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Abstract - MicroRNAs (miRNAs) are short non-coding RNA 

molecules.  MicroRNAs regulate mRNA transcript levels and 

translation.  miRNA expression is measured by microarray or 

real-time polymerase chain reaction (RT-PCR). The findings 

of RT-PCR data are limited by the normalization techniques. 

Some commonly used endogenous controls are differentially 

expressed in cancer, making them inappropriate internal 

controls. 

We show that RT-PCR data contains a systematic bias 

resulting in large variations in the Cycle Threshold (CT) 

values of the low-abundant miRNA samples. This observation 

is illustrated on a microRNA dataset obtained from primary 

cutaneous melanocytic neoplasms. We propose a new data 

normalization method that considers all available microRNAs 

as endogenous controls. A weighted normalization approach 

is utilized to allow contribution from all microRNAs, weighted 

by their empirical stability. We show that through a single 

control parameter, this method is able to emulate other 

commonly used normalization methods and thus provides a 

more general approach. 
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1 Introduction 

  MicroRNAs (miRNAs) are short non-coding RNA 

sequences that average 22 nucleotides in length [1-3].  These 

class of RNAs are distinct from other short sequence RNA 

types such as siRNA and snRNA, The first RNA of this class 

was identified in C. Elegans in 1993 [4].  However, miRNAs 

were not recognized as a special class of RNAs until a decade 

ago [5]. To date, all animal and plant species have been found 

to express miRNAs [6]. At this time approximately 1000 

miRNA sequences have been identified in the human 

microribonucleome [7].  miRNA sequences are highly 

evolutionarily conserved among mammals [4,8-12]. 

Approximately 80% of miRNA genes occur in intronic 

regions of the genome [13-14].  miRNAs are involved in 

many biological processes by influencing the regulation of 

their target genes, generally resulting in down-regulation. 

There are two postulated methods by which miRNAs act on 

their target genes.  If the miRNA binds with an mRNA 

transcript and they exhibit high complementarity, it will cause 

the degradation of the mRNA.  If the miRNA binds with 

incomplete complementarity then it causes translational 

repression of the mRNA. In plants the primary mechanism of 

action of miRNAs mRNA transcript degradation, while in 

animals, translational repression is more common [6].  An 

estimated 60% of mammalian mRNAs are targeted by one or 

more miRNAs [10, 12].  

 miRNAs have been discovered to play a role in many 

diseases and pathologies [2,10,13,15-16]. The role of 

miRNAs in cancer has been examined and several miRNAs 

have been found to regulate tumor-related genes [1-

3,10,13,17-19].  In fact, more than half of all miRNA genes 

are located in cancer-associated regions of the genome or in 

fragile sites [3,13].  As a result, therapeutic applications of 

miRNAs are being investigated.  Furthermore, due to the link 

between many miRNAs and cancer, these RNA molecules are 

being investigated as potential cancer biomarkers.  The fact 

that some miRNAs can be found extracellularly and maintain 

their stability in the extracellular environment facilitates their 

usage as biomarkers [10].  

 There are two main tools used to quantify the expression 

of miRNAs: microarrays and real-time polymerase chain 

reaction (RT-PCR).  RT-PCR returns the number of cycles 

that the samples underwent before they were detected, 

reported as a value known as the Cycle Threshold (CT).  The 

CT values vary logarithmically with expression levels.  There 

are several methods of normalizing the data and calculating 

the fold-change of each gene between samples.  For 

convenience, in this presentation miRNA and gene are used 

interchangeably in the context of RT-PCR.  ΔCT values are 

calculated by subtracting the CT value of the endogenous 

control for a given sample (or the mean of the CT values of 

the endogenous controls if more than one exist) from the CT 

value of the gene for the given sample.  In the calculation of 

ΔCT values we refer to the number subtracted from the raw 

CT values of each gene as the CT0.  The ΔΔCT is calculated 

by subtracting the ΔCT of an experimental sample from a 

control sample.  Fold change is calculated by raising 2 to the 

power of the negative ΔΔCT value, since CT values are 

related to the amount of miRNA or gene logarithmically [20].  

The relationship between CT, ΔCT, ΔΔCT, and Fold Change 

(FC) are given by the equations below. 
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 Theoretically, endogenous controls are selected because 

they have low variance in their expression levels across 

samples.  In the case of miRNAs, the endogenous controls are 

typically recommended by the manufacturer of the miRNA 

kit used in the PCR.  Some of the most commonly used 

endogenous controls are RNU44, RNU48, and U6 [17].  

However, the usage of these endogenous controls is 

problematic, because even though these endogenous controls 

have stable expression levels in normal tissue samples, they 

have been found to be differentially expressed in cancerous 

tissue compared with normal tissue [17]. 

 Directly applying this method can lead to misleading 

results if the CT values in the data are not normalized.  There 

are several commonly used methods for miRNA 

normalization, including: quantile normalization, median 

normalization, and cyclic loess.  Quantile normalization 

involves sorting the expression values of each gene in a given 

sample in order from least to greatest.  This is done for each 

sample in the study.  The vectors of the sorted CT values for 

each sample are combined into a matrix.  The mean of each 

row of the matrix is calculated.  The CT value in each 

element in each row is replaced with the mean of the entire 

row.  In the case of median quantile normalization the median 

of the row is used instead of the mean.  The CT values in each 

sample are then rearranged back into their original order.  

This causes the distribution of CT values across all samples to 

assume the same shape, which will minimize the variance 

except for that resulting from the experimental condition 

beings studied [21-22]. 

 Median normalization shifts the CT values in each 

sample such that the median CT value of each sample is the 

same.  The median of each plate should be determined, and 

the medians of all plates should be arranged in a vector and 

sorted to determine the median of the medians.  In each plate 

the difference between the median of the sample and the 

overall median should be subtracted from the CT value of 

each gene [9]. 

 In cyclic loess normalization, pairs of plates are 

considered.  For all pairs of plates the difference of the log of 

the CT for each gene is represented by M, and the average of 

each gene of the log of the expression values is represented 

by A.  Then a loess curve is fit by regression of M on A 

which results in a fitting vector F. The genes in the first 

sample are adjusted by adding half the F value corresponding 

to the log of the CT for each gene.  In the second sample half 

the F value is subtracted from the log CT of the gene [9, 21]. 

 One of the main problems with RT-PCR that remains as 

yet unaddressed by current normalization methods is the 

systematic bias present within the data.  We observe that 

standard deviation increases as CT values increase. We 

believe that the most likely cause of this observation is the 

assumption that the PCR magnification at each cycle is an 

exact doubling of the expression levels is inaccurate. There 

seems to be an accumulation of expression-level specific rate-

limiting effect. As a result, a small difference in the size of 

the initial sample being amplified causes larger variations in 

the CT values of the less abundant microRNA molecules. 

Consequently, using endogenous controls, which are usually 

chosen from highly expressed microRNAs, for normalization 

becomes inappropriate for the less-abundant microRNAs. 

One potential solution is to use the mean expression values of 

all genes in a sample as the endogenous control and calculate 

ΔCT by subtracting this mean CT value from the CT value of 

all genes on the plate.  However, this approach is not ideal 

because the mean of the entire plate is sensitive to fluctuating 

genes as well as undetected genes which have high CT 

values.  As a result, the mean-value normalization method is 

dominated by the large fluctuations of the less-abundant 

microRNAs and may cause spurious differential expression 

levels for otherwise stable microRNAs. In this study, we 

propose a method of using a weighted mean as an artificial 

endogenous control to calculate ΔCT values. The standard 

deviation of a microRNA across all samples is considered as 

a stability measure and each microRNA is weighted by its 

stability to generate the artificial endogenous control levels. 

2 Methods 

 The dataset used in this study was obtained from a 

recently deposited microRNA RT-PCR dataset in the Gene 

Expression Omnibus (GEO) [23].  The data was from a study 

by Jukic et al. that examined the difference in miRNA 

expression profiles in melanocytic neoplasms between young 

and older adults [1].  Their study examined 10 young adults 

and 10 older adults and measured the expression of 666 

microRNAs. We used the raw CT values measured in their 

data to compare different approaches to normalizing the data. 

 We have investigated several normalization methods, 

including quantile, mean, and median normalization methods, 

and endogenous controls identified using various stability 

criteria. In mean and median normalization, the mean and 

median of all of the genes in a given sample are used as the 

value for CT0. For identification of endogenous controls, we 

calculate the standard deviation of each microRNA across all 

samples, and rank them in the order of increasing standard 

deviation. The CT values of the top-k microRNAs are 

averaged in each sample to provide the CT0 values.  

 A new weighted mean metric is proposed using the 

standard deviations of the microRNAs as weights. For a given 

gene, the weighted average is calculated using the following 

equation: 
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where wmp is the weighted mean power, which can be 

adjusted to shift the dominance between stable and unstable 

microRNAs, n is the number of genes or microRNAs, and 

STD is the standard deviation.  The weighted mean 



calculation involves raising the inverse of the standard 

deviation of a given gene across all samples to the weighted 

mean power, which is usually specified as 1, and dividing by 

the sum of the inverses of the standard deviations for all 

genes.  CT0 is calculated for each sample by taking the sum of 

the product of all the raw CT values in the sample and the 

previous number. When the ΔCT is calculated the CT of each 

gene is subtracted by the above value.  This method gives a 

higher weight to genes with a lower standard deviation. 

 

3 Experiments and Results 

 In order to test the hypothesis that increasing CT values 

magnifies the natural variation between the initial amounts of 

samples loaded in each well during RT-PCR, we examined 

the standard deviation of the genes against their mean CT 

values (Fig. 1).  A linear regression fitted to this data clearly 

shows a trend of increasing standard deviation values for 

higher CT values. Note that the higher the CT value, the more 

cycles were required to observe that microRNA, hence the 

less abundant that microRNA was in the initial loaded 

sample. 

 
Fig. 1: A plot of the standard deviation vs. expression level 

fitted to a line. 

 

  As expected, the CT values of most genes are well 

correlated with the mean expression of all the genes.  This is 

illustrated Fig. 2, where we show the expression of the 20 

miRNAs that are most correlated with the mean expression. 

Each tick on the x-axis represents a unique experimental 

sample. 

Fig. 2: The 20 miRNAs most correlated with fluctuations in 

the mean expression value. 

  The correlation with the mean expression level extends 

to low-abundant miRNAs.  We demonstrate this in Fig. 3, 

wherein the Pearson correlation coefficient of the fluctuations 

in each gene with respect to its own average is shown against 

the fluctuations of the mean expression levels of all genes. 

The plot shows that a high correlation is observed whether the 

mean CT values are low or high.   

 

Fig. 3: A plot of the correlations of miRNAs with fluctuations 

in the mean miRNA CT value. 

 

Fig. 4: An example of line fitting. 

16 18 20 22 24 26 28 30 32
0.5

1

1.5

2

2.5

3

3.5

4

y=0.07x -0.56

16 18 20 22 24 26 28 30 32
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y=1.04x +5.7e-015



 

Fig. 5: A plot of the fluctuation ability versus the expression 

level. 

 

Fig. 6: A plot of the difference ratio versus the expression 

level. 

 

 In order to quantify the "response" of the microRNA 

levels to the initial loaded sample size, a regression line is 

fitted to the fluctuation of each gene against the fluctuation of 

mean expression. In Fig. 4 we demonstrated this for a single 

miRNA.  The slope of the line indicates how sensitive the 

miRNA is to initial sample size, with larger slope values 

corresponding to larger variations in response to a small 

change in sample size.  Fig 5 shows the response of each gene 

against the mean expression level of that gene. We observe 

that the response is expression level dependent. Highly 

expressed genes (those with small CT values) are less 

responsive to changes in the overall mean of the genes, 

whereas the low-abundant genes are more sensitive to the 

changes in the overall mean of the genes. Note that, this is not 

simply a random effect due to low abundant microRNAs 

being more variable, since the variation is still correlated and 

is in the same direction of the change in mean expression 

level. The same observation is made by examining the ratio of 

the fluctuations in individual genes and in the mean 

expression level (Fig. 6). 

 In conclusion, the fluctuations of the low-abundant 

miRNAs are not random. The changes in their expression 

levels are correlated well with the overall changes in all 

miRNAs, which is assumed to be due to different starting 

sample sizes for the PCR reactions. We see that there is a 

systematic bias in the CT values that causes the expression 

levels of the low-abundant miRNAs to be more sensitive to 

the initial sample sizes. 

 We then investigated the suitability of our weighted 

mean metric.  In Fig. 7 we display the values for CT0 for 
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Fig. 7: A comparison of different methods of calculating CT0. 



several different methods including using the mean of all raw 

CT values in the uppermost line (top-k = 0), the means of the 

top-k miRNAs for different values of k, and the weighted 

mean for different values for the weighted mean power.  The 

plot demonstrates that varying the weighted mean power 

enables the shifting of the curve upwards or downwards.  In 

Table 1 and Table 2, we compare the resulting means, 

standard deviations, and geNorm stability values [24] for 

mean and weighted mean normalizations, respectively.  We 

repeat analysis this for the top 10 genes, with the lowest 

standard deviation in Table 3.  We see slightly higher 

standard deviations in the weighted mean normalization 

method compared to the top-k calculations, but the weighted 

means’ CT0 are determined to be more stable by geNorm (the 

lower the value the more stable).  In Table 3, we see that the 

best individual miRNAs have a much higher standard 

deviation and are much less stable than any of the CT0 

calculations using either the top-k miRNAs or the weighted 

mean.  This indicates that it is better to use these values in the 

ΔΔCT calculation than any endogenous control. 

Table 1: Mean normalization results. 

mean normalization 

topk AVG CT STD CT geNorm 

0 25.59 0.71 0.23 

1 20.92 0.69 0.35 

2 23.2 0.64 0.21 

3 23.8 0.64 0.19 

4 22.13 0.63 0.2 

5 22.11 0.61 0.17 

6 22.79 0.6 0.18 

7 22.91 0.61 0.16 

8 23.66 0.59 0.15 

9 23.67 0.6 0.16 

10 23.61 0.61 0.16 

 

Table 2: Weighted mean normalization results. 

weighted mean normalization 

power AVG CT STD CT geNorm 

1 25.34 0.69 0.21 

3 24.82 0.67 0.18 

5 24.35 0.65 0.15 

7 23.96 0.64 0.14 

9 23.65 0.63 0.13 

11 23.41 0.62 0.12 

13 23.21 0.62 0.12 

15 23.04 0.62 0.12 

17 22.89 0.61 0.12 

19 22.76 0.61 0.13 

 

Table 3: Results for top 10 endogenous control candidates. 

miRNA AVG CT STD CT geNorm 

191 20.92 0.69 1.14 

744 25.49 0.72 1.17 

152 25 0.73 1.12 

MammU6 17.12 0.75 1.22 

92a 22.03 0.75 1.24 

29c 26.15 0.78 1.26 

186 23.69 0.78 1.17 

671-3p 28.89 0.8 1.29 

26b 23.75 0.8 1.19 

let-7d 23.07 0.8 1.16 

 

4 Conclusion 

 We explored the phenomenon whereby differences in 

the initial sample size of miRNA in an RT-PCR experiment 

were magnified with increasing CT levels.  This was 

illustrated by the strong correlation of the CT values of the 

individual miRNAs with the average CT values of all 

miRNAs and by the increased sensitivity in the CT values of 

the low-abundant miRNAs to the average CT values. We 

conclude that the systematic bias in RT-PCR exists in which 

the fluctuations in the CT are dependent on the expression 

levels of the particular miRNAs. We further proposed a 

method of addressing this bias by using the weighted mean 

instead of an endogenous control in the calculation of ΔCT.  

We demonstrated that the new normalization method 

produces lower standard deviations and is more stable than 

other methods. 

 Note that, while the power parameter in the weighted 

mean normalization method provides a convenient way of 

adjusting how much one wishes to let the less stable 

microRNAs influence the normalization of other microRNAs, 

its optimization currently requires enumeration of different 

values and using the one with the best overall stability. Other 

criteria, such as significance of the differentially expressed 

microRNAs can be utilized in this optimization. Furthermore, 

a separate custom CT0 value for each microRNAs may be 

used, such that each microRNA is normalized differently, 

dependent on its average expression level. 

 While we have observed a similar bias in other miRNA 

datasets and have found the new normalization method to 

give superior results, a large scale comparison of different 

normalization methods on multiple data sources is currently 

under way. The utility of the new normalization method in 

better correlating with microarray quantification methods and 

in better identifying significantly differentially expressed 

genes will be demonstrated elsewhere. 
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