
Development Approach and Architecture of GenSAS: the
Genome Sequence Annotation Server

T. Lee1, I. Cho2, C. Peace1, S. Jung1, P. Zheng1, and D. Main1

1Horticulture and Landscape Architecture, Washington State University, Pullman, WA, U.S.A.
2Computer Science, Saginaw Valley State University, Saginaw, MI, U.S.A.

Abstract - Advances in DNA sequencing technology have
significantly reduced the costs associated with sequencing an
organism’s genome. However, the operating costs of
hardware, software, and labor to analyze the sequence data
are still too high for most users to process in house.
Henceforth, most of the current bioinformatics applications
used by bench scientists will be accessible through a Web
environment. This paper presents GenSAS, the Genome
Sequence Annotation Server, a JavaScript-based framework
of gene prediction and comparative sequence similarity
applications for structural and functional sequence
annotation. Among other web-based genome annotation
pipelines, GenSAS is unique in that it offers a one-stop website
with a single graphical interface for running multiple
structural and functional annotation tools, visualization and
manual curation of genome. We present its functionality, the
technology used in implementing each functionality, and
software architecture of the overall implementation.

Keywords: genomics tool, genome, sequencing, annotation,
architecture

1 Introduction
 An important component of specialized genomic
databases that serve a specific community is to provide useful
online tools for researchers to conduct web-based sequence
analysis. These web-based tools can include BLAST (Basic
Local Alignment Search Tool) [1] and FASTA [2] servers for
pair wise comparison of clade-specific datasets, sequence
assembly tools to assemble EST transcripts and microsatellite
detection and primer identification tools. With the advances
of sequencing technology, more and more clade-specific
databases have started to store and display whole genome
sequences with automatic gene annotation data using graphic
viewers such as GBrowse [3]. Automatic gene annotation
often needs to be refined by further analysis. There are many
gene prediction algorithms and pipelines available to help in
gene identification, but there are no online tools that easily
allow biologists to readily combine the evidence from several
gene prediction tools and create curated gene models within
the same graphic interface. We have implemented a flexible
online tool called GenSAS (Genome Sequence Annotation
Server, www.bioinfo.wsu.edu/gensas) for genome sequence

annotation that can assist researchers in identifying genes in
genomic sequences for the Rosaceae family. GenSAS is
implemented in a modular way to allow it to be easily used
with other genome annotation projects.

 Tool development is one of the key areas in
bioinformatics research, along with the analysis and
interpretation of genome data. A tool can be developed from
the ground up and fine tuned for specific applications, but
such a tool often ends up only being used by its developers
rather than being offered for wider community use. In many
cases, development of web-based systems has been ad hoc,
lacking systematic approach, quality control and assurance
procedures [4]. Such problems are inherent in most software
development, but made worse in a Web environment due to
the rapid growth of the Web, high demand for web-based
applications, shorter time-to-market requirements, and
relatively short history of the Web (less than 20 years). While
not an exception for bioinformatics tool development, it is a
challenge for bioinformatics tool developers to follow a
disciplined engineering approach so that tools remain usable
and stable against deviation from original assumptions about
their optimal working condition. This paper does not attempt
to provide a solution to all the problems mentioned. Instead, it
shows one success story in bioinformatics tools development
(GenSAS) and the approach taken to make the tool widely
useful by researchers. GenSAS was developed with the
following objectives:

• To develop a computational pipeline incorporating
multiple genome sequence annotation tools.

• To develop a visualization tool to display the output
from annotation tools graphically.

• To develop intuitive web-based user interfaces to
facilitate curation by biologists

 We first examine, in section 2, the progress of Web
application development and Web architecture in recent years.
In section 3, general and specific activities involved in the
gene annotation process are presented. In section 4, we
introduce the implementation details for GenSAS and software
components that GenSAS supports. After this, related work is
discussed. This paper concludes with a summary and future
work in section 6.

2 Progress in Web Application
Development and Web Architecture

 When the Web was created in early 1990s, most
websites were simple and served static content. Most
emphasis was on content layouts and overall look, and easy
maneuvering of the site. Little programming was required and
no rigorous software engineering were required to build such
websites. The growth of online resources soon made it
necessary to implement search engines on the Web and
process the user provided input from the Web browser. CGI
was the first mechanism that allowed Web clients to execute
programs on a Web server and receive their output [5]. The
further growth of the Internet and World Wide Web led to full
blown software applications available on the Web, rapid
uncontrolled growth, hastily written code and a lack of Web
standards. All this contributed to what is known as the Web
Crisis. The wide use of Web applications from all over the
world made them only more vulnerable to failure. To remedy
the crisis and support the development of quality Web
applications, the field of Web Engineering emerged to provide
scientific, engineering and management principles and
disciplined and systematic approaches to the successful
development, deployment and maintenance of high quality
web-based systems and applications [4]. Web engineering
shares some of its principles with traditional software
engineering, but it also has unique requirements: shorter
development time, content-oriented development, greater
importance of visual look and feel, and a more diverse user
demographics.

 A key area in software engineering is Software
Architecture which is defined as “The software architecture of
a program or computing system is the structure of the system,
which comprises software components, the externally visible
properties of those components, and the relationship among
them [6].” There are many different architectural styles used
in software applications, and it is important to decide which
architecture is the best fit for the software development. The
layered (or multi-tiered) architecture has many benefits:
interoperability, flexibility, maintainability, and reusability, to
name a few. The Communication Network protocol is an
example of layered architecture. Structured Web applications
also reveal multi layers where the presentation, the application
processing, and the data management are logically separate
processes, as shown in Figure 1. We will look at how GenSAS
fits in this architecture in section 4.

Client
Web browser

First Tier :
Web Server

Tasks:
- User Interface
- Presentation

Second Tier :
Application Server

Tasks:
- Appl services
- Business services

Third Tier :
Database Server

Tasks:
- Data services
- File services

Figure 1. Multi-Tier Web Architecture

3 Genome Annotation Process
 After a genome has been sequenced and assembled, the
process of genome annotation starts. The purpose of genome
annotation is to understand the content of the genome through
locating genes and other sequence features and determining
gene putative function. The annotation process can be
categorized into manual and automated annotations [7], and
structural and functional annotations [8, 9].

 While manual annotation tends to deliver higher quality
results over automated annotation, it is time consuming and
expensive process, particularly impractical for large-scale
whole genome sequence data. In contrast, automated
annotation is a relatively inexpensive and fast process, but the
output is less reliable, typically ranging from 30-70% accuracy
for predicting a relatively small sample of known genes [10].
Structural annotation focuses on identifying the genomic
elements on a sequence. Genomic elements include regulatory
motifs, repetitive sequences, gene structure and Open Reading
Frames (ORFs). Gene identification (or prediction) tools are
based on statistics (ab initio) or sequence similarity based
methods. Because each approach has its own strengths and
weaknesses, it is common for gene identification tools of both
types (a hybrid approach) to be used in gene annotation.
Statistics based methods do not use extra information for gene
prediction. Instead, they identify genomic features based on
statistical patterns inside and outside of gene regions as well
as patterns typical of the gene boundaries. GENSCAN is one
of the most widely used statistics-based gene prediction
software for human and vertebrates [11]. Other statistics based
tools in wide use are FGENESH [12], GlimmerM [13], and
GeneMark [14]. They use algorithms based on Markov
models [15] and dynamic programming [12].

 Systems have also been developed which integrate the
results from several gene prediction tools and the evidence
from cDNA/ESTs and protein alignments. JIGSAW, formally
known as Combiner [17] is a gene prediction system that
utilizes multiple sources of evidence to predict gene structure.
A weight is assigned to each evidence source, and gene
predictions are based on a weighted voting scheme, yielding
the best consensus predictions.

 Sequence similarity-based gene prediction methods are
typically more reliable than statistics-based methods as
experimental data are used to predict the genes. The target
genome is searched for similar regions in existing sequences
such as ESTs from the same species of known gene models
from closely related species. The rationale behind this
methodology is that homologous sequences from closely
related organisms typically share evolutionarily conserved or
common functions. However, sequence similarity-based tools
are useful only if existing sequence data are available. For
example, genes that are expressed at low levels or expressed
in certain cell types, developmental stages, or growth
conditions may not be adequately represented. To remedy the
shortcomings of each approach, systems have been developed

to combine and integrate the results from several gene
prediction tools, as in GenomeScan [16].

 Functional annotation is the process of attaching
biological information to the genomic elements identified
during structural annotation. Such information includes, but is
not limited to, biochemical function, biological function,
physiological function, and Gene Ontology (GO) terms. A
general approach for functional characterization of unknown
genes is to infer protein functions based on significant
sequence similarity to annotated proteins in sequence
databases. Typically, a sequence of a gene with unknown
function is compared against public databases such as Swiss-
Prot [18], TrEMBL [19] or NCBI [20] using the BLAST
sequence similarity algorithm.

 Each of the tools mentioned have their own attributes,
for instance, certain annotation tools are more robust for
certain species than others, having originally been developed
for those species. Generally, statistics-based methods find
genes with a full-length CDS (coding sequence) but they
perform poorly on finding genes with partial CDS which can
be annotated more correctly with sequence similarity-based
methods. Thus, quality of the results generated from each tool
is not regarded as equal; some results are more reliable than
others, and the result varies in different circumstances.
Therefore, it is unwise to rely on only one source of evidence
but rather best to combine different types of results to draw
conclusions.

 Often computational annotation programs generate
results in text formats. Thus, several visualization tools have
been developed to display the text file data graphically so that
researchers can view and interpret the results more easily. The
Generic Genome Browser (GBrowse) [3] is one of the most
widely used products developed through the Generic Model
Organism Database (GMOD) project (http://gmod.org). As it
is a web-based application, annotation data can be easily
shared with other researchers. However, it does not allow
users to dynamically edit the annotated genomic elements.

 In summary, to effectively apply structural and
functional annotations, researchers are required to understand
the different attributes of annotations tools, and how to specify
proper parameters for their genome of interest. Also, the need
for visualization through setup and management of genome
viewers can be overwhelming for some researchers.
Researchers typically use several annotation tools and obtain
results for DNA sequences of interest in text format. In some
cases, researchers must wait for the result by email when the
process is computationally intensive or the sequence is very
large. Then, they need to convert the text result to a format
specifically required by a specific genome viewer using
scripting languages like Perl. Finally, researchers analyze and

compare the annotation data from different sources of
evidences on the viewing tracks provided by the program. As
such, researchers have to go through many time-consuming
steps before reaching the final analysis steps, and currently no
one-stop website exists for researchers to access several gene
prediction tools and have the integrated and optimized results
returned to them for further analysis.

4 GenSAS
 GenSAS was developed to help researchers perform
structural and functional gene annotations and provides
visualization curation tools. The focus of the design was on
usability and effectiveness for biologists, efficient
maintenance and decreased cost for IT administrators and
developers. Being a web-based tool rather than a standalone
tool frees users from expending effort in installation,
configuration, and upgrade. The tool was made simple to use
by providing all gene annotation tasks in one Web interface.

 Figure 2 shows the Web front end of GenSAS. The front
page consists of five panels; User Information, Sequence
Information, Task Information, Retrieve Saved Data, and Task
Queue. These panels are designed to assist researchers to
create various tasks intuitively and efficiently. To create a task
in GenSAS, users upload a genomic sequence and select one
or more annotation tools. Then, the newly created task is
appended to the Task Queue panel. GenSAS currently
supports nine annotation tools as listed in the Tool
Information panel, but more will be added in the future.

 GenSAS allows researchers to save four different types
of results: Sequence, Task, Output and SVG. These results can
be later retrieved to reduce redundancy in the task creation
process. Clicking on the third column icon (SVG button) on
the Task Queue panel will generate a report page. The
reporting page in Figure 3 displays the results from nine tools
and a custom track for notes as a curator manually evaluates
the annotations. Genomic features from the results of gene
prediction programs are colored distinctively and types of
these features are identified in the legend table. The reporting
page allows users to zoom in and out or set the zoom ratio,
and scroll left and right to examine the genomic features in the
desired location of the DNA sequence.

Figure 2: GenSAS Front Page

Figure 3. GenSAS Reporting Page with legend

 Figure 4. Overall structure of GenSAS

 Figure 4 shows the overall structure of GenSAS. The
software architecture conforms to the three-tier architecture
covered in section 2. The rounded rectangles represent
running programs or processes, and the oval shapes represent
data. The typical interactions between the client and server in
gene annotation are:

1. The user interacts with the GenSAS front page and
creates tasks.

2. The user sends annotation job to the server (by clicking
the SVG button) and waits for the result.

3. Asynchronous job requests are created and sent to the
Web server running CGI/Perl (the dotted line indicates
asynchronous communication).

4. CGI/Perl engine parses the input and calls exec to execute
UNIX commands to run the corresponding annotation
server.

5. The annotation tools execute the command and generate
output in their own text formats.

6. The parser reads the text data and converts to JSON data.
7. The JSON data is sent back to the client machine.
8. The parser on the client side converts the JSON data to

DOM data.
9. JavaScript works with SVG to render the data to be

displayed on the Web browser.

 The core technologies used in GenSAS are JavaScript,
JSON, AJAX, SVG, PostgreSQL database, and CGI/Perl, all
open-source and freely available tools. We now look at the
details of each technology incorporated in GenSAS.

 JavaScript is a scripting language commonly used in the
development of client-side dynamic Web applications. It is
embedded directly into HTML pages and can be readily used
in most Web browsers without any further installation or
configuration. It is most commonly used in creating dynamic
contents into an HTML page. GenSAS uses JavaScript in
various ways. It is used to manipulate HTML elements on a
webpage via Document Object Model (DOM,

http://www.w3.org/DOM). DOM is the primary data structure
by which a Web browser represents an HTML page. It
provides methods and properties to retrieve, modify, update,
and delete elements of a HTML document. For example,
JavaScript allows users to reorder annotation tracks by drag &
drop. JavaScript is also used for handling events. When an
event takes place from mouse click or drag & drop, one or
more corresponding JavaScript functions are called and
executed to properly handle the event on the client machine.
Instead of waiting for the server to respond to the user actions
and reloading the entire browser page, JavaScript allows users
to interact with the browser without disruption.

 JSON (JavaScript Object Notation) is a common data
exchange formant which provides a structure to data like XML
(http://www.json.org). It is in human readable text format and
easy for machines to parse and generate. It is a native data
format for JavaScript and less complicated than XML to work
with for most modern programming languages. Also, JSON
data can be easily transmitted between client and server
machines over the network. The format of the results from
each annotation tool varies and these results need to be
converted into one standard format before sent to the Client
Web browser. Its portability makes JSON well suited for web-
based applications that intensively use JavaScript. JSON data
can be easily converted to DOM format so that JavaScript can
work with SVG to render the data to be displayed on the Web
browser. With these reasons JSON is used as the standard text
format in GenSAS; outputs from annotation tools as well as
some of data types that users can save in their account in the
database are formatted in JSON.

 AJAX (Asynchronous JavaScript and XML) is a Web
development technique that is used to create interactive Web
applications on the client-side (http://www.ajax.org). AJAX is
not a single technology but a combined technology of HTML,
CSS, DOM, XML, and JavaScript. Traditionally, once a client
request is sent to a server, the client has to wait for the
response from the server without being able to do further work
on the Web browser. When the response reaches to the client,
the whole webpage needs to be refreshed to display the result,
which results in disruption of user attention. Using AJAX, the
client accesses the server asynchronously in the background
without waiting for the response. Once the response arrives on
the client machine, the Web browser displays the result
without refreshing the whole page. AJAX is frequently used in
GenSAS. All access requests to the database server are carried
out in the background with AJAX. AJAX is also used to
perform parallel processing on annotation tools on multi-
processor server. Parallel processing (or concurrent processing
on single processor server) is crucial for this system as the
processing time of annotation tools varies significantly. It
avoids having to wait for the completion of a large process
before viewing the results of other smaller processes.

 SVG (Scalable Vector Graphics) is a vector graphics file
format and Web development language based on XML
(http://www.w3.org/TR/SVG). Raster graphics, sometimes

called bitmap, is based on pixels and it represents an image as
an array of pixels. Some genome browsers like GBrowse use
raster graphics and generate image files to be sent and
displayed on the client Web browser. The size of raster
graphics files are relatively large compared to vector graphics
and it degrades the performance of GBrowse. Also, when
zoomed in, the images lose the quality with jagged lines, while
vector graphics easily scale up without degrading the quality.
As images for genomic features are needed to be displayed
distinctively when scaled up, vector graphics is well suitable
for the annotation server. Most modern Web browsers support
and render SVG markup either natively (in Firefox and Safari)
or with plug-ins (in Internet Explorer 8) to view SVG images
correctly on Web browser. Internet Explorer 9 will natively
support and render SVG. SVG is the main force behind the
reporting page. Together with JavaScript, interactive graphical
Web applications can be efficiently developed. All graphic
features on the page are drawn with SVG images either
statically or dynamically. For example, when one of exon
images is clicked, it triggers the script that pops up the dialog
window which shows the information about the exon such as
orientation, frame and, start and stop locations. SVG graphics
is also used to create GUIs such as buttons and a slider with
two thumbs on the reporting page. In general, GUIs created by
HTML tags are relatively plain and simple, however, the
appearances of these HTML GUI components vary based on
types of platforms and browsers; the looks of the buttons on
the same webpage viewed by Safari and IE, for example,
become different. SVG graphics allows for developers to
create any shape and color, and the appearances of these GUIs
will not change across browsers or platforms. Because SVG is
written in XML, SVG content can be easily manipulated from
JavaScript with DOM API in GenSAS.

 PostgreSQL is one of the most popular relational
database management systems publically and freely available
(http://www.postgresql.org). It is used as a database server
residing in the background of the annotation server system. It
manages information about user accounts as well as their data.
The Perl script has a module called Database Interface (DBI).
DBI offers the standard database interface, which is capable of
conducting primitive database functions on various types of
database systems. DBI allows the database server to efficiently
perform database operations online.

 CGI/Perl The Common Gateway Interface (CGI) is a
mechanism that allows Web clients to execute programs on a
Web server and to receive their output. CGI applications are
often used to produce HTML pages on the fly and process the
input from an HTML form [5]. While many programming
languages like C/C++, Java, Visual Basic, and Perl can be
used to implement CGI, Perl is most often used to
write CGI scripts for Web servers due to its long history of
usage in UNIX systems and its strength in text manipulation. It
is optimized for scanning arbitrary text files, extracting
information from those text files, and printing reports based on
that information. A project called BioPerl is supported by
Open Bioinformatics Foundation (http://www.open-bio.org),

which further strengthens its popularity. In GenSAS, Perl
script is used to build CGI pages and access the database
server to manage users' data. In addition, Perl is used to
execute annotation tools installed on the server using the exec
functions. With this function together with the AJAX
described above, various annotation tools can be
simultaneously executed on the annotation server to perform
parallel processing.

5 Related Work
 JIGSAW [17] integrates weighted outputs from multiple
gene prediction tools to predict genes. Ergatis [21] enables
workflow creation with multiple bioinformatics tools to
perform automated gene annotations and comparative
analysis. However, these tools do not provide a graphic viewer
for further annotation. MAKER [22] is a genome annotation
pipeline that produces annotation results that can be viewed by
GMOD browsers like GBrowse. DNA subway
(http://dnasubway.iplantcollaborative.org) allows users to use
multiple gene prediction tools, edit the gene model using
Apollo [23] and view the results in GBrowse. It is the most
similar tools to GenSAS, but GenSAS has its own graphic
viewer that allows users to edit and view the results in the
same window.

6 Conclusion and Future Work
 GenSAS has been developed in close cooperation with
biologist users. Interacting with users helped identify problems
and issues in currently used gene annotation tools, and has
brought forth new ideas for GenSAS features. Rather than
developing from the ground up, GenSAS was developed with
proven technologies and well supported standards-based tools.
By conforming to the industry standard three-tier Web
architecture, GenSAS can be easily managed and updated for
future needs. The most important issues identified and put to
work in GenSAS were the ease of use, prompt response, and
effectiveness for the biologist user

Ease of Use: GenSAS incorporates several different
annotation tools together with available customized
experimental data such as cDNA, ESTs and proteins, to
provide researchers with faster processing and access to the
various types of generated evidence without ever leaving the
GenSAS browser page. User management through accounts is
supported and users can store output results which can be later
retrieved for further analysis.

Prompt Response Time: AJAX allows easy implementation of
concurrent and parallel processing on Web applications.
GenSAS allows users to run multiple gene annotation tools,
and by using asynchronous communication mechanisms in
AJAX, the result will show up on the Web browser as soon as
the corresponding annotation tool finishes its job. Also, AJAX
allows users to continuously interact with the browser without
having to wait for the server.

Effectiveness: The Web front end is very compact and the five
panels of windows are well laid out for users to easily
navigate. Any users with nominal experience of using gene
annotation tools will be readily able to use GenSAS quite
effectively. Different shapes and colors of icons with tooltip
support further help users with easy navigation of the tool.
Graphic features on a track can be customized with different
colors, and they can be saved to the custom track for further
evidence gathering.

 Since its inception, GenSAS has been constantly
improved and many issues have been suggested to further
enhance its capability. One notable feature under development
is support of multiple tracks for the same annotation tool run
with different parameters. Allowing drag-and-drop for copying
features onto the custom track is also being considered.
GenSAS supports private and group user accounts for users to
save and allow file sharing among group members, similar to
UNIX file sharing, but more an advanced and versatile user
account management system is desired. Utilizing a content
management system like Drupal is one possibility. To further
improve the performance, the annotation processes can be sent
to high performance clusters or grids. We look forward to
implementing these and additional features in future GenSAS
versions.

Acknowledgements

We acknowledge the Department of Horticulture and
Landscape Architecture of Washington State University for
the support of this work. The future development of GenSAS
will be supported through USDA NIFA Award #2011-67009-
30030.

7 References
[1] Altschul S.F., Gish W., Miller W., Myers E.W., and

Lipmanl, D. J. (1990) Basic Local Alignment Search
Tool. J. Mol. Biol. 215, 403-410.

[2] Pearson W.R. (1995) Comparison of methods for
searching protein sequence databases. Protein Sci. 4:
1145-1160.

[3] Stein L.D., Mungall C., Shu S., Caudy M., Mangone M.,
Day A., Nickerson E., Stajich J.E., Harris T.W., Arva
A., and Lewis S. (2002) The Generic Genome Browser:
A building block for a model organism system database.
Genome Res. 12: 1599-1610

[4] S. Hansen S. Murugesan, Y. Deshpande and A. Ginige.
Web engineering: A new discipline for development of
web-based systems. In Proceedings of the First ICSE
Workshop en Web Engineering, 1999.

[5] Deep J and Holfelder P. Developing CGI Applications
with Perl. Wiley 1996.

[6] Clements P, Bass L and Kazman R. Software
Architecture in Practice. Addison Wesley, 1998.

[7] Collins F.S., Morgan M., and Patrinos A. (2003) The
Human Genome Project: lessons from large-scale
biology. Science, 300, 286–290.

[8] Head-Gordon, T.; Wooley, J. C. "Computational
challenges in structural and functional genomics," IBM
Systems Journal , vol.40, no.2, pp.265-296, 2001

[9] Bright L, Burgess S, Chowdhary B, Swiderski C, and
McCarthy M. BMC Bioinformatics 2009, 10:S8

[10] Flicek P. (2007) Gene prediction: compare and
CONTRAST. Genome Biol.; 8(12):233

[11] Burge C, Karlin S. Prediction of complete gene
structures in human genomic DNA. J Mol Biol 1997,
268:78-94.

[12] Solovyev V.V., Salamov A.A., and Lawrence C.B.
(1995) Identification of human gene structure using
linear discriminant functions and dynamic programming.
Proc. Int. Conf. Intel.l Syst. Mol. Biol.;3:367-75.

[13] Pertea M. and Salzberg S.L. (2002) Using GlimmerM to
find genes in eukaryotic genomes. Curr Protoc
Bioinformatics. Nov;Chapter 4:Unit 4.4.

[14] Borodovsky M. and Mcininch J. (1993) GenMark:
parallel gene. recognition for both DNA strands.
Comput. & Chem., 17, 123–133.

[15] Salzberg S., Delcher A., Kasif S., and White O. (1998)
Microbial gene identification using interpolated Markov
models. Nucleic Acids Res. 26:2 544-548.

[16] Yeh R.F., Lim L.P., and Burge C.B. (2001)
Computational inference of homologous gene structures
in the human genome. Genome Res. 11: 803-816.

[17] Allen J.E. and Salzberg S.L. (2005) JIGSAW:
integration of multiple sources of evidence for gene
prediction. Bioinformatics. Sep 15;21(18):3596-603.

[18] Gasteiger E., Jung E., and Bairoch A. (2001) SWISS-
PROT: Connecting Biomolecular Knowledge via a
Protein Database. Mol. Biol.;3 (3): 47-55.

[19] Bairoch A. and Apweiler R. (2000) The SWISS-PROT
protein sequence database and its supplement TrEMBL
in 2000". Nucleic Acids Res. 28: 45–48.

[20] Maglott D, Ostell J, Pruitt KD, Tatusova T. (2005)
Entrez Gene: gene-centered information at NCBI.
Nucleic Acids Res. 33:D54-8.

[21] Hemmerich, C. et al. (2010) An Ergatis-based
prokaryotic genome annotation web server.
Bioinformatics 26, 1122–1124.

[22] Cantarel, B. et al. (2008) MAKER: An easy-to-use
annotation pipeline designed for emerging model
organism genomes. Genome Res. 18: 188-196.

[23] Lewis S.E. et al. (2002) Apollo: a sequence annotation
editor. Genome Biol. 3(12):RESEARCH0082.

	1 Introduction
	2 Progress in Web Application Development and Web Architecture
	3 Genome Annotation Process
	4 GenSAS
	5 Related Work
	6 Conclusion and Future Work
	7 References

