
Finding Biomarkers for Non-Small Cell Lung
Cancer Diagnosis with Novel Data Mining

Techniques
Quoc-Nam Tran†, Lamar (Texas State) University, USA.

Abstract—Non-small cell lung carcinoma (NSCLC) is the
most common cause of worldwide cancer premature death
with a very low survival rate of 8%-15%. Patients with
an early stage diagnosis can have up to four times
the survival rate of 40%-55%. Hence, discovering cost-
effective biological markers that can be used to improve
the diagnosis and prognosis of the disease is an important
clinical challenge.

Significant progress has been made to address this chal-
lenge. Some sets of biomarkers were identified in the
last few years ranging from 5-gene signatures to 133-
gene signatures. Since datasets of gene-expression profiles
typically have tens of thousands of genes for just few
hundreds of patients, this type of datasets will create many
technical challenges impacting the accuracy of the diag-
nostic prediction. A typical molecular sub-classification
method for lung carcinomas would have a low predictive
accuracy of 68%-71%.

In this paper, we present a new data mining method that
finds genetic markers and uses the markers to predict with
up to 100% accuracy whether a patient has NSCLC and
the sub-type of cancer in case the patient has NSCLC. Our
method overcomes many challenges arose from datasets
of gene-expression profiles. The new method discovers
novel genetic changes that occur in lung tumors using
gene-expression profiles. We discovered that a small set of
nine gene-signatures (JAG1, MET, CDH5, ABCC3, DSP,
ABCD3, PECAM1, MAPRE2 and PDF5) from the dataset
of 12,600 gene-expression profiles of NSCLC acts like an
inference basis for NSCLC lung carcinoma and hence can
be used as genetic markers. This very small and previously
unknown set of biological markers gives an almost perfect
predictive accuracy for the diagnosis of the disease.

While proteins encoded by some of these gene-signatures
(e.g., JAG1 and MAPRE2) have been showed to involve in
the signal transduction of cells and proliferative control
of normal cells, specific functions of proteins encoded
by other gene-signatures have not yet been determined.
Therefore, this work opens new questions for structural
and molecular biologists about the role of these gene-
signatures for the disease.
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I. INTRODUCTION

In the last several years, one in four deaths in the United
States is due to cancer, which makes cancer a major
public health problem in the United States as well as
many other parts of the world [1, 2]. Currently, cancer is
a leading cause of death in the United States, second only
to cardiovascular diseases. Last year, 1.48 million people
were diagnosed with cancer, and 562,340 people died
from cancer. The top five most common cancer-related
deaths were due to lung, breast, prostate, colorectal and
pancreatic cancer. Together, these five diseases accounted
for over 50% of all cancer deaths in the United States in
2009. Lung cancer alone, with NSCLC as the most com-
mon cause of worldwide cancer premature death, killed
over 160,000 people, more than the other four cancers
put together. The disease has a very low survival rate of
8%-15%. Meanwhile, the survival rate for patients with
early-stage disease increases to 40%-55% after surgery.
That said, discovering cost-effective biological markers
that can be used to improve the diagnosis and prognosis
of the disease is an important clinical challenge [3].

NSCLC is sub-categorized as adenocarcinomas, squa-
mous cell carcinomas, and large-cell carcinomas, of
which adenocarcinomas are the most common [4]. The
histopathological sub-classification of lung adenocarci-
noma is challenging. For example, in one study indepen-
dent lung pathologists agreed on lung adenocarcinoma
sub-classification in only 41% of cases [5]. In another
study, proportional hazard models identified an optimal
set of 50 prognostic mRNA transcripts using a 5-fold
cross-validation procedure. This signature was tested in
an independent set of 36 squamous cell lung carcinomas
(SCC) samples and achieved 84% specificity and 41%
sensitivity with an overall predictive accuracy of 68%



[6]. Combining the SCC classifier with their adenocar-
cinoma prognostic signature gave a predictive accuracy
of 71% in 72 NSCLC samples.

Multiple techniques have evolved over the past few
years allow rapid measurement of gene expression and
simultaneous high-throughput measurement of thousands
of genes from several hundred samples. Different parts
of the gene-protein relationship can be measured such
as messenger RNA levels, protein expression and cel-
lular metabolic activity. Some of the available genomic
technologies include gene expression arrays, serial anal-
ysis of gene expression, single-nucleotide polymorphism
analysis, and high-throughput capillary sequencing [3].

Gene-expression array analysis methodologies developed
over the last few years have demonstrated that expression
data can be used in a variety of class discovery or class
prediction biomedical problems including those relevant
to tumor classification [7, 8, 9, 10]. Data mining and
statistical techniques applied to gene expression data
have been used to address the questions of distinguishing
tumor morphology, predicting post treatment outcome,
and finding molecular markers for disease [11, 12, 13,
14].

However, gene expression profiles present many chal-
lenges for data mining both in finding differentially
expressed genes, and in building predictive models be-
cause the datasets are highly multidimensional (12,600
dimensions in our study) and contain a small number
of records (197 records in our study). Although mi-
croarray analysis tool can be used as an initial step to
extract most relevant features, one has to avoid over-
fitting the data and deal with the very large number
of dimensions of the datasets. The current challenges
in analyzing gene-expression profiles, is illustrated in a
method recently published in the Journal of Experimental
& Clinical Cancer Research in July 2009 [15] where
it used prior knowledge with support vector machine-
based classification in diagnosis of lung cancer. The
authors of [15] reported an accuracy of 98.51%-99.06%
for their classification algorithm using 5 marker genes on
a dataset of 31 malignant pleural mesothelioma (MPM)
and 150 lung adenocarcinomas. Even though the method
in [15] can differentiate between MPM and lung ade-
nocarcinomas with high accuracy, it gives an accuracy
of 70% when we added other types of NSCLC lung
cancer including adenocarcinomas, squamous cell lung
carcinomas and pulmonary carcinoids into consideration.
Other researchers also limited themselves in differentiate
two sub-types of NSCLC lung cancer such as between
adenocarcinomas and squamous cell lung carcinomas.

This paper aims at a novel data mining method that finds
cost-effective genetic markers and uses the markers to
differentiate with very high accuracy all sub-types of
NSCLC lung cancer. Comparing with a recent publi-
cation [16] in that the author uses currently available
data mining techniques in Weka to find biomarkers for
NSCLC lung cancer, we found that our new method
finds significantly more cost-effective genetic markers
and provides more accurate sub-classification of NSCLC
lung cancer. Comparison with SAM [17], a popular
method for significance analysis of microarrays, is also
provided in Section III.

Among the nine gene-signatures found by our new
method (JAG1, MET, CDH5, ABCC3, DSP, ABCD3,
PECAM1, MAPRE2 and PDF5), proteins encoded by
some of these gene-signatures (e.g., JAG1 and MAPRE2)
have been showed to involve in the signal transduction
of cells and proliferative control of normal cells [18]. It
has also been found that MAPRE2 is highly expressed
in pancreatic cancer cells, and seems to be involved in
perineural invasion [19]. However, specific functions of
proteins encoded by other gene-signatures have not yet
been determined. Hence, this work opens new questions
for structural and molecular biologists about the role of
these gene-signatures for the disease.

II. A NEW DATA MINING METHOD FOR SIGNIFICANT

GENES SELECTION & SUB-CLASSIFICATION

Before presenting our new algorithm for finding genetic
markers and predicting NSCLC lung cancer, we will ad-
dress the challenges one has to overcome while working
with gene-expression profile datasets. Basic information
about Gini indexes and classification algorithms can be
found in many data mining books [20, 21, 22].

A. Solving the bias due to the order of classes

The first challenge that arose from the gene-expression
datasets is the bias due to the order of cancer types or
classes in data mining’s terminology. Let’s consider a

Range/Class C1 C2 C3

R1 4 6 30
R2 6 30 4
R3 0 4 16

Table I
BIAS DUE TO THE ORDER OF CLASSES

simple example of expression profiles for a gene A in
Table I where the gene dataset D has d = 100 elements



and three classes. The gene expression values were
partitioned into three ranges. Clearly, the cancer types
or classes can be labeled in any order. When this gene
is ranked by current microarray analysis methodologies,
for example by calculating the Gini index giniA(D) =∑m

i=1
|Ri|
d ·gini(Ri), the first two rows contribute equally

to the Gini index because gini(Ri) = 1 −
∑n

j=1 p
2
i,j

where pi,j = |Ci,j |
|Ri| is the relative frequency of class

Cj in Ri, and | · | is the notation for cardinality [23].
We have the same problem when entropy is calculated
instead of the Gini index. That said, when one just
considers the probability distribution without taking into
account the order of the classes, the first two partitions
of expression profiles will contribute equally. Clearly,
the two partitions should contribute differently because
Partition R1 says that 75% of patients with gene expres-
sion values within this range are classified into Class
C3 while Partition R2 says that 75% of patients with
gene expression values within this range are classified
into Class C2. Hence, in order to have a robust gene
selection method, one has to differentiate the partitions
with different class orders because they have different
amount of information.
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Figure 1. Lorenz curves

To solve this problem, we generalized the well known
Lorenz curves, a common measure in economics to
gauge the inequalities in income and wealth. In Figure 1,
we illustrate how modified Lorenz curves and modified
Gini coefficients are calculated. The Equality Polygon
(Eq) is defined based on the percentages of elements in
|C1|, |C1..2| = |C1| + |C2|, . . ., |C1..n| =

∑n
j=1 |Cj |

at x−coordinates 0, 1/n, 2/n, . . ., 1, where n is the
number of classes and |C1| ≤ |C2| ≤, . . ., ≤ |Cn|. The
Lorenz polygon of a partition, say Ri, is defined based
on the percentage of elements in |Ci,1|, |Ci,1| + |Ci,2|,
. . .,

∑n
j=1 |Ci,j | at x−coordinates 0, 1/n, 2/n, . . ., 1.

The Gini coefficient of a partition, say Ri, is defined as
(
∫ 1
0 L(Ri) · dx-

∫ 1
0 Eq · dx)/

∫ 1
0 Eq · dx. One can easily

see that the partitions with different class orders are now
differentiated.

B. Solving the bias due to the order of gene expression
values

Another technical challenge for microarray analysis
methodologies comes from the order of discretized gene
expression values. Let’s consider another simple example

Class/
Range

C1 C2 C3

R1 3 0 0
R2 0 100 0
R3 4 0 0
R4 0 0 5

Class/
Range

C1 C2 C3

R1 3 0 0
R2 4 0 0
R3 0 100 0
R4 0 0 5

Table II
BIAS DUE TO THE ORDER OF GENE EXPRESSION VALUES

of gene-expression profiles for two genes in Table II
with three classes. The gene expression values were
discretized into four ranges. In contrast to the pre-
vious challenge, the ranges of gene-expression values
do follow some order. When this genes are ranked by
current microarray analysis methodologies, for example
by calculating the Gini index of gene A using dataset
D giniA(D) =

∑m
i=1

|Ri|
d · gini(Ri) where d = |D|,

the two genes would have the same rank. Clearly, the
gene-expression profiles on the right hand side of Table
II have a more harmonic distribution with respect to the
rows in comparison with the gene on the left. That said,
these two genes should be ranked differently.

To solve this problem, we generalized the Gini coeffi-
cients by taking into account the splitting status and the
Gini ratio. The splitting status of D with respect to the
attribute A is calculated as

splitA(D) = 1−
m∑
i=1

(
|Ri|
d

)2.

The Gini ratio of D with respect to the attribute A
is defined as LorenzGini(A) = ∆gini(A)/splitA(D),
where ∆gini(A) = gini(D)−giniA(D) and gini(D) =

1−
∑n

j=1(
|Cj |
d )2.

Furthermore, to take into account the gene expression
profiles with different value orders, the Gini coefficient
is calculated as giniA(D) =

∑m
i=1

|Ri|
d · δ(i) · gini(Ri),

where δ(i) is the sum of the normalized distances
between the row i and rows i− 1, i+ 1. The coefficient
δ(i) is used as a weight to emphasize a row when it is
close to its neighbors.



C. New Algorithm

Input: A gene-expression profiles dataset D with up
to 34,000 dimensions.

Output:A small subset of genes as genetic markers and
a prediction model for NSCLC lung cancer

Step1: Discretize the gene-expression profile values.
Step2: Select genetic markers by using the genes with

highest ranking LorenzGini.
Step3: Build the prediction model to classify patients

using the genetic markers.

A threshold can be used for controlling the number of
significant genes for genetic markers. The splitting status
of dataset D with respect to a gene A can be calculated as
a by-product when the reduction in impurity of D with
respect to the attribute A is calculated. Therefore, the
time complexity and space complexity of the algorithm
are the same as the complexities of Gini index algorithm.

Our method has been implemented in Maple and Weka
[24, 25]. In the next section, we will present our ex-
periment with a dataset of gene-expression profiles of
NSCLC from the mRNA expression profiles.

Notice that our new method works for any dataset with
≥ 2 classes. For any number of classes, even when
the number of classes is equal to 2, the new method
is completely different with other microarray analysis
methodologies.

III. EXPERIMENTATION

A. mRNA Materials

To test and validate our algorithm, we extract the gene-
expression profiles of NSCLC from the mRNA ex-
pression profiles in [26] in that a total of 203 snap-
frozen lung tumors (n=186) and normal lung (n=17)
specimens were used to create the dataset. Of these, 125
adenocarcinoma samples were associated with clinical
data and with histological slides from adjacent sections.
The 203 specimens include histologically defined lung
adenocarcinomas (n=139), squamous cell lung carcino-
mas (n=21), pulmonary carcinoids (n=20), and normal
lung (n=17) specimens. Total RNA extracted from sam-
ples was used to generate cRNA target, subsequently
hybridized to human U95A oligonucleotide probe arrays
according to standard protocols. As the result, we ob-
tained a dataset of 12,600 gene-expression profiles for
197 patients.

B. Finding genetic markers

Using the algorithm described in the previous section, we
select 250 genes with the highest LorenzGini indexes.
To further reduce the size of the gene subsets and to
improve the prediction accuracy, we evaluate different
combinations of genes to identify an optimal subset in
terms of accuracy for the Bayesian Net classification.
The gene subsets to be evaluated are generated using
different subset search techniques. We use Best First and
Greedy search methods in the forward and backward
directions. Greedy search considers changes local to
the current subset through the addition or removal of
genes. For a given parent set, a greedy search examines
all possible child subsets through either the addition or
removal of genes. The child subset that shows the highest
goodness measure then replaces the parent subset, and
the process is repeated. The process terminates when no
more improvement can be made. Best First search is
similar to greedy search in that it creates new subsets
based on the addition or removal of genes to the current
subset with the ability to backtrack along the subset
selection path to explore different possibilities when the
current path no longer shows improvement. To prevent
the search from backtracking through all possibilities in
the gene space, a limit is placed on the number of non-
improving subsets that are considered. In our evaluation
we chose a limit of five.

The algorithm returns a set of nine genes (JAG1, MET,
CDH5, ABCC3, DSP, ABCD3, PECAM1, MAPRE2
and PDF5) from the dataset of 12,600 gene-expression
profiles of NSCLC. We exploit this small set of genes
to differentiate all sub-types of NSCLC lung cancer.
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Figure 2. Accuracy of sub-classifications with standard deviations

To build the classification model, we used Bayesian Net-
work (BayesNet), which is structured as a combination



of a directed acyclic graph of nodes and links, and a
set of conditional probability tables. Nodes represent
features or classes, while links between nodes represent
the relationship between them. Conditional probability
tables determine the strength of the links. There is one
probability table for each node (feature) that defines
the probability distribution for the node given its parent
nodes. If a node has no parents the probability distribu-
tion is unconditional. If a node has one or more parents
the probability distribution is a conditional distribution,
where the probability of each feature value depends on
the values of the parents.

Figure 2 shows the averaged accuracies of the gene
expression profile classification using Bayesian Net clas-
sification together with their standard deviations. To test
the accuracy of classification models, we use k-fold cross
validation, which is a common method for estimating the
error of a model on benchmark medical data sets. The
reason for using this testing approach is that when a
model is built from training data, the error on the training
data is a rather optimistic estimate of the error rates the
model will achieve on unseen data. The aim of building a
model is usually to apply the model to new, unseen data–
we expect the model to generalize to data other than the
training data on which it was built. Another reason for
using this testing approach is that the available medical
data sets are small and no test data set is available. It
is well-known that k-fold cross-validation is very useful
for this type of data sets.

For a reliable evaluation of the accuracy, we test the
classification algorithm for many values of k. More
precisely, we test for k = 5..9. For each value of k, the
data set D is randomly divided into k subsets D1, D2 ,
. . ., Dk. We leave out one of the subsets Di, i = 1..k
each time for being used as a test data set for cross
validation. The remaining subset ∪j 6=iDj is used to build
the model. The cross validation accuracy computed for
each of the k test samples are then accumulated to give
the k-fold estimate of the cross validation accuracy. To
ease the effects of the random partitions on the data set,
this whole process is repeated 10 times with different
random seeds and the results are then averaged to give
the estimated accuracy of the comparing algorithms in
Figure 2.

During the validation process, all patients with lung
adenocarcinomas were correctly predicted, all patients
except one with squamous cell lung carcinomas were
correctly predicted, all patients with pulmonary carci-
noids were correctly predicted, and all patients with nor-
mal lung specimens were correctly predicted. The only
false prediction for random seed 1 was a patient with

squamous cell lung carcinomas but incorrectly predicted
as adenocarcinomas. As we can see, this very small set
of genes gives an almost perfect predictive accuracy for
the diagnosis of the disease. When the number of genes
is further reduced or increased, the accuracy starts to
declined. That said, this set of nine genes acts like an
inference basis for NSCLC lung carcinoma and hence
can be used as genetic markers.

C. Comparing with other gene selection methods

We now investigate the classifying accuracy of the sig-
nificant genes generated by LorenzGini with respect to
the size of the reduced microarray datasets. Comparing
with a recent publication [16] in that the author uses
currently available data mining techniques in Weka to
find biomarkers for NSCLC lung cancer, we found
that our new method finds significantly more cost-
effective genetic markers and provides more accurate
sub-classification of NSCLC lung cancer. We also com-
pare our method with SAM using the same dataset for
NSCLC lung cancer. SAM combines t-test and permu-
tations to calculate a False Discovery Rate to provide
a subset of genes that are considered significant [17].
Using SAM, we select four sets of 50, 100, 150, 200 and
250 most significant genes by using the parameter values
of 0.556. 0.458. 0.4188, 0.383 and 0.3568, respectively.

We then use the Bayesian Net classification in Weka
to check the accuracy of the most significant gene sets
generated by LorenzGini and SAM [25]. Besides our
fresh implementation of LorenzGini algorithms, simple
converters were written to connect SAM and Weka.
For a reliable evaluation of the accuracy, we test the
classification algorithm for many values of k as specified
in our validation plan.

Figure 3 shows the accuracy of the gene expression
profile classification using Bayesian Net algorithm on
SAM’s gene sets and on LorenzGini’s gene sets with 50
genes. As we can see, the classifying accuracy has been
improved with the LorenzGini’s gene selections. We also
observed that the accuracy of the gene expression profile
classification using Bayesian Net algorithm on SAM’s
gene sets declined when the number of genes is reduced
to 50 and below. In contrast, the accuracy of the gene
expression profile classification using LorenzGini’s gene
sets is stable even when the number of genes is reduced
to 9, which has the highest accuracy. This observation is
also true for other classification methods.
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Figure 3. SAM’s & LorenzGini’s gene sets classified by Bayesian
Net

IV. CONCLUSION

We presented a method that can find cost-effective
biological markers as quantifiable measurements for an
almost perfect predictive accuracy of NSCLC lung can-
cers. As cancers are complicated, one can only predict
the status using a combination of many genes. The genes
we discovered as genetic markers (JAG1, MET, CDH5,
ABCC3, DSP, ABCD3, PECAM1, MAPRE2 and PDF5)
are different with previously known results. Furthermore,
proteins encoded by some of these gene-signatures (e.g.,
JAG1 and MAPRE2) have been showed to involve in the
signal transduction of cells and proliferative control of
normal cells while specific functions of proteins encoded
by other gene-signatures have not yet been determined.
Therefore, this work opens new questions for structural
and molecular biologists about the role of these gene-
signatures for the disease.
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