
 
 

 

The Genetic Code, 8-Dimensional Hypercomplex 
Numbers and Dyadic Shifts 

  

Sergey V. Petoukhov 
  Department of Biomechanics, Mechanical Engineering Research Institute of RAS, Moscow, Russia 

Abstract - The article is devoted to algebraic features of 
structural phenomena of molecular ensembles of the genetic 
code. Matrix forms of presentations of the genetic code 
allow showing deep relations of the genetic code with dyadic 
shifts and algebras of 8-dimensional hypercomplex 
numbers. Hadamard matrices and orthogonal systems of 
Rademacher and Walsh functions, which are well-known 
formalisms from discrete signal processing, participate in 
this discovery of hidden structural features of the genetic 
code. The described results are useful to understand a non-
casual character of the genetic code systems, which has a 
deep algebraic nature. The results lead to new theoretical 
approaches in the field of algebraic biology.  
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1 Introduction 
 

 biological meaning of genetic informatics is reflected 
in the brief statement: "life is a partnership between 
genes and mathematics" [22]. We are trying to find 

math which is a partner of the genetic code. One of the 
possible directions of search is to use matrix forms of 
presentation and analysis of ensembles of molecular 
elements of the genetic code. Matrix representations and 
methods are widely and successfully used in the theory of 
error-correcting coding and processing of information, 
theoretical physics, computer science, the theory of 
hypercomplex numbers, etc. In this regard, a scientific field 
called "Matrix genetics" exists, which studies the matrix 
presentation of the genetic code, including through 
borrowing matrix methods from the field of digital signal 
processing [10, 11, 14, 15, 17]. Our results are a part of 
"algebraic biology", which gave rise to thematic conferences 
and international societies; the journal “Bulletin of 
Mathematical Biology” identifies this area as a separate 
category. 

This article is devoted to author’s results on algebraic 
features of structural phenomena of molecular ensembles of 
the genetic code. More precisely it shows relations of the 
genetic code with dyadic shifts, algebras of 8-dimensional 
hypercomplex numbers, Hadamard matrices, orthogonal 
systems of Rademacher and Walsh functions and the 
sequency theory by Harmuth [6-9].  

 

 Symbols of genetic letters from a 
viewpoint of binary-opposite attributes 

C A G U/T
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2 Genetic matrices, dyadic shifts, 
Rademacher functions and            
8-dimensional hypercomplex numbers 
 

The four letters of the genetic alphabet A (adenine), C 
(cytosine), G (guanine), U/T (uracil in RNA or thymine in 
DNA) represent specific poly-atomic constructions. The set 
of these four constructions bears the substantial symmetric 
system of distinctive-uniting attributes (or, more precisely, 
pairs of "attribute-antiattribute"). The system of such 
attributes divides the genetic four-letter alphabet into the 
following three pairs of letters, which are equivalent from a 
viewpoint of one of these attributes or its absence: 1) С = U 
& A = G (according to the binary-opposite attributes: 
“pyrimidine” or “non-pyrimidine”, that is purine); 2) А = С 
& G = U (according to the attributes “keto” or “amino”);           
3) С = G & А = U (according to the attributes: three or two 
hydrogen bonds are materialized in these complementary 
pairs). The possibility of such division of the genetic 
alphabet into three binary sub-alphabets is known from the 
work [12]. We utilize these known sub-alphabets in the field 
of matrix genetics which studies matrix forms of 
presentation of the genetic code. Let us mark these three 
kinds of binary-opposite attributes by numbers N = 1, 2, 3 
and ascribe to each of the four genetic letters the symbol 
“0N” (the symbol “1N”) in a case of presence (of absence 
correspondingly) of the attribute under number “N” in this 
letter. As a result we obtain the representation of the genetic 
four-letter alphabet in the system of its three “binary sub-
alphabets corresponding to attributes” (Fig. 1). 

№1 01 – pyrimidine (one molecular ring); 
11 – purine (two rings in a molecule) 

01 11 11 01 

№2 02 – amino; 
12 – keto 

02 02 12 12 

№3 03 – a letter with three hydrogen bonds; 
13 – a letter with two hydrogen bonds 

03 13 03 13 

 
Fig. 1. Three binary sub-alphabets according to three kinds of 
binary-opposite attributes in a set of nitrogenous bases C, A, G, U. 

 
On the basis of the idea about a possible analogy between 

discrete signals processing in computers and in a genetic 
code system, one can present the genetic 4-letter alphabet in 
the following matrix form [C  A; U  G] (Fig. 2). Then the 
Kronecker family of matrices with such alphabetical kernel 
can be considered: [C  A; U  G](n), where (n) means the 
integer Kronecker (or tensor) power [11, 14, 15, 17]. The 
matrix [C  A; U  G](3) contains 64 triplets in a strict order 
(Fig. 2).  
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   000 (0) 001 (1) 010 (2) 011 (3) 100 (4) 101 (5) 110 (6) 111 (7) 

  000 
(0) 

CCC 
000 (0) 

CCA 
001 (1) 

CAC 
010 (2) 

CAA 
011 (3) 

ACC 
100 (4) 

ACA 
101 (5) 

AAC 
110 (6) 

AAA 
111 (7) 

  001 
(1) 

CCU 
001 (1) 

CCG 
000 (0) 

CAU 
011 (3) 

CAG 
010 (2) 

ACU 
101 (5) 

ACG 
100 (4) 

AAU 
111 (7) 

AAG 
110 (6) 

  010 
(2) 

CUC 
010 (2) 

CUA 
011 (3) 

CGC 
000 (0) 

CGA 
001 (1) 

AUC 
110 (6) 

AUA 
111 (7) 

AGC 
100 (4) 

AGA 
101 (5) 

  011 
(3) 

CUU 
011 (3) 

CUG 
010 (2) 

CGU 
001 (1) 

CGG 
000 (0) 

AUU 
111 (7) 

AUG 
110 (6) 

AGU 
101 (5) 

AGG 
100 (4) 

  [C A; U G](3) = 100 
(4) 

UCC 
100 (4) 

UCA 
101 (5)) 

UAC 
110 (6) 

UAA 
111 (7) 

GCC 
000 (0) 

GCA 
001 (1) 

GAC 
010 (2) 

GAA 
011 (3) 

  101 
(5) 

UCU 
101 (5) 

UCG 
100 (4) 

UAU 
111 (7) 

UAG 
110 (6) 

GCU 
001 (1) 

GCG 
000 (0) 

GAU 
011 (3) 

GAG 
010 (2) 

  110 
(6) 

UUC 
110 (6) 

UUA 
111 (7) 

UGC 
100 (4) 

UGA 
101 (5) 

GUC 
010 (2) 

GUA 
011 (3) 

GGC 
000 (0) 

GGA 
001 (1) 

  111 
(7) 

UUU 
111 (7) 

UUG 
110 (6) 

UGU 
101 (5) 

UGG 
100 (4) 

GUU 
011 (3) 

GUG 
010 (2) 

GGU 
001 (1) 

GGG 
000 (0) 

  
Fig. 2. Genetic matrices [C A; U G] and [C A; U G](3) with 

binary numerations of  their columns and rows on the base of the 
binary sub-alphabets № 1 and № 2 from Fig. 1. Matrix cells 

contain a symbol of a multiplet, a dyadic-shift numeration of this 
multiplet and its expression in decimal notation. Decimal 

numerations of columns, rows and multiplets are written in 
brackets. Black and white cells contain triplets with strong and 

weak roots correspondingly (see the text). 
 
All the columns and rows of the matrices on Fig. 2 are 

binary numerated and disposed in a monotonic order by the 
following algorithm which uses biochemical features of the 
genetic nitrogenous bases and which can be used in bio-
computers of any organism really. Numerations of columns 
and rows are formed automatically if one interprets 
multiplets of each column from the viewpoint of the first 
binary sub-alphabet (Fig. 1) and if one interprets multiplets 
of each row from the viewpoint of the second binary sub-
alphabet. For example, the column 010 contains all the 
triplets of the form "pyrimidine-purine-pyrimidine"; the row 
010 contains all the triplets of the form “amino-keto-amino”. 
Each of the triplets in the matrix [C A; U G](3) receives its 
dyadic-shift  numeration by means of modulo-2 addition of 
binary numerations of its column and row. Here one should 
explain that this kind of addition is one of the main 
operations in digital signal processing; by definition the 
modulo-2 addition of two numbers written in binary notation 
is made in a bitwise manner in accordance with the rules: 
                 0 + 0 = 0, 0 + 1 = 1, 1+ 0 = 1, 1+ 1 = 0             (1) 
 
For example, the triplet CAG receives its dyadic-shift 
numeration 010 (or 2 in decimal notation) because it belongs 
to the column 011 and the row 001. The series of binary 
numbers 
                 000, 001, 010, 011, 100, 101, 110, 111             (2) 
 
forms a diadic group, in which modulo-2 addition serves as 
the group operation [9]. The distance in this symmetry group 
is known as the Hamming distance. Since the Hamming 
distance satisfies the conditions of a metric group, the diadic 
group is a metric group. The modulo-2 addition of any two 
binary numbers from (2) always results in a new number 

from the same series. The number 000 serves as the unit 
element of this group. The reverse element for any number 
in this group is the number itself. Changes in the initial 
binary sequence (2), produced by modulo-2 addition of its 
members with any binary numbers (2), are termed diadic 
shifts [1, 9]. If any system of elements demonstrates its 
connection with diadic shifts, it indicates that the structural 
organization of its system is related to the logic of modulo-2 
addition. This article gives some evidences that the genetic 
code is related to the logic of modulo-2 addition. 

Black and white cells in the genomatrix [C A; U G](3) 
reflect the following peculiarities of the genetic code. A 
combination of letters on the two first positions of each 
triplet is termed a “root” of this triplet; a letter on its third 
position is termed a “suffix”. The set of 64 triplets contains 
16 possible variants of such roots. Taking into account 
properties of triplets, the set of 16 possible roots is divided 
into two subsets with 8 roots in each. The first of such octets 
contains roots CC, CU, CG, AC, UC, GC, GU, GG. These 
roots are termed "strong roots" [13] because each of them 
defines four triplets with this root, coding values of which 
are independent on their suffix. For example, four triplets 
CGC, CGA, CGU, CGG, which have the strong root CG, 
encode the same amino acid Arg, although they have 
different suffixes (Fig. 3). The second octet contains roots 
CA, AA, AU, AG, UA, UU, UG, GA. These roots are 
termed “weak roots” because each of them defines four 
triplets with this root, coding values of which depend on 
their suffix. An example of such a subfamily in Fig. 3 is 
represented by four triplets CAC, CAA, CAU and CAC, two 
of which (CAC, CAU) encode the amino acid His and the 
other two of which (CAA, CAG) encode the amino acid 
Gln. 

 
THE STANDARD CODE 

8 subfamilies of triplets with strong 
roots (“black triplets”) and the amino 
acids, which are encoded by them 

8 subfamilies of triplets with weal roots (“white 
triplets”) and the amino acids, which are encoded 

by them 
CCC, CCU, CCA, CCG   Pro CAC, CAU, CAA, CAG    His, His, Gln, Gln 
CUC, CUU, CUA, CUG  Leu  AAC, AAU, AAA, AAG  Asn, Asn, Lys, Lys 
CGC, CGU, CGA, CGG  Arg   AUC, AUU, AUA, AUG   Ile, Ile, Ile, Met 
ACC, ACU, ACA, ACG  Thr AGC, AGU, AGA, AGG   Ser, Ser, Arg, Arg 
UCC, UCU, UCA, UCG  Ser  UAC, UAU, UAA, UAG   Tyr, Tyr, Stop, Stop 
GCC, GCU, GCA, GCG  Ala UUC, UUU, UUA, UUG   Phe, Phe, Leu, Leu 
GUC, GUU, GUA, GUG  Val  UGC, UGU, UGA, UGG    Cys, Cys, Stop, Trp
GGC, GGU, GGA, GGG  Gly GAC, GAU, GAA, GAG   Asp, Asp, Glu, Glu 

THE VERTEBRATE MITOCHONDRIAL CODE 
CCC, CCU, CCA,  CCG  Pro CAC, CAU, CAA, CAG     His, His, Gln, Gln 
CUC, CUU, CUA,  CUG  Leu  AAC, AAU, AAA, AAG    Asn, Asn, Lys, Lys 
CGC, CGU, CGA,  CGG  Arg AUC, AUU, AUA, AUG    Ile, Ile, Met, Met 
ACC, ACU, ACA,  ACG  Thr AGC, AGU, AGA, AGG    Ser, Ser, Stop, Stop 
UCC, UCU, UCA,  UCG  Ser UAC, UAU, UAA, UAG    Tyr, Tyr, Stop, Stop 
GCC, GCU, GCA, GCG  Ala UUC, UUU, UUA, UUG    Phe, Phe, Leu, Leu 
GUC, GUU, GUA, GUG  Val UGC, UGU, UGA, UGG    Cys, Cys, Trp, Trp 
GGC, GGU, GGA, GGG  Gly GAC, GAU, GAA, GAG    Asp, Asp, Glu, Glu 

 
Fig. 3. The Standard Code and the Vertebrate Mitochondrial Code 
possess the basic scheme of the genetic code degeneracy with 32 
triplets of strong roots and 32 triplets of weak roots (Initial data 

from http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi.) 
 
How these two subsets of triplets with strong and weak 

roots are disposed in the genomatrix [C A; U G](3) (Fig. 2) 
which was constructed formally on the base of the genetic 
alphabet and Kronecher multiplications without any mention 
about the degeneracy of the genetic code and about amino 
acids? Can one anticipate any symmetry in their disposition? 
It should be noted that the huge quantity 64! ≈ 1089 of 
variants exists for dispositions of 64 triplets in the (8x8)-



 
 

 

matrix. One can note for comparison, that the modern 
physics estimates time of existence of the Universe in 1017 
seconds. In such a situation an accidental disposition of the 
20 amino acids and the corresponding triplets in a (8x8)-
matrix will give almost never any symmetry in their 
disposition in matrix halves, quadrants and rows. 

But it is phenomenological fact that the disposition of the 
32 triplets with strong roots (“black triplets” in Fig. 2) and 
the 32 triplets with weak roots (“white triplets”) has a 
symmetric character unexpectedly (see Fig. 2). For example 
the left and right halves of the matrix mosaic are mirror-anti-
symmetric to each other in its colors: any pair of cells, 
disposed by mirror-symmetrical manner in these halves, 
possesses the opposite colors. One can say that each row of 
this mosaic matrix corresponds to an odd function. In 
addition each row of the mosaic matrix [C A; U G](3) has a 
meander-line character (the term “meander-line” means here 
that lengths of black and white fragments are equal to each 
other along each row). But the theory of discrete signal 
processing uses such odd meander functions for a long time 
under the name “Rademacher functions”. Rademacher 
functions contain elements “+1” and “-1” only. Each of the 
matrix rows presents one of the Rademacher functions if 
each black (white) cell is interpreted such that it contains the 
number +1 (−1). Fig. 4 shows a transformation of the mosaic 
matrix [C A; U G](3) (Fig. 2) into a numeric matrix in the 
result of such replacements of black and white triplets by 
means of numbers “+1” and “-1” correspondingly. 
 

1 1 −1 −1 1 1 −1 −1  
1 1 −1 −1 1 1 −1 −1  
1 1 1 1 −1 −1 −1 −1  
1 1 1 1 −1 −1 −1 −1  
1 1 −1 −1 1 1 −1 −1  
1 1 −1 −1 1 1 −1 −1  
−1 −1 −1 −1 1 1 1 1  
−1 −1 −1 −1 1 1 1 1  

 

Fig. 4. Rademacher form R of presentation of the genomatrix [C A; 
U G](3) from Fig. 2. A relevant system of Rademacher functions is 
shown at the right side. 
 

The Rademacher form R of the genomatrix [C A; U G](3) 
(Fig. 4) can be decomposed into sum of 8 sparse matrices r0, 
r1, r2, r3, r4, r5, r6, r7 (Fig. 5) in accordance with the principle 
of dyadic-shifts numerations of cells and triplets from Fig. 2. 
More precisely any sparse matrix rk (k=0, 1, …, 7) contains 
entries “+1” or ”-1” from the matrix R on Fig. 4 in those 
cells which correspond to cells with the same dyadic-shift 
numeration “k”  of triplets on Fig. 2; all the other cells of the 
matrix rk contain zero. 

The author has revealed that this set of 8 matrices     
r0, r1,…, r7 (where r0 is identity matrix) is closed relative to 
multiplication and it satisfies the table of multiplication on 
Fig. 6. 

            

The multiplication table on Fig. 6 is asymmetrical relative 
to the main diagonal and corresponds to the non-
commutative associative algebra of 8-dimensional 
hypercomplex numbers. This matrix algebra is non-division 
algebra because it has zero divisors. It means that such non-
zero hypercomplex numbers exist whose product is equal to 

zero. These genetic 8-dimensional hypercomplex numbers 
are different from Cayley’s octonions 
(http://en.wikipedia.org/wiki/Octonion). The algebra of 
Cayley’s octonions is non-associative algebra and 
correspondingly it does not possess a matrix form of its 
presentation (each of matrix algebras is an associative 
algebra). The known term “octonions” is not appropriate for 
the case of the multiplication table on Fig. 6 because this 
term is usually used for members of normed division non-
associative algebra (http://en.wikipedia.org/wiki/Octonion).  

 
R = r0+r1+r2+r3+r4+r5+r6+r7 = 

 
1   0   0   0   0   0   0   0 
0   1   0   0   0   0   0   0 
 0   0   1   0   0   0   0   0
 0   0   0   1   0   0   0   0
 0   0   0   0   1   0   0   0
 0   0   0   0   0   1   0   0
 0   0   0   0   0   0   1   0
 0   0   0   0   0   0   0   1

 
 
 
+ 

0  1  0  0  0  0  0  0 
1  0  0  0  0  0  0  0 
0  0  0  1  0  0  0  0 
0  0  1  0  0  0  0  0 
0  0  0  0  0  1  0  0 
0  0  0  0  1  0  0  0 
0  0  0  0  0  0  0  1 
0  0  0  0 0  0  1  0 

 
 
 
+ 

0   0   -1   0    0   0   0    0 
0   0    0   -1   0   0   0    0 
1   0    0    0    0   0   0    0 
0   1    0    0    0   0   0    0 
0   0    0    0    0   0  -1   0 
0   0    0    0    0   0   0  -1 
0   0    0    0    1   0   0    0 
0   0   0    0     0   1   0    0 

 
 
 
+ 

0   0   0   -1   0   0   0    0 
0   0  -1    0   0   0   0    0 
0   1   0     0   0   0   0    0 
1   0   0     0   0   0   0    0 
0   0   0     0   0   0   0  -1 
0   0   0     0   0   0  -1   0 
0   0   0     0   0   1    0   0 
0  0    0    0  1  0   0   0 

 
 
 
 
+ 

 
0   0   0   0  1   0   0   0 
0   0   0   0  0   1   0   0 
0   0   0   0  0   0  -1  0 
0   0   0   0  0   0   0  -1 
1   0   0   0  0   0   0   0 
0   1   0   0  0   0   0   0 
0   0  -1  0  0   0   0   0 
0   0  0 -1  0  0  0   0 

 
 
 
+

0   0   0   0   0   1   0   0 
0   0   0   0   1   0   0   0 
0   0   0   0   0   0   0  -1 
0   0   0   0   0   0  -1  0 
0   1   0   0   0   0   0  0 
1   0   0   0   0   0   0  0 
0   0   0  -1  0   0   0  0 
0   0  -1  0  0  0  0  0 

 
 
 
+ 

0   0   0   0   0   0   -1   0 
0   0   0   0   0   0    0   -1 
0   0   0   0  -1   0   0    0 
0   0   0   0   0  -1   0    0 
0   0  -1   0  0   0    0    0 
0   0   0  -1  0   0    0    0 
-1  0  0   0   0   0    0    0 
0  -1  0  0  0   0   0    0 

 
 
 
+

0   0   0   0   0   0   0   -1
0   0   0   0   0   0  -1   0 
0   0   0   0   0  -1   0   0 
0   0   0   0  -1   0   0   0 
0   0   0  -1   0   0   0   0 
0   0  -1   0   0   0   0   0 
0  -1   0   0   0   0   0   0 
-1  0  0   0  0   0  0   0 

 

Fig. 5. The dyadic-shift decomposition of the Rademacher form R 
(Fig. 4) of the genomatrix [C A; U G](3) into sum of 8 sparse 

matrices r0, r1,…, r7.  
 

 1 r1 r2 r3 r4 r5 r6 r7

1 1 r1 r2 r3 r4 r5 r6 r7
r1 r1 1 r3 r2 r5 r4 r7 r6
r2 r2 r3 -1 -r1 -r6 -r7 r4 r5
r3 r3 r2 -r1 -1 -r7 -r6 r5 r4
r4 r4 r5 r6 r7 1 r1 r2 r3
r5 r5 r4 r7 r6 r1 1 r3 r2
r6 r6 r7 -r4 -r5 -r2 -r3 1 r1
r7 r7 r6 -r5 -r4 -r3 -r2 r1 1 

 Fig. 6. The multiplication table of basic matrices r0, r1,… , r7 
(where r0 is identity matrix)  which corresponds to the                    

8-dimensional algebra over the field of real numbers. It defines the 
8-dimensional numeric system of genetic R123-octetons. 

 
For this reason we term these hypercomplex numbers, 

which are revealed in matrix genetics, as “dyadic-shift 
genetic octetons” (or briefly “octetons”). In addition we term 
such kinds of matrix algebras, which are connected with 
dyadic-shift decompositions, as dyadic-shift algebras (or 
briefly DS-algebras). The author supposes that DS-algebras 
are important for genetic systems. All the basic matrices r0, 
r1,…, r7 are disposed in the multiplication table (Fig. 6) in 
accordance with dyadic-shift numerations of cells on Fig. 2.  

Below we will describe another variant of genetic 
octetons which is connected with Hadamard genomatrices. 
For this reason we term the first type of genooctetons (Fig. 
4-6) as R123-octetons (here R is the first letter of the name 
Rademacher; the index 123 means the order 1-2-3 of 
positions in triplets).  

A general form of R123-octetons (Fig. 5) is the following: 
 

            R123 = x0*1 + x1*r1 + x2*r2 + x3*r3 + x4*r4 +  
                       x5*r5 + x6*r6 + x7*r7                                       (4) 
       

http://en.wikipedia.org/wiki/Octonion
http://en.wikipedia.org/wiki/Octonion


 
 

 

where coefficients x0, x1,.. , x7 are real numbers. Here the 
first component x0 is a scalar. Other 7 components x1*r1, 
x2*r2, x3*r3, x4*r4, x5*r5, x6*r6, x7*r7 are non-scalar units 
but imaginary units. Some properties of these octetons lead 
to the idea that for a system of genetic coding the main 
significance belong not to the entire set of possible real 
values of coordinates of 8-dimensional hypercomplex 
numbers but only to the subset of numbers  20, 21, 22,.., 2n,.. 
[16]. It seems that for genetic systems DS-algebras are 
algebras of dichotomous biological processes and systems. 

3 Permutations and the DS-algebra 
The theory of discrete signal processing pays a special 

attention to permutations of information elements. This 
paragraph shows that all the possible permutations of 
positions inside all the triplets lead to new mosaic 
genomatrices whose Rademacher forms of presentation are 
connected with the same DS-algebra (Fig. 6).   

A simultaneous permutation of positions in triplets 
transforms the most of the triplets in cells of the initial 
genomatrix [C A; U G](3). For example, in the case of the 
cyclic transformation of the order 1-2-3 of positions into the 
order 2-3-1, the triplet CAG is transformed into the triplet 
AGC, etc. Because each of the triplets is connected with the 
binary numeration of its column and row, these binary 
numerations are also transformed correspondingly; for 
example, the binary numeration 011 is transformed into 110. 
The six variants of the order of positions inside triplets are 
possible: 1-2-3, 2-3-1, 3-1-2, 3-2-1, 2-1-3, 1-3-2. The initial 
genomatrix [C A; U G]123

(3) is related with the first of these 
orders (Fig. 4). Other five genomatrices [C A; U G]231

(3),     
[C A; U G]231

(3),  [C A; U G]231
(3),  [C A; U G]231

(3), [C A; U 
G]231

(3), which correspond to other five orders, are shown on 
Fig. 7 (subscripts indicate the order of positions in triplets). 

In these genomatrices on Fig. 7 black-and-white mosaics 
of each row corresponds again to one of Rademacher 
functions. The replacement of all the triplets with strong and 
weak roots by entries “+1” and “-1” correspondingly 
transforms these genomatrices into their Rademacher forms 
R231, R312, R321, R213, R132. Each of the Rademacher forms 
R231, R312, R321, R213, R132 can be again decomposed into sum 
of 8 sparse matrices r0, r1, r2, r3, r4, r5, r6, r7 in accordance 
with dyadic-shift numerations of its cells (see details in 
[16]). Each of the 6 sets with eight sparse matrices r0, r1, r2, 
r3, r4, r5, r6, r7 is unique and different from other sets (r0 is 
identity matrix in all the sets).  

Unexpected facts are that, firstly, each of these sets is 
closed relative multiplication and, secondly, each of these 
sets corresponds to the same multiplication table from Fig. 6.  

It means that this genetic DS-algebra of 8-dimensional 
hypercomplex numbers possesses at least 5 additional matrix 
forms of its presentation. Our results demonstrate that this 
DS-algebra of genetic R-octetons possesses a wonderful 
invariance relative not only to all the variants of positional 
permutations in triplets but also to some other permutations 
which are connected with Gray code and dyadic-shift 
transformations [16]. All the properties of R123-octetons hold 
true in the cases of different matrix forms of presentation of 
R-octetons with the same multiplication table (Fig. 6). 
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Fig. 7. Five genomatrices [C A; U G]231

(3), [C A; U G]312
(3),                          

[C A; U G]321
(3), [C A; U G]213

(3),  [C A; U G]132
(3),  which 

correspond to orders of positions in triplets 2-3-1, 3-1-2, 3-2-1, 2-1-
3, 1-3-2 relative to the genomatrix [C A; U G]123

(3) on Fig. 2. Black 
and white cells contain triplets with strong and weak roots 

correspondingly. Binary numerations of columns and rows are 
shown. 

 
The analysis of evolution of variants (or dialects) of the 

genetic code from the viewpoint of the DS-algebra of the R-
octetons has allowed revealing two phenomenological rules 
[16]: 

Rule #1. In all the organisms with sexual reproduction 
only those triplets can be involved in the evolutionary 
changing their correspondence to amino acids or to stop-
signals, which possess dyadic-shift numerations 4, 5, 6, 7 in 
the genomatrix [C A; U G](3) (Fig. 2); in other words, only 



 
 

 

those triplets can be involved which are connected with the 
basic matrices r4, r5, r6, r7 (Fig. 5) of genetic R-octetons. 
    Rule #2. In all the dialects of the genetic code only triplets 
with dyadic-shift numerations 2, 6, 7 can be start-codons. In 
other words, only those triplets can be start-codons, which 
are connected with the basic matrices r2, r6, r7 (Fig. 5) of 
genetic R-octetons. 

4  Hadamard genomatrices and another                 
DS-algebra  

By definition a Hadamard matrix of dimension “n” is the 
(n*n)-matrix H(n) with elements “+1” and “-1”. It satisfies 
the condition H(n)*H(n)T = n*In, where H(n)T is the 
transposed matrix and In is the identity (n*n)-matrix. Rows 
of Hadamard matrices are termed Walsh functions. 
Hadamard matrices are widely used in error-correcting 
codes such as the Reed-Muller code and Hadamard codes; in 
the theory of compression of signals and images; in spectral 
analysis and multi-channel spectrometers with Hadamard 
transformations; in quantum computers with Hadamard 
gates; in a realization of Boolean functions by means of 
spectral methods; in the theory of planning of multiple-
factor experiments and in many other branches of science 
and technology. The works [10, 14, 15] have revealed that 
Kronecker families of genetic matrices are related with some 
kinds of Hadamard matrices (“Hadamard genomatrices”) by 
means of so termed                U-algorithm. This paragraph 
describes that the dyadic-shift decompositions of Hadamard 
genomatrices lead to special 8-dimensional hypercomplex 
numbers. For the U-algorithm, phenomenological facts are 
essential that the letter U in RNA (and correspondingly the 
letter T in DNA) is a unique letter in the genetic alphabet in 
the two following senses: 

• Each of three nitrogenous bases A, C, G has one 
amino-group NH2, but the fourth basis U/T has not 
it. From the viewpoint of existence of the amino-
group (which is very important for genetic 
functions) the letters A, C, G are identical to each 
other and the letter U is opposite to them; 

• The letter U is a single letter in RNA, which is 
replaced in DNA by another letter T.  

This uniqueness of the letter U can be utilized in genetic 
computers of organisms. Taking into account this unique 
status of the letter U, the author has revealed the existence of 
the following formal “U-algorithm”, which demonstrates the 
close connection between Hadamard matrices and the matrix 
mosaic of the genetic code [10, 14, 15, 17]. 

By definition the U-algorithm contains two steps: 1) on 
the first step, each of the triplets in the black-and-white 
genomatrix (for example, in the genomatrix [C A; U G](3) on 
Fig. 2) should change its own color into opposite color each 
time when the letter U stands in an odd position (in the first 
or in the third position) inside the triplet; 2) on the second 
step, black triplets and white triples are interpreted as entries 
“+1” and “-1” correspondingly. For example, the white 
triplet UUA (see Fig. 2) should become the black triplet (and 
its matrix cell should be marked by black color) because of 
the letter U in its first position; for this reason the triplet 
UUA is interpreted finally as “+1”. Or the white triplet UUU 

should not change its color because of the letter U in its first 
and third positions (the color of this triplet is changed twice 
according to the described algorithm); for this reason the 
triplet UUU is interpreted finally as “-1”.  
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Fig. 8. The Hadamard genomatrices H123, H231, H312, H321, H213, 
H132 which are received from the genomatrices [C A; U G]123

(3),   
[C A; U G]231

(3), [C A; U G]312
(3), [C A; U G]321

(3), [C A; U G]213
(3),  

[C A; U G]132
(3) (Fig. 2 and 7) by means of the U-algorithm. 

Brackets contain dyadic-shift numerations of cells in decimal 
notation by analogy with matrices on Fig. 2 and 8. Black color and 

white color of cells mean entries “+1” and “-1” in these cells 
correspondingly. 

 
By means of the U-algorithm, all the genomatrices              [C A; U 
G]123

(3), [C A; U G]231
(3), [C A; U G]312

(3),               [C A; U G]321
(3), 

[C A; U G]213
(3),  [C A; U G]132

(3) (Fig. 2 and 7) are transformed 
into relevant numeric genomatrices H123, H231, H312, H321, H213, 

H132 on Fig. 8. 
One can make the dyadic-shift decomposition of each of 

these six Hadamard genomatrices H123, H231, H312, H321, H213, 
H132 (Fig. 8) by analogy with the described decompositions 
of the genomatrices R123, R231, R312, R321, R213, R132. In the 
result six new different sets of 8 sparse matrices h0, h1, h2, 
h3, h4, h5, h6, h7 arise (where h0 is identity matrix). It is 
unexpectedly but each of these six sets for Hadamard 
genomatrices is closed relative to multiplication. Moreover 
each of these sets h0, h1, h2, h3, h4, h5, h6, h7 corresponds to 



 
 

 

the same multiplication table on Fig. 9 [16]. 
 

 1 h1 h2 h3 h4 h5 h6 h7 
1 1 h1 h2 h3 h4 h5 h6 h7 
h1 h1 -1 h3 -h2 h5 -h4 h7 -h6

h2 h2 h3 -1 -h1 -h6 -h7 h4 h5 
h3 h3 -h2 -h1 1 -h7 h6 h5 -h4

h4 h4 h5 h6 h7 -1 -h1 -h2 -h3

h5 h5 -h4 h7 -h6 -h1 1 -h3 h2 
h6 h6 h7 -h4 -h5 h2 h3 -1 -h1

h7 h7 -h6 -h5 h4 h3 -h2 -h1 1 
 

Fig. 9. The multiplication table for the dyadic-shift decompositions 
of Hadamard genomatrices H123, H231, H312, H321, H213, H132 (Fig. 

8). 
 

The existence of the multiplication table (Fig. 9) means 
that a new 8-dimensional DS-algebra or a new system of          
8-dimensional hypercomplex numbers exists on the base of 
these Hadamard genomatrices which are connected with six 
different matrix forms of presentation of this hypercomplex 
system. We term these new 8-dimensional hypercomplex 
numbers as H-octetons (here “H” is the first letter in the 
name Hadamard) because they differ from R-octetons (Fig.  
6) and Cayley’s octonions. The six Hadamard genomatrices 
H123, H231, H312, H321, H213, H132 are different matrix forms of 
presentation of the same H-octeton whose coordinates are 
equal to 1 (x0=x1=…=x7=1).  

     Numeric presentations of genetic sequences are useful to 
study hidden genetic regularities [3, 4, 44, 17, etc.]. On the 
base of the described results, new approaches of numeric 
presentations of genetic sequences can be proposed for such 
aims taking into account additionally known applications of 
hypercomplex numbers to analysis of genetic sequences [2, 
5, 20, 21, 23, etc.]. It seems appropriate to interpret genetic 
sequences as sequences of 8-dimensional vectors where 
genetic elements are replaced by their special numeric 
presentations which are connected with the described DS-
algebras. Then Hadamard spectrums, dyadic distances and 
some other characteristics of these vector sequences can be 
studied. If the quantity of vector elements in a genetic 
sequence is not divisible by 8, the remaining short vector 
can be extended to an 8-dimensional vector by adding to its 
end of the required number of zeros by analogy with 
methods of digital signal processing.  

The DS-algebra of H-octetons (Fig. 9) is the non-
commutative associative non-division algebra. It has zero 
divisors: for example (h3+h4) and (h2-h5) are non-zero H-
octetons, but their product is equal to zero. The quantity and 
the disposition of signs “+” and “-“ in the multiplication 
table on Fig. 9 are identical to their quantity and disposition 
in a Hadamard matrix. In addition, indexes of basic matrices 
are again disposed in the multiplication table (Fig. 9) in 
accordance with the dyadic-shift numeration on Fig. 2.  

It should be noted that Hadamard matrices play important 
roles in many tasks of discrete signal processing; they are 
devoted to tens of thousands of publications (see a review in 
[19]). Only a few symmetrical Hadamard matrices are 
usually used in the field of discrete signal processing. But 
dyadic-shift decompositions of these “engineering” 
Hadamard matrices do not lead to any 8-dimensional 
hypercomplex numbers in contrast to the asymmetrical 
Hadamard genomatrices described in our article. Moreover 
the author knows no publications about the facts that 
Hadamard matrices can be the base for matrix forms of 
presentation of 8-dimensional hypercomplex numbers. It 
seems that the genetic code has led the author to discovering 
the new interesting fact in the field of the theory of 
Hadamard matrices about the unexpected relation of some 
Hadamard matrices with multidimensional DS-algebras and 
their systems of hypercomplex numbers. This fact can be 
useful for many applications of Hadamard genomatrices for 
simulating of bioinformation phenomena, for technology of 
discrete signal processing, etc. A great number of Hadamard 
(8x8)-matrices exists (according to some experts, their 
number is equal to approximately 5 billion). Perhaps, only 
the genetic Hadamard matrices, which represent a small 

subset of a great set of all the Hadamard matrices, are related 
with multidimensional DS-algebras but it is an open 
question now.  

Why living nature uses just such the genetic code that is 
associated with Hadamard genomatrices? We suppose that 
its reason is related with solving in biological organisms the 
same information tasks which lead to a wide using of 
Hadamard matrices in digital signal processing and in 
physics.  

 

5 Discussion 
 
The author has revealed a close relation of the genetic 

code with 8-dimensional hypercomplex numbers (first of all, 
R-octetons and H-octetons) and with dyadic shifts and 
Hadamard matrices. This relation is interesting in many 
aspects. Some of them are the following. 

Walsh functions play the main role in the fruitful 
sequency theory by Harmuth for signal processing [6-9]. 
Rows of Hadamard genomatrices correspond to special 
kinds of Walsh functions which define special variants of 
sequency analysis. The author believes that this “genetic” 
sequency analysis can be a key to understand important 
features not only of genetic informatics but also of many 
other inherited physiological systems (morphogenetic, 
sensori-motor, etc.). In comparison with spectral analysis by 
means of sine waves, which is applicable to linear time-
invariant systems, the sequency analysis is based on non-
sinusoidal waves and it is used to study systems which are 
changed in time (biological systems belong to such systems) 
[7, 9]. Genetic DS-algebras can also be useful in a 
realization of the famous idea by Boole on algebraic theory 
of laws of thinking. The author believes that mechanisms of 
biological morphogenesis are closely associated with spatial 
and temporal filters from the field of sequency analysis for 
genetic systems. Taking into account the sequency theory by 
Harmuth together with our data about Hadamard 
genomatrices and genetic H-octetons, one can assume that 
biological evolution can be interpreted largely like the 
evolution of physiological spatial and temporal filters of the 
sequency theory.  

The notion “number” is the main notion of mathematics. 
In modern theoretical physics, systems of 8-dimensional 



 
 

 

hypercomplex numbers (mainly, Cayley’s octonions and 
split-octonions) are one of important objects. The discovery 
of the relation of the genetic code with special types of     
8-dimensional hypercomplex numbers allows generating of 
heuristic associations between theoretical physics and 
mathematical biology. The described DS-algebras can be 
useful for development of algebraic biology [16]. 

        

[9]  H. F. Harmuth, Information theory applied to space-
time physics. Washington: The Catholic University of 
America, DC, 1989. 

       Bioinformatics should solve many problems about 
inherited properties of biological bodies: 

• Noise-immunity property of genetic coding; 
• Management and synchronization of a huge number 

of inherited cyclic processes; 
• Doubling of bio-information (mitosis, etc); 
• Compression of inherited biological data; 
• Spatial and temporal filtering of genetic information; 
• Primary structure of proteins; 
• Multi-channel informatics; 
• Hidden rules of structural interrelations among parts 

of genetic systems; 
• Laws of evolution of dialects of the genetic code, 

etc.  
The principle of dyadic shifts and DS-algebras of genetic 
octetons can be useful for many of these problems.  

In addition, one can mention about known facts of 
analogies between the genetic code and the symbolic system 
of ancient Chinese book “I Ching” (see a review in [17]). 
This symbolic system is a base of many branches of Oriental 
medicine including acupuncture, Tibetan pulse diagnostics, 
etc. which use ancient ideas of "I Ching" about inherited 
physiological systems. Using dyadic shifts for studying not 
only the genetic code but also the mysterious tables of “I 
Ching” reveals the hidden regularities and symmetrical 
patterns in this ancient system [16]. Results of matrix 
genetics give new approaches for better understanding the “I 
Ching”. 
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