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Abstract

The complexity of gene regulatory networks described by coupled nonlinear differen-
tial equations is often an obstacle for analysis purposes. They are prone to internal
parametrical fluctuations making thus robustness a crucial property of these net-
works to attenuate the effects of internal fluctuation. Therefore, the development of
effective model reduction techniques for uncertain biological systems is of paramount
importance in the field of systems biology. In this paper, we apply a Gramian-based
approach for model reduction for gene regulatory networks based only on finding
generalized Gramians and standard matrix transformations. The method is based
on finding a generalized controllability and observability Gramian of the uncertain
system and then based on a state transformation matrix a reduced-order represen-
tation. Under the assumption that the structured uncertainties are norm-bounded,
we can prove that the reduced-order balanced system is also stable.
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1 Introduction

Many gene regulatory networks are described by complex models which are
difficult to analyze and also difficult to control. Analysis and synthetic design
of such networks is very sensitive to parameter perturbations [1]. Errors in
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parameters such as external perturbations and modeling errors are caused
by data inaccuracies or computation errors. These perturbations can lead to
location errors of equilibria, to instabilities, and even to spurious states [7].
Therefore, a rigorous understanding of the qualitative robustness properties
of gene regulatory networks with respect to parameter variations becomes
imperative [2]. On the other hand, order reduction may overcome some of
the difficulties but at the price of a significant loss of accuracy. Therefore,
a stringent need arises to analyze it such that it is made useful for many
applications. The idea is to employ a model simplification that leads to a
model of lower complexity, easier to handle, and to a simplified synthesis
procedure for design problems. In addition, this simplification is reducing the
computational complexity.

Balanced truncation is known as a popular method for model reduction since
it is relatively simple and the quality of the reduced model is guaranteed.
The interpretation of most balancing techniques is based on the concept of
past and future energy. The most important contribution was the balancing
for stable minimal linear systems [3]. It is based on a state–space point of
view of employing the well–known observability and controllability Gramians
and related to the past input energy (controllability) and future input energy
(observability). The idea behind transforming a system into balanced form is
to easily detect and remove a state component of the initial system to obtain
a reduced–order model. The importance of a component is based on Hankel
singular values which determine if the output energy of a certain component is
small and thus difficult to observe and if the input energy to reach this state is
large. While for linear systems finding a balancing coordinate transformation
via solutions of the controllability and observability Lyapunov equations is
quite easy, for nonlinear systems this equations are almost impossible to solve
and thus balancing becomes in general not a simple task [5]. In a previous
work [6], we applied a nonlinear model reduction technique for gene regula-
tory networks. However the very important concept of uncertainty paired with
model simplification was not taken into account so far. We propose to apply
and enhance the theoretical concepts from [8] to gene regulatory networks to
obtain a stable model reduction under consideration of norm-bounded uncer-
tainties. To the author’s best knowledge, this method has not been applied so
far to the analysis of gene regulatory networks.

The general kinetic equation describing the temporal evolution of the con-
centration for the j-th state and its output of a N–gene regulatory network
is:



ẋi =−
N∑

j=1

aijxj +
N∑

j=1

bijxixj (1)

+ (
N∑

j=1

cijxj +
N∑

j=1

dijxjxi)ui

yi =xi

where xi is the current concentration state, yi the current output of the gene
regulatory network, and ui is the external input, and mij aij, bij, cij and dij
are the kinetic parameters associated with these reaction equations.

2 Global Asymtotic Stability Criteria for Quadratic Differential
Equations

The general kinetic equation describing the temporal evolution of the gene
regulatory networks (1) has a quadratic nonlinear term given as:

ẋi = −
N∑

j=1

aijxj +
N∑

i=1

bijxixj (2)

In state space representation, we obtain the following general form:

ẋ = Ax+ [BT
1 x, · · · , BT

Nx]Tx (3)

where A = aij and BT
i is given as

BT
i =




0 · · · 0

b1i · · · bNi
0 · · · 0




(4)

A Lyapunov function for the above system is given as [4]

V = xTPx, P > 0 P = P T (5)

with

ATP + PA = −Q, Q > 0, Q = QT (6)



guaranteeing thus the asymptotic stability of system (3) in the whole. Addi-
tionally, we need to require that V̇ < 0 for all x 6= 0. This leads to

V̇ = xT (PA+ ATP )x+ 2xTP [BT
1 x, · · · , BT

Nx]Tx (7)

V̇ is negative definite if and only if all the third-order terms it contains are
identically zero, i.e.

xTP [BT
1 x, · · · , BT

Nx]Tx = 0 (8)

By choosing Q = I, we obtain assuming A is symmetric:

P = −1

2
A−1 (9)

The resulting stability condition for our system is:

N∑

i=1

ãijx
2
i

N∑

j=1

bijxj = 0 (10)

where ãij represent the elements of the inverse matrix.

3 Problem Statement

Notations:

Lm2 = Lm2 [0,∞) is the space of square integrable functions in Rm.

||∆|| = supz∈Lm2 [0,∞),z 6=0(||∆z||/||z||) is the gain of an operator ∆ in L(Lm2 )

∆T is the adjoint operator of ∆ if ∆ is linear.

If ∆ = ∆T , then ∆ < 0 means that xT∆x < 0, ∀x 6= 0 in Rm.

L(Lm2 ) is the space of all linear bounded operators mapping from Lm2 to Lm2 .

| · | is the Euclidean norm in Rn.

MT is the transpose of a complex matrix M .

|z|2Λ = zTΛz for z ∈ Rm and a nonnegative matrix Λ ∈ Rm×m.



State space representation of a transfer matric is given as G(s) =



A B

C D


 =

C(sI − A)−1B +D

In the following, we will demonstrate the application of the model reduction
based on balanced truncation.

For the sake of simplicity, we will consider a restricted state domain where the
nonlinearity can be approximated by a linear function, f(xi) = xi.

ẋj = −ljxj +
N∑

i=1

Dijxi +
p∑

i=1

mijui (11)

Thus, the system has a linear representation of the form

ẋ(t) =Ax(t) +Bu(t)) (12)

y(t) =Cx(t)

with C = I and

A = D − L and B = M (13)

It is assumed that the linear system is stable: A = D−L is Hurwitz. We will
assume that matrix D is a symmetric matrix.

Let us consider the uncertainty structure

∆c =
{

diag(∆1, · · · ,∆k) : ∆i ∈ L(Lhi2 ),∆i causal, ||∆i|| ≤ 1
}

(14)

resulting into the following uncertain gene regulatory network:

ẋ(t) =Ax(t) + Eζ +Bu(t)) (15)

z(t) =Kx(t)

y(t) =Cx(t)

ζ(t) = ∆z(t), ∆ ∈ ∆c

with C = I and B,E,K are diagonal matrices. x(t) ∈ Rn is the state, u(t) ∈
Rm is the control input, z(t) ∈ Rh is the uncertainty output, y(t) ∈ Rl is



the measured output and ζ(t) ∈ Rh is the uncertainty input. We also have
h = h1 + · · · , hk.

We thus obtain a nominal system as

M =



M11 M12

M21 M22


 =




A E B

K 0h×h 0h×m

C 0l×h 0l×m




(16)

The uncertain system (15) is defined by a linear fractional transformation
representation as Fu(M,∆) := M22 + M21∆(I −M11∆)−1M12 if I −M11∆ is
non-singular.

We will define the following operators:



A∆ B∆

C∆ 0


 =



A+ E∆K B

C 0


 (17)

In the following, we will give the definition of robust stability.

Definition 1 (Robust Stability): The uncertain system (15) is robustly stable
if (I −M11∆)−1 exists in L(Lh2) and is causal for all ∆ ∈ ∆c.

The next lemma states a necessary condition for robust stability.

Lemma [8]: The uncertain system (15) is robustly stable if and only if there
exists a Θ ∈ PΘ and X > 0 such that

ATX +XA+KTΘK +KEΘ−1ETX < 0 (18)

where

PΘ = {diag(θ1Ih1 , · · · , θkIhK ) : θi > 0} (19)

is the positive commutant set corresponding to ∆c.

We further introduce the generalized Gramians for the uncertain system from
equation (15).



Definition: The matrices S > 0 and P > 0 are said to be generalized controlla-
bility or observability Gramians for the uncertain system (15) if the following
inequalities hold:

A∆S + SAT∆ + B∆BT∆ < 0 ∀∆ ∈ ∆c (20)

AT∆P + PA∆ + CT∆C∆ < 0 ∀∆ ∈ ∆c.

As shown in [8], we can define the following algebraic Riccati inequalities for
the uncertain system (15)

AS + SAT + SKTΛCKS + EΛ−1
C ET +BBT < 0 (21)

and

ATP + PA+ PEΛ−1
0 ETP +KTΛ0K + CTC < 0 (22)

with S, P > 0, Λ−1
C ,Λ0 > 0 and ΛC ,Λ0 ∈ PΘ.

Theorem: The following statements are equivalent assuming K = E:

(i) The uncertain system (15) is robustly stable.

(ii) The Riccati inequalities (21) and (22) admit a solution S, P > 0 for some
ΛC ,Λ0 ∈ PΘ.

Proof: We will prove the equivalence between (ii) and (i). We start from in-
equality (21) and we can easily show that inequality (21) holds with X = S,
ΛC = Θ−1 and K = E. The other inequality can be proven similarly as well
as the equivalence between (i) and (ii).

Definition: An uncertain system of the form (15) is said to be balanced if it
has generalized observability and controllability Gramians which are identical
diagonal matrices.

The diagonal entries are called generalized Hankel singular values for the un-
certain system.

We propose following the theoretical background in [8] a model reduction
algorithm:

1. Solve the inequality system in (20) to obtain the generalized Gramians
S, P > 0.



2. Balance S, P by choosing a state transformation matrix T such that

TST T = (T−1)TPT−1 = diag(Σ1,Σ2) = diag(γ1, · · · , γn) (23)

where γ1 ≥ · · · γd > γd+1 ≥ · · · ≥ γn > 0, Σ1 = diag(γ1, · · · , γd) and
Σ2 = diag(γd+1, · · · , γn).

3. Obtain the transformed nominal system as

M =




Ā Ē B̄

K̄ 0h×h 0h×m

C̄ 0l×h 0l×m




(24)

with Ā = TAT−1, Ē = TE, B̄ = TB, C̄ = CT−1 and K̄ = KT−1.
The reduced order uncertain system of order d is defined as

Mr =




Ār Ēr B̄r

K̄r 0h×h 0h×m

C̄r 0l×h 0l×m




(25)

4. Represent the reduced dimension uncertain system as Gr∆ = Fu(Mr,∆),∆ ∈
∆c.

In the following, we will give a useful theorem without proof adapted from [8]:

Theorem: Consider a robustly stable uncertain system as given in (15) and
suppose we can derive a reduced dimension uncertain system Gr∆ based on
generalized Gramians and state transformation. Then the system Gr∆ is also
balanced and robustly stable. We also have

sup
δ∈[−1,1]

||G∆(s)− Gr∆(s)||∞ ≤ 2(γt1 + · · ·+ γtq) (26)

where γti denote the distinct generalized Hankel values of γd+1, · · · , γn.

Example: Consider the following uncertain system of the form (15) with ∆ =

δ ∈ [−1, 1] and withB = C = K = E = diag(1 1) andA =




−9.7 0 0

1 −1.7 0

0 1 −2.7




.

We choose |δ| = 0.3. Based on the described balanced truncation procedure,
we obtain the balanced Gramian Σ = diag(0.33 0.17 0.05). A natural choice
is to truncate the last state and keep the first two. The upper bound of the
error is given according to (26) as supδ∈[−1,1] ||G∆(s)− Gr∆(s)||∞ ≤ 0.1.



4 Conclusions

We present a model reduction of an uncertain gene regulatory network based
on balanced truncation. The method is based on solving generalized Gramian
inequalities and matrix transformations. We assume that structured uncer-
tainty is norm bounded. When applied to linear systems, the reduced model
corresponds to the usual balanced truncation of the system. A simple exam-
ple is illustrating this novel approach of model reduction for gene regulatory
networks.
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