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Abstract - Telomerase genes have been said to be of great 
importance in various aspects of biology.  Currently their 

composition and purpose is a topic of much research.  Finding 

and validating telomerase genes in different species is of great 

importance and is also a difficult task that consumes many 

resources.  In this research a method for isolating potential 

telomerase gene regions within a genome is discussed.  A 

Support Vector Machine will be used to differentiate regions 

of DNA containing telomerase genes from those that do not.  

The Support Vector Machine will be trained on identified 

telomerase genes from related species, and then it will be used 

to classify sequences encompassing an entire chromosome of 

a different species as either potential telomerase gene regions 
or non-telomerase regions.  Ultimately, a fast algorithm is 

presented that can act as an initial filter to remove large 

portions of a genome, allowing more time intensive routines to 

better target optimal regions of a genome. 

Keywords: Data Mining, Computational Biology, Machine 

Learning 

 

1 Introduction 

 Telomerase (Fig. 1), also called telomere terminal 

transferase, is an enzyme made of protein and RNA subunits 

that dictates the synthesis of telomere terminal repeats. This 

mechanism is required for the maintenance of chromosome 
termini, as the structure and integrity of telomeres are 

essential for genome stability. Telomere deregulation can lead 

to cell death, cell senescence, or abnormal cell proliferation. It 

has been identified that telomerase plays very important roles 

in aging and cancer. Telomerase activity is detected during 

development and has a very low, almost undetectable, activity 

in somatic (body) cells. These somatic cells age as a result of 

telomerase inactivity. So, if telomerase is activated in a cell, 

the cell will continue to grow and divide leading to exciting 

possibilities. In the past several years of research, it has been 

found that cancer cells are immortal and divide 
uncontrollably. Such immortal cancer cells have 10-20 times 

more active telomerase than in normal body cells.  Reducing 

this activity could eventually lead to the death of those cells.  

 

 

Figure 1. Detailed telomerase RNA secondary structure for 

humans and yeast 



This could be a great therapy especially in the early stages of 

cancer. In the later stages, inhibition or absence of telomerase 
may result in cell crisis in cancer cells and tumor regression 

in cancer patients.  Research on telomerase continues to be a 

very exciting field with potential for discovering many more 

facts about what might help fight cancer and the aging 

process.  

 In this research both yeast telomerase genes and 

telomerase genes of vertebrates are used to teach a supervised 

machine learning algorithm what telomerase genes look like.  

Once the algorithm builds a model to represent these genes, it 

can look through entire genomes to narrow down the search 

for new telomerase genes in species they have not been 

identified.  The type of supervised machine learning 
algorithm used for this research is a Support Vector Machine 

(SVM).  Support Vector Machines have been used for 

instance classification in complex biological domains with 

great effectiveness [1] [3].  SVMs have been shown to obtain 

better results over a wide variety of problems in comparison 

with other algorithms used in supervised machine learning.  

This is because they generalize better due to the nature of 

how they learn. 

 This paper will show how an SVM can be used to 

narrow the search for new telomerase genes.  It will be laid 

out in the following manner.  First, supervised machine 
learning and support vector machines will be briefly 

discussed.  After this, the methodology section will outline 

the steps used in this research to isolate regions of 

chromosomes labeled as having potential to house a 

telomerase gene.  Next, the experiments from this work will 

be presented along with results.  Finally, future enhancements 

to the methodology will be discussed before concluding 

remarks.   

2 Machine Learning  

 Support Vector Machines are a type of supervised 

machine learning algorithm.  Supervised machine learning 

algorithms are used to approximate non-linear functions for 

instance classification.  These algorithms build models from a 

group of data instances called training data, and use these 
models to classify new instances where the class is not 

known.  Each data instance in the training data consists of n 

features, from an n dimensional feature space S, and a label 

that tells the algorithm which class the data instance belongs 

to.  These instances describe locations for each class in S, and 

they are treated as a representation of a non-linear function 

f(i) where i is a an input vector of features.  Once the training 

data is assembled a model is constructed.  While constructing 

the model a portion of the training data is placed into another 

data set called the validation data.  The validation data is 

withheld from the learner while training it and used to test 
how effective the model generalizes to instances outside of 

the training data.  There are different schemes for segmenting 

and utilizing the validation data, this research uses a method 

called n fold cross validation.  N fold cross validation divides 

the training data into n data sets and builds n – 1 models 

where one of the n data sets is used as the validation data.  
The n – 1 models are combined to produce a single model 

that can be used for classification.  This technique helps the 

model generalize better when there are relatively few 

instances in the training data.  Once the final model is built, it 

can be tested with a separate group of disjoint data instances 

called production data.  These instances are labeled as 

belonging to a particular class, but this label is withheld from 

the algorithm during classification to see how accurately the 

model approximates the targeted non-linear function on data 

it has never seen. 

SVMs have been shown to obtain better results over a 

wide variety of problems in comparison with other algorithms 
used in supervised machine learning.  This is because they 

generalize better, due to the nature of how they learn.  SVMs 

learn concepts by separating data distributions into classes of 

data and treating them as two generalized sets of vectors in a 

feature space.  The SVM will find a separating hyperplane 

between these two datasets (or concepts) which is the 

maximum distance from either of the two (Fig. 2).  Other 

machine learning algorithms can find hyperplanes that 

separate datasets but the power of the SVM comes from the 

fact that the hyper plane found by the SVM is the one with 

the greatest distance between either of the two classes.  The 
SVM finds support vectors, which are data instances from 

either class that are the closest to the opposite class.  Once 

these support vectors are found, geometric operations are 

applied to find the hyperplane that is equally distant from 

both sets of support vectors.  Finding support vectors and 

computing the maximum marginal hyperplane is a standard 

quadratic programming problem [4].  This explanation 

assumes a linearly separable feature space because that is the 

easiest way to explain the concept.  SVMs can be generalized 

to support nonlinear features spaces as well as more than two 

classes of data, but these topics are beyond the scope of this 

paper. 

3 Methodology  

 Given feature sets representing data instances, SVMs 
learn concepts and identify instances as belonging to specific 

classes of data.  This project uses SVMs for locating regions 

within chromosomes that have potential to contain telomerase 

genes.  The classes of data instances in this project are + and – 

where + is a segment of chromosome that potentially holds a 

telomerase gene and – is any other region of chromosome.  

The training data used to construct the classification model for 

the SVM is used to tell the SVM what telomerase regions 

look like (+), and what they do not (-).  Since each species has 

only one telomerase gene region, telomerase gene regions 

from related species are used to in the training data as + 
instances.  The - instances in the training data were randomly 

sampled non-telomerase regions from the same group of 

species.  Five times as many – instances were included in the 

training data as available + instances.  The production data  

 



 used to test the correctness of the SVM was an entire 

chromosome from species X, where X was related to the 

species in the training data, and the telomerase gene region for 
X had already been positively identified.  This production data 

allows the correctness of the SVM to be effectively measured 

by whether the SVM successfully classifies the telomerase 

region from species X and how much of the rest of the 

chromosome from species X gets correctly labeled non-

telomerase.  The data for this research was gathered from two 

sources.  The telomerase gene regions were obtained from 

http://telomerase.asu.edu/sequences.html, and the 

chromosome in which those regions reside were taken from 

ftp://ftp.ncbi.nih.gov/. 

 During the construction of data sets for this research it 
was imperative that the telomerase gene region from the 

species being used in the production data not be included in 

the training data.  The inclusion of this telomerase region 

would skew the results for the experiment as the SVM would 

be trained specifically on one of the instances it is also being 

evaluated for correctness on.  This kind of scenario leads to 

over fitting on the training data and as a result an SVM 

generalizes poorly. 

 To obtain data instances for submission to the SVM, 

features are computed from segments of DNA.  For the + 

examples used in the training data, the segments of DNA used 

were the telomerase genes from each of the species involved 

in defining the + examples.  For the - examples used in the 

training data, and the examples used in the production data the 

chromosomes were segmented into regions of length m using 
a sliding window over the chromosome.  This sliding window 

was started at index n = 0 and between segments n was 

incremented by x.  For this project x was set to 75 and m was 

set to the average length of the telomerase regions used as + 

instances in the training data.  After the necessary 

chromosomes were segmented and assigned to the training 

and production data sets features for the segments could be 

calculated. 

 There are nine features used in this research to classify 

instances.  These features were either taken from or inspired 

by Guo et al [5] and Schattner [6].  Schattner’s work was of 
particular use to this research.  In Schattner’s paper the base 

composition of sequences are used to determine RNA gene 

regions.  Schattner only uses statistical analysis of these 

regions to infer their class, but these features work very well 

for machine learning.  The features used by Schattner are 

(G+C)%, (G-C)%, (A-T)%, and RO(AB).  The features used 

in this research are the following: 

 

Percentage A: 

 

The percentage nucleotides in the DNA sequence that were A. 

 

Figure 2.  Illustration of what a maximum marginal hyperplane looks like between two set of data instances in a 

feature space. (Image taken from Christopher J.C. Burges [4]) 

http://telomerase.asu.edu/sequences.html
ftp://ftp.ncbi.nih.gov/


 

 

 

 

  

Figure 3.  Methodology flow diagram to illustrate the process of obtaining potential telomerase 

gene regions. 



Percentage T: 

 
The percentage nucleotides in the DNA sequence that were T. 

 

 

Percentage G: 

 

The percentage nucleotides in the DNA sequence that were G. 

 

 

Percentage C: 

 

The percentage nucleotides in the DNA sequence that were C. 

 
 

Percentage (X + Y): 

 

The percentage of the nucleotides in the DNA sequence that 

were either X or Y summed, with this feature each possible 

combination of nucleotides were computed.  

 

 

Percentage (X – Y): 

 

The percentage of the nucleotides in the DNA sequence that 
were X subtracted from the percentage of nucleotides in the 

sequence that were Y, with this feature each possible 

combination of nucleotides were computed.  

 

 

Percentage (X / Y): 

 

The percentage of the nucleotides in the DNA sequence that 

were X divided by the percentage of nucleotides in the 

sequence that were Y, with this feature each possible 

combination of nucleotides were computed.  

RO(XY): 
 

The frequency count of XY (FREQ_XY) multiplied by the 

length of the sequence then divided by the percentage X times 

the percentage Y. 

 

ex.  (length * FREQ_XY) / (Percentage X * Percentage Y) 

 

 

Standard Deviation: 

 

The standard deviation of the percentages of A, T, G, and C. 

 

 Once the features are computed for each of the DNA 

segments the SVM can be trained.  Due to the small size of 

the training data, cross fold validation was used to help 

prevent over fitting.  After the SVM was trained the 

production data was classified, and then overlapping segments 

of + classifications were merged together.  This results in 

regions of DNA, of various lengths, that potentially house the 

telomerase gene.  The number of nucleotides in the calculated 

regions can be used against the total number of nucleotides in 

the entire chromosome to compute the percentage of the 
chromosome classified + or -. 

4 Experiment and Results 

The experiments for this research were run in two different 

groups (vertebrates and fungi).  A flow diagram outlining the 

experimental procedure can be seen in Fig. 3.  The training 

data for each group consisted of + instances of telomerase 

genes from as many related species as could be found.  For 

each group three experiments were run.  The experiments 

consisted of removing species X from the training data for 

use as the production data.  After training the SVM, results 

were obtained from classification of the entire chromosome 

containing the telomerase gene region from species X.  The 

results were defined by the recall and precision of the 

classification of gene regions in the chromosome. The recall 
was whether the SVM classified the telomerase region in 

species X correctly, and the precision was how much of the 

rest of the chromosome was classified correctly as non-

telomerase.  For this experiment species X had to meet two 

constraints.  First, its telomerase gene region must be known, 

and second, the rest of the chromosome in which the 

telomerase region resided must have been sequenced.  For 

vertebrates the three species experimented on were Mus 

musculus, Rattus norvegicus and Equus caballus, and for 

fungi the three species were Schizosaccharomyces pombe, 

Saccharomyces cerevisiae and Kluyveromyces lactis.  The 
results are shown in table 1.  The results show the number of 

potential telomerase regions detected and the percentage of 

the chromosome those regions accounted for.  The 

percentage of the chromosome the potential telomerase 

regions account for minus one depicts the amount of the 

chromosome that is excluded from being a potential 

telomerase region.  This shows how far the SVM narrowed 

the search for the telomerase gene.  In each of the 

experiments run, the SVM classified the actual telomerase 

gene correctly.  This puts the recall at 100%.  Since there is 

only one telomerase gene within a genome for any species, 

the percentage of the genome classified as potential 
telomerase regions can be seen as the false positive rate, 

within a very small statistical margin of error.  The results 

show significant information gain. However, the results on 

the vertebrates are significantly better than the results on the 

fungi.  Possible explanations for this could be that the groups 

of vertebrates used in the training data were more closely 

related.  This could make their telomerase genes more alike 

and provide a better representation for the SVM.  Another 

more likely explanation could be that the results on the 

vertebrates were better because the SVM had more data to 

learn from with the vertebrates.  The number of known 
telomerase gene regions in the training data for the 

vertebrates was 22, but only 13 telomerase gene region 

examples were available for the fungi.  A final explanation 

for the better results on the vertebrates could be that in the 

vertebrates the telomerase genes were simply more distinct 

from the rest of the chromosome than they were in the fungi.    



 

5 Future Research 

 Future research should be invested in at least two areas 
for this work.  First, the SVM used in this project utilized 

default settings in the WEKA machine learning software 

package (i.e. complexity parameter and a linear kernel).  

Different settings for these parameters such as an RBF kernel, 

or different numeric values for the complexity parameter, 

should be explored to see if the results for the experiment 

could be improved.  Second, new features should be explored 

to see if they can better detect potential telomerase regions.  

One such feature could reflect base pairings within the 

sequence of DNA.  Telomerase genes should have a unique 

and learnable base pairing signature that sets them apart from 
the rest of the chromosome (i.e. the way a telomerase region 

folds to create its secondary structure should be distinctive).  

Another feature that should be looked into would be to isolate 

the most commonly repeated l-mer in the + examples from 

the training data and provide the number of times the 

particular subsequence (either exactly or with some 

accommodation for mutation allowed) appears in the 

instance.  A third feature would be to create a multiple 

alignment from the + instances in the training data to obtain a 

median string (or consensus string) used for computing global 

and local alignment scores for each instance.  In telomerase 

genes from related species there should exist conserved 
regions, and thus telomerase genes could have a unique 

scoring signature against this median string. 

6 Conclusion 

 The work presented in this paper provides substantial 

results showing an SVM can definitively narrow the search 

for telomerase genes within a genome.  A methodology has 

been outlined that segments a chromosome into DNA 

sequences that are treated as data instances in a machine 

learning application.  Features are computed from these DNA 

sequences and the feature vectors are classified by an SVM as 

either potential telomerase gene regions (+) of not (-).  The 

results from the experiment show significant information gain, 

however they have potential to be improved through the 
exploration of new features and parameter refining in the 

SVM. 
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Species # of Regions Classified + Percentage of Chromosome Classified + 

Schizosaccharomyces pombe 680 0.25377804949519833 

Saccharomyces cerevisiae 165 0.44209262916606207 

Kluyveromyces lactis 196 0.30870646879168767 

Mus musculus 960 0.011700037718866478 

Rattus norvegicus 1536 0.010321241324534453 

Equus caballus 777 0.024617685567403513 

 

Table 1 


