return C    
 
We return now to the example. In the first step of the 

division phase, we select j = 5 and split sequence S1 in two 
halves each of length 5. The second half is written in reversed 
order. Thus, we split the original problem of aligning the pair 
(HEAGAWGHEE, PAWHEAE) into two independent 
problems, namely; that of aligning the pair (HEAGA, 
PAWHEAE) and that of aligning the pair (EEHGW, 
EAEHWAP). Now, using the Step 1.a described above, we 
compute the rightmost columns of the dynamic programming 
matrices of each of these pairs of sequences. Although in 
practice these matrices are not store, for the sake of clarity we 
present in Table II the full dynamic programming matrices for 
these two pairs of subsequence alignments. 



TABLE II.  DYNAMIC PROGRAMMING MATRCES FOR (HEAGA, 
PAWHEAE) AND (EEHGW, EAEHWAP) 

Ind  0 1 2 3 4 5 

 Char  H E A G A 

0  0 -8 -16 -24 -32 -40 

1 P -8 -2 -9 -17 -25 -33 

2 A -16 -10 -3 -4 -12 -20 

3 W -24 -18 -11 -6 -7 -15 

4 H -32 -14 -18 -13 -8 -9 

5 E -40 -22 -8 -16 -16 -9 

6 A -48 -30 -16 -3 -11 -11 

7 E -56 -38 -24 -11 -6 -12 

 

Two border columns and rows have been added to keep 
track of the matrix indices and their corresponding characters 
in the sequences. By adding the D-D* symmetric entries of the 
rightmost columns of the dynamic programming matrices (i.e. 
the fifth column of each matrix in this case) we find that: 

2 = arg max {D[k, 5] + D*[7 – k, 5]: 0$ k $ 7}.   (1) 

Therefore, [2, 5] is in the b-path and the search for the 
segment of the b-path to the left of [2, 5] is reduced to the set of 
indices {[r, s]: 0$ r $ 2, 0 $ s $ 5}; while the search for the 
segment to right of [2, 5] is reduced to {[r, s]: 2 $ r $ 7, 5 $ s $ 
10} or, in terms of D*, to {[r, s]: 0 $ r $ 5, 0 $ s $ 5}. The next 
step is to reduce the sequences accordingly. This gives the 
reduced pairs (HEAGA, PA) and (EEHGW, EAEHW). At this 
point, the algorithm checks whether the lengths of all the latter 
sequence segments are less than or equal to the predetermined 
maximal length. If this is not the case, subsequences HEAGA 
and EEHGW are split into two new sequences and the above 
process is repeated to get two new reduced pairs out of each of 
(HEAGA, PA) and (EEHGW, EAEHW). This decomposition 
generates a binary tree that at each leaf has a pair of segments 
of the original sequences whose length is less than or equal to 
the predetermined length. At this point, a b-path for each pair 

of segments is computed and the conquer phase started. For the 
sake of simplicity, let’s assume that the predetermined length is 
5 in the example. Then, the following dynamic programming 
matrices need to be computed and stored and process with Step 
2 of NWA.  

TABLE III.  DYNAMIC PROGRAMMING MATRICES FOR  
(HEAGA, PA) AND (EEHGW, EAEHW) 

 

Ind  0 1 2 3 4 5 

 Char  H E A G A 

0  0 -8 -16 -24 -32 -40 

1 P -8 -2 -9 -17 -25 -33 

2 A -16 -10 -3 -4 -12 -20 

 

By applying Step 2 of NWA to each of these matrices we get 
the b-paths are {[2, 5], [1, 4], [1, 3], [0, 2], [0, 1], [0, 0]} and 
{[5, 5], [4, 4], [4, 3], [3, 2], [2, 1], [1, 1], [0, 0]}, respectively.   
And by applying the previously discussed rules for 
constructing alignments to each b-path we get the alignments, 

H E A G A 

 –    –   P  –   H 

and 

E   –  E H G W 

 E  A  E  H   –  W 

 

Finally, by reversing the second alignment and 
concatenating it to the first one we retrieve the optimal 
alignment of Table 1.   

It can be easily proved that all other optimal alignments are 
obtained from combinations of the alternative optimal 
alignments of each of the leaf pairs of sequence segments.  

III. PARALLELIZING HIRSCHBERG-NWA 
The parallelization of the previously discussed method 

exploits all independent computations in HNWA divide and 
conquers phases. These are, in summary, the computation of 

Ind  0 1 2 3 4 5 

 Char  E E H G W 

0  0 -8 -16 -24 -32 -40 

1 E -8 6 -2 -10 -18 -40 

2 A -16 -2 5 -3 -10 -18 

3 E -24 -10 4 5 -3 -11 

4 H -32 -18 -4 14 6 -2 

5 W -40 -26 -12 6 11 21 

6 A -48 -34 -20 -2 6 13 

7 P -56 -42 -28 -10 -2 3 

Ind  0 1 2 3 4 5 

 Char  E E H G W 

0  0 -8 -16 -24 -32 -40 

1 E -8 6 -2 -10 -18 -40 

2 A -16 -2 5 -3 -10 -18 

3 E -24 -10 4 5 -3 -11 

4 H -32 -18 -4 14 6 -2 

5 W -40 -26 -12 6 11 21 



the rightmost column of the dynamic programming matrix for 
the optimal alignment of each pair of subsequences, the 
computation of the b-path of each pair of subsequences of 
length less than or equal to the predetermined maximum 
length, and the production of the corresponding alignments. 
We use the master-workers paradigm with 2P workers for 
describing the parallel method. Each worker is identified by a 
worker’s identification number q, 1 $ q $ 2P. The master’s 
identification number is 0.  

A. Parallel HNWA 
The following pseudo code is a high level description of a 

parallel HNWA.  

Master: 
p ! 1 (global variable) 
On input (S1, S2) 
Aux ! S1 
If (length (Aux) > L or length (S2) > L) and p < P 
 S1 ! first half of Aux 
 Send (S1, S2) to Worker 1 
 S1 ! reversed second half of Aux 
 S2! S2* 
 Send (S1, S2) to Worker 2 
 Receive (Al( 2p – 1), Al( 2p)) 
 Concatenate Al(2p – 1) and Al( 2p)* 
 Return 
Else perform NWA(S1, S2) 
Worker q: 
If 1 ! q ! 2p – 1  
Receive (S1, S2) 
Step a: Compute column C with Step 1.a on (S1, S2) 
If 2p – 1 < q ! 2p  
 Send C to Worker q – 2p – 1  
Else, Receive C from Worker q + 2p – 1  
 Compute index k in formula (1) 
 Send k ! m – k to Worker q + 2p – 1  

S2 ! First k characters of local S2
 

Aux ! local S1 
p ! p + 1 (global update) 
If (length (Aux) > L or length (S2) > L) and p < P 

Local S1 ! first half of Aux 
S1 ! reversed second half of Aux 

 S2! S2* 
Send (S1, S2) to Worker q + 2p – 1  

 Go to Step a 
Else Al( q ) ! NWA alignment of (S1, S2)  
If 1 ! q ! 2p – 1 
 Send Al(q) to Worker q + 2p – 1  

Else Receive A(q – 2p – 1 ) 
Al(q) ! Concatenation of Al(q – 2p – 1 ) and Al(q)* 
p ! p – 1   
Send Al(q) to Worker q + 2p – 1     
  

The pseudo code imposes an additional condition for the 
halting of the HNWA divide phase. The divide phase stops 
when the length of all subsequences is less than or equal to a 
predetermined length L > 0 or when all workers are busy. If the 
conditions for splitting a local subsequence are met at Worker 
q, then Worker q keeps the first half of its local S1 segment and 

the first k characters of its local segment of S2 to repeat the 
processes on them, and sends the second half and m – k (local 
m) remaining characters of S2, both in reversed order, to 
Worker q + 2p – 1.  Therefore, if for instance, P = 2 and the 
conditions for splitting the sequences are always met, the 
divide phase will involve 2 parallel steps. First, the master 
sends tasks to Worker 1 and Worker 2. When these parallel 
tasks are completed, Worker 1 sends a sub-task to Worker 3 
and Worker 2 a sub-task to Worker 4. All four workers process 
their sub-tasks in parallel. So, ideally, the parallel tasks in the 
divide phase spawn a binary tree of height 2, rooted at the 
master’s task. There is P parallel communications, as well. The 
conquer phase, in turn, traverses this tree from the leaves up in 
P additional parallel steps. First, workers 1, 2, 3 and 4 produce 
their local alignments in parallel. Then, Worker 1 sends its 
alignment to Worker 2 and Worker 3 sends its alignment to 
Worker 4. At this point, Worker 2 and Worker 4 concatenate 
their alignments in parallel and send the result to the master.    

B. Performance Estimations 
The next analysis, which is based on a highly simplified 

performance model, shows that the proposed parallelization has 
the potential to speed up the execution time of NWA. Let t(N) 
be the execution time of the NWA on a problem of size N. 
Then, t(N) = d(N) + b(N), where d(N) is the time for the 
computation of the dynamic programming matrix and b(N), the 
time for computing the b-path and forming the alignment. The 
P steps in the divide phase of the parallel HNWA will take 
approximately 

( % + & + … + %P)d(N) =(1 – %P)d(N) time. (2) 

Since local b-paths and alignments are computed in 
parallel, the time for producing them can be estimated as 
approximately %P ! b(N). We also estimate the parallel 
communication overheads as a linear function of N, which we 
represent as c ! N. Thus, the speed up formula is: 

[d(N) + b(N)] / [(1 – %P) d(N) + %P b(N) + cNP]. (3) 

Now, taking into account that d(N) is in general much 
larger than b(N), the quotient f(N) = d(N) / b(N) is always a 
fraction 0 < f(N) < 1, which tends to 0 as N growths to infinity. 
By dividing equation (3) by d(N) we get, 

[1 + f(N)] / [(1 – %P) + %P f(N) +  cPN/d(N)]. (4) 

Therefore, as N growths, the theoretical speed up 
approaches S = 1 / [1 – %P]. 

C. Pipelining 
After returning their local alignments Worker 1 and Worker 

2 are idle. Therefore, a new pair of sequences (S1, S2) can be 
received from the master. Subsequent returns from workers 
liberate the necessary processors for the new sequences to 
spawn the binary tree of tasks, if required. This is especially 
suitable for the parallel processing a query sequence; let’s say 
S1, against a database of sequences. 

IV. CONCLUSIONS 
The exploitation of D-D* symmetries, which are derived 

form the original ideas of Hirschberg, renders a parallel version 



of the NWA. The parallel method has a theoretical speed up 
over the serial NWA and allows for the pipelined processing of 
a query sequence against a database of sequences. The speed 
up formula obtained from a simplified performance model 
seems to indicate that for large problems, the parallel method is 
more advantageous for small number of processors, this is, a 
coarse grain parallelization. 

REFERENCES 
 

[1] R. Durbin, S. Eddy, A. Krogh, G. Mitchison, Biological Sequence 
Analysis Cambridge University Press, 2007. 

[2] Needleman S, Wunsch C, “A general method applicable to the search for 
similarities in the amino acid sequence of two proteins,” Journal of 
Molecular Biology, Vol. 48, Issue 3, pp. 443-453, 1970. 

[3] T.F Smith and M.S. Waterman, “Identification of common molecular 
subsequences”, Journal of Molecular Biology, 147(1), 195-197, 1981. 

[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, 
“Basic Local Alignment Search Tool”, J. Mol. Biol., 215, pp.403-410, 
1990. 

[5] O. Gotoh,  “An improved algorithm for matching biological sequences”, 
J. Mol. Biol., 162, 705-708, 1982. 

[6] Hsien-Yu Liao, Meng-Lai Yin, Yi Cheng,  “A parallel implementation 
of the Smith-Waterman algorithm for massive sequences searching”, 
Proceedings of the 26th Annual International Conference of the IEEE 
EMBS, San Francisco, CA, USA; September 1-5, 2004. 

[7] F. Zhang, X. Z. Qiao, Z. Y. Liu, “A parallel Smith-Waterman algorithm 
based on divide and conquer”, Proceedings Fifth International 
Conference on Algorithms and Architectures for Parallel Processing 
(ICA3PPí02) 2002. 

[8] D. Hirschberg,  “A linear space algorithm for computing maximal 
common subsequences”, in Communications of ACM, Vol. 18, No. 6, 
pp. 341-343, 1975. 

 


