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“It seems as though biologists are extraordinarily fond of randomness. A population is defined as one, 
randomly mating, interbreeding unit, although truly random mating would hardly be practicable in a 
reasonably large population. Similarly, spontaneous mutations are viewed as randomly sustained base 
substitutions, in spite of our knowledge of mutational hot spots. I suspect that this extraordinarily strong 
belief in randomness stems from our too strong faith in the power of natural selection.” 
 

 S. Ohno, [24] 
 

 
Abstract - To asses the degree of randomness 
and complexity of randomly generated 
sequences, in an in vitro selection experiment by 
Keefe and Szostack [1], we calculated the 
Kolmogorov complexity, the algorithmic 
redundancy, and the Shannon entropy of the 
sequences. We built an alignment-free 
phylogenetic tree, employing the algorithmic 
information distance between each pair of 
sequences to construct the distance-matrix. The 
tree represents the history of the set of molecular 
sequences, and allows us to follow in more detail 
how chemical function improves with respect to 
the original sequence. We remark the fact that in 
directed evolution, the highly predominant 
changes are between neighboring codons. Thus, 
the amino acid changes in the protein are not 
arbitrary, but dictated by the amino acid 
assignments in the code. 
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1.     Introduction 
 
          The frequency of occurrence of functional 
proteins in collections of randomly generated 
sequences is an important constraint on models 
of the evolution of biological proteins. 
Therefore, the experimental determination of this 
frequency, by isolating proteins with a specific 
function from a large random-sequence library of 
known size, is a relevant endeavor in this field. 
In an effort to substantiate the hypothesis that 
primordial functional proteins originated from 
random sequences, Keefe and Szostak [1] used 
in vitro selection of messenger RNA displayed 
proteins to sample a large population of distinct 
randomly generated sequences. 
 
          Starting from a library of 6 x 1012 
polypeptides, each containing 81 contiguous 
randomly chosen amino acids, they selected 
functional proteins by enriching for those that 
bind to ATP. As a result, following eight rounds 
of selection, they obtained four new ATP-
binding protein families, designated A, B, C, D 
(Fig. 3a of their paper), that appear to be 
unrelated to each other or to anything found in 



  

the current databases of biological proteins. One 
of these proteins (Family B) was optimized by 
directed evolution for improved binding affinity. 
DNA sequencing of the output from this 
selection revealed a distant clone (clone 18-19) 
that differed from the consensus sequence at 15 
out of 80 positions, and bound ATP with far 
greater affinity and specificity than all other 
clones from that round of selection. From this 
experiment, Keefe and Szostak [1] estimate that 
roughly 1 in 1011 of all random-sequence 
proteins have ATP-binding activity. 
 
      The X-ray crystal structure of the nucleotide 
binding domain for protein 18-19 was originally 
solved by Lo Surdo et al. [2] and found to adopt 
a novel zinc-nucleated a/b-fold not yet observed 
by nature. As described in detail in [3], the 
structural comparison of protein 18-19 with the 
databank of biological protein folds revealed that 
the de novo evolved protein shared certain 
structural features with some proteins found in 
nature. However, unlike many naturally 
occurring proteins, protein 18-19 requires high 
concentrations of free ligand in order to remain 
stably folded and soluble.  
 
      In   two recent publications, Szostak´s group 
examined the extent to which a de novo evolved 
protein, originally selected on the basis of ligand 
binding affinity, could be evolved to remain 
stably folded in the absence of exogenous ligand 
[3].These authors designed an in vitro selection 
experiment using mRNA display to isolate 
variants of protein 18- 19 that remained bound to 
an ATP agarose affinity resin in the presence of 
increasing concentrations of chemical 
denaturant. In the second publication [4], they 
used structural and functional studies to 
investigate the in vitro evolutionary processes in 
greater detail.  We refer the reader to the original 
papers for further details. 
 
      Since proteins acquire functionality 
(meaning) throughout evolution, to complement 
the mentioned works, we consider the 
construction of a phylogenic tree (Fig. 1) for the 
evolved proteins in the earliest experiment [1]. 
The tree represents the history of the set of 
molecular sequences, and allows us to follow in 
more detail how chemical function improves 
with respect to the original sequence. It is 
commonly believed that to infer such a tree one 
must first arrange the sequences  relative to each 
other in a way that presents the best available 
hypothesis of homology at each and every 

position in those molecules; i.e., an optimal 
multiple sequence alignment (MSA).  There are 
nonetheless alternative approaches to molecular 
phylogenetic inference that do not involve prior 
MSA (reviewed in [5]). These involve two steps: 
the calculation of a matrix of pairwise distances 
among unaligned molecular sequences, followed 
by generation of a tree using a distance-based 
method such as neighbor joining [6]. The 
fundamental difference from alignment-based 
methods lies mainly in the first step; i.e., how 
pair wise distances in the underlying distance 
matrix are defined. The majority of alignment-
independent approaches involve information 
theory and the Kullback-Liebler discrepancy or 
relative entropy; they are based on the statistical 
properties of of n-grams.  Or in compression 
methods, employing the algorithmic information 
(also called Kolmogorov complexity) shared by 
two sequences (see Discussion).  A notable 
example of this last approach is the paper by Li 
et al. [7], who employed the algorithmic 
information distance between a pair of sequences 
[8,9], to construct a distance-matrix for building 
a whole mitochondria genome phylogeny 
without first aligning the sequences. Our 
approach is closely related to theirs, differing 
mainly in the software employed to estimate the 
algorithmic distance. 
 
      The simplest way to describe our 
methodology is in the context of the following 
linguistically motivated question: Is it possible to 
identify the subject treated in a text in a way that 
permits its automatic classification among many 
other texts in a given corpus?  As shown by 
Benedetto et al. [10] among others, the answer is 
positive. For DNA sequences, a solution to this 
kind of problem was delineated by Loewenstern 
et al. [11] as follows: 
 
     “If we took a corpus of DNA sequences, we 
could gain insight into the degree of similarity 
between a test sequence and the corpus by 
compressing the corpus with the test sequence 
appended, and subtracting the size of this 
compressed file from the size of the compressed 
corpus alone. We could classify a test sequence 
by following the above procedure with two 
different sample populations of text, assigning 
the test sequence to the label of the population 
with which it compressed best”  
   

Here, we follow this idea to classify 
pseudorandom amino acid sequences. 
 



  

 
 
2. Materials and Methods 
 
Alignment-free Sequence Comparison 
Algorithms: 
 
      In a former publication [12] we introduced 
the WinGramm Suite [13]. It consists of a set of 
programs aimed to calculate  informational and 
algorithmic quantities, such as n-gram entropies, 
context-free grammatical complexity, and 
algorithmic distance, as well as surrogate 
statistics, in order to reveal the information 
content, the complexity or the redundancy 
embodied in symbol sequences [14, 15, 16, 17, 
18]. 
 
      Here, we have employed the WinGramm 
Suite to obtain the phylogenetic classification of 
non-biological amino acid sequences. For this 
end, we applied our programs to: 
 
1) Calculate the context-free grammatical 

complexity, algorithmic distance and 
redundancy, Shannon entropy and surrogate 
statistics of the protein sequences.  
 

2) Build a phylogenetic tree to classify these 
sequences, taken from different clones in 
the directed evolution experiment. 
 

 
3. Results 
 
Classification of Pseudorandom Proteins: 
 
          Globular proteins have amino acid 
sequences which are highly complex, 
indistinguishable from pseudorandom sequences 
[19]. In that paper the authors estimated the 
Shannon entropy and applied two compression 
algorithms (one of them is included in the 
WinGrammm Suite) to estimate the algorithmic 
complexity of a large, non-redundant, set of 
protein sequences finding that proteins are fairly 
close to pseudorandom sequences. They found 
an entropy reduction due to correlations of about 
1 %, corroborated with compression algorithms, 
which indicates that proteins have approximately 
99 % of the complexity of random polypeptides 
with the same amino acid composition. These 
results give support to the conclusion of Pande et 
al. [20], White and Jacobs [21], and others that 

protein sequences are “slightly edited random 
sequences”.  
 
        To set up our problem, we consider a 
sample of 17 sequences from the set generated 
by Keefe and Szostack [1], in their original in 
vitro selection experiment (appearing in the 
supplementary information file of the paper). All 
of the sequences have the following structure:  
 

MDYKDDDDKKT 
(Random)81WSASCHHHHHHMGMSGS. 

 
             From each of these sequences, we 
dropped the short invariant segments encoding 
affinity tags for purification, at the beginning and 
end, retaining the 81 amino acid random 
segment. The first 13 sequences were obtained 
from round 8, belonging to families A, B, and C, 
which have 4 sequences each. The thirteenth 
sequence constitutes the single representative of 
family D. The last 4 sequences were acquired 
from round 18 (Table 1). With the help of the 
WinGramm Suite [13] we calculated the 
algorithmic distance between each sequence pair, 
and obtained the distance matrix (supplementary 
information Table 2).  From this matrix we built 
the phylogenetic tree (Fig. 1). Comparing this 
tree with the information in Fig. 3a of [1], we 
noticed a mistake in their figure: Family A 
should read Family C and vice versa. Professor 
Szostak acknowledged the misprint (personal 
communication). The tree displays the right 
assignment of sequences to families and, 
correctly, allocates the sequences of generation 
18th with family B (see above). 
  
    To asses the degree of randomness and the 
complexity of the experimentally evolved 
sequences, we calculated the grammatical 
complexity, the corresponding S-measure (also 
called Z-score), the algorithmic redundancy and 
the Shannon entropy of the random segments 
(Table 1). From the S-measure of the 
complexity, S(K), defined by the difference 
between the original value of  K and its mean 
surrogate value, divided by the SD of the 
standard surrogate values: 
 

surr

surrorig KK
S

σ

−
= , 

 it is clear that the evolved sequences are as 
random as their surrogates. Saver = 1.6191 SD. 
For the families with more than one member (A, 



  

B and C), we concatenated the strings in each 
group and compared the resulting string with a 
sequence, of the same length, constructed from 
concatenated random surrogates. For example, 
for Family A, we constructed the sequence FA 
concatenating the strings in the family: (08-05), 
(08-07), (08-09), (08-48) (Table 1). We 
compared the grammatical complexity of FA , 
K(FA), with the complexity of the string SA , 
K(SA), which was constructed from the 
concatenation of standard-random surrogates of 
each sequence in the family. Although, both FA 
and SA were built from pseudorandom 
sequences, the complexity of FA is much lower 
than the complexity of SA because the sub words 
of FA are very similar among themselves, and 
the sub words of SA are independent 
pseudorandom sequences. Thus, the complexity 
of FA is a good deal lower than the average 
complexity of its surrogates (Table 1). The 
sequence FA can be considered to be the 
“corpus” of family A. Thus, an unknown 
sequence may be identified as belonging or not 
to family A, after compressing it with this 
“corpus”. While the average algorithmic 
redundancy of the 17 sequences is very low, 1.4 
%, the same quantity of the concatenated 
sequences is high: 42.2 %, 45.6 %, and 44. 4 % 
for FA, FB, and FC , respectively (Table 1). 
However, the average Shannon entropy (Haver) 
of the evolved sequences and of the 
concatenated sequences is almost the same 
(Table 1). Haver differs from its maximum value, 
Hmax, only in 0.18398 bits. This is due to the fact 
that, contrary to the algorithmic quantities, H 
depends only on the composition of the 
sequence, except for finite size effects [22, 23], 
and not on the order of the symbols. 
 
        As we mentioned above, the experiment 
shows that starting from random amino acid 
sequences, after a few rounds of Darwinian 
evolution in vitro, it is possible to select a 
functional protein. Nonetheless, the final protein 
which carries a biochemical function (in a 
suitable environment), not only looks as random 
as the starting polypeptide  without function, 

from which it was generated, but has 
informational parameters that confirm this fact 
(Table 1). 
   
 
4. Discussion and Conclusions 
 
 
         Biological sequences encode information, 
and the occurrence of evolutionary events 
separating two sequences sharing a common 
ancestor will result in the loss of the shared 
information. Sequences which do not share 
common ancestor will not share more 
information than would be expected at random. 
Therefore, we consider that the appropriate 
distance matrix was the one defined by be the 
algorithmic information distance between a pair 
of sequences. Because this distance is based on 
Kolmogorov complexity (estimated by the 
grammar complexity), that was designed to 
measure the information content of individual 
objects. Here, we made a new application of this 
concept, since concatenating the sequences of a 
family we measure the information content of the 
family. Then we compute the shared information 
between the new sequence and the family. 
  
         The further optimization of sequence 18-19 
described in [4] consist of twelve single-base 
mutations, seven of which are transitions. 
Therefore, the increased stabilization and 
solubility of the protein is highly influenced by 
the structure of the genetic code. In the vicinity 
of a functional protein, in protein space, it is not 
very difficult to get improvements by fine-tuning 
it. This is so because, although DNA base 
mutations are random, each codon does not have 
the same probability to mutate to any of the other 
61 sense codons. In short-term natural evolution 
and in directed evolution, the highly 
predominant changes are between neighboring 
codons. Thus, the amino acid changes in the 
protein are not arbitrary, but dictated by the 
amino acid assignments in the code. 

 
. 

 



  

 
 
 
 
 

 
 
 
Table 1 Grammatical Complexity, S-values, algorithmic redundancy and entropy for  pseudorandom 
protein sequencesa 
 

a The labels of the first 17 sequences are the same as in the additional information from Keefe and Szostack 
[1]. The last three sequences were obtained by concatenating the sequences of the corresponding family, as 
explained in the text. 
 
In the first column, K is the grammar complexity; the 2nd and 3rd columns are average values of K, for 
standard and pair-conserving surrogates [12, 13]. S (K) is the S-measure of K, R is the algorithmic 
redundancy in % and H is the entropy in bits. 
 

 
Sequence 

 
K 

 
<K>sd-surr 

 
<K>pair-Surr 

 

 
S (K) 

 
R % 

 
H bits 

A8-05 81 79.9 81 0.9047 0.74600 4.13920994 
A8-07 81 80.1 80.5 1.2853 1.12359 4.14729973 
A8-09 81 79.6 80.7 0.7905 1.25000 4.13801925 
A8-48 81 79.9 80 0.8162 0.99751 4.11634521 
B8-01 78 80 81 2.5276 2.62172 4.1396914 
B8-04 78 80.7 80 3.9185 3.22580 4.15270775 
B8-08 78 80.3 80 3.5941 2.86426 4.13992263 
B8-10 79 80.4 81 2.0314 1.61893 4.14920872 
C8-06 80 80 81 0.6031 0.49751 4.13510411 
C8-11 80 80.3 81 0.0000 0.0000 4.12701735 
C8-17 80 80.6 81 0.3331 0.24937 4.13212155 
C8 -19 81 80.6 80.5 0.8160 0.49627 4.12905168 
D8-20 81 80.6 79 1.0938 0.87172 4.12407239 
18-01 78 80.3 81 3.6191 2.98507 4.14924243 
18-02 81 80.7 80 0.9047 0.74626 4.17014976 
18-03 78 80.4 79 2.2447 2.74313 4.12228268 
18-19 79 80.5 81 2.0417 1.37328 4.13367787 
Average 79.70 80.28 80.45 1.6191 1.43591 4.13794837 
SQR 1.2727 0.3141 0.6643 1.1743 1.01817 0.01276136 
FA 171 296.1 299 31.38664 42.2490 4.13989713 
FB 165 299.5 301.7 28.4291 45.67007 4.1497239 
FC 168 300.8 301 37.8086 44.426 4.13400159 



  

 
 

 

Fig. 1 Phylogenetic tree for the non-biological protein sequences from the experiment performed by Keefe 
and  Szostak (2001). 
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