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Abstract— Splice sites prediction is an important objective
of genome sequencing. In last years, careful attention has
been paid in order to the improve the performance of the
algorithms used, but the study of most feasible methods to
improve the performance in large and imbalanced data-sets
is still of immense importance. This paper presents a novel
SVMs classification method which works with gene data, the
proposed method reduces significantly the training time and
obtain a high accuracy on huge and imbalanced data-sets.
Experimental results show that the accuracy obtained by the
proposed algorithm is slightly better (98.9%) in comparison
with other SVMs implementations such as SMO (98.6%),
LibSVM (98.6%), and Simple SVM (98.2%). Furthermore
the proposed approach can be used in large and imbalanced
data-sets obtaining high classification accuracy.
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1. Introduction
The advances and development in DNA sequencing tech-

nologies have resulted in a impressive increase in the size
of genomic sequences. This growth of sequence data de-
mands effective techniques to processing huge amounts of
biological information. Identifying genes is an important
issue in bioinformatics, and the accurate identification of
splice sites in DNA sequences plays one of the central
roles of gene structural prediction in eukaryotic cells. An
effective detection of splice sites requires the knowledge of
characteristics, dependencies, relationship of nucleotides in
the splice site surrounding region and an effective encoding
method.

The classification of gene sequence into regions that code
for genetic material and regions that do not is a challenging
task in DNA sequence analysis. It is not an easy challenge. It
is due to size of DNA sequences and sometimes regions that
encode in proteins (exons) can be interrupted by regions that
do not encode (introns). These sequences are characterized,
however they are not clearly defined by local characteristics
at splicing sites. Identifying exons into DNA sequences
presents a computational challenge. In some organisms the
introns are small regions and the splicing sites are fully
characterized. However, in some other sequences, including

human genome, it is a great problem to localize the correct
transition between the regions that encode and the ones that
not. Furthermore, the genes in many organisms splice of
different way, which complicates considerably the task. On
the other hand, splice sites fall into two categories: donor
sites of introns and acceptor sites of introns. These sites
display some characteristic patterns, e.g. 99% of donor sites
begin with base pairs GT while 99% acceptor sites end with
based pairs AG. However, not all locations with base pairs
GT or AG are necessarily splice sites. Some occurrences
of AG or GT occur outside of a gene or inside an exon.
These are called decoys, because they do not indicate the
presence of a splice site. Furthermore, the majority of gene
data-sets are imbalanced and the bulk of classifiers generally
perform poorly on imbalanced data-sets because making the
classifier too specific may make it too sensitive to noise and
more prone to learn an erroneous hypothesis. Another factor
is that in imbalanced data-sets an instance can be treated
as noise and ignored completely by the classifier. Due to it,
efficient methods and fast techniques that aims to tackle this
problem are necessary.

In this paper, we use a novel approach for train and
predict acceptor and donor splice sites in huge and im-
balanced data-sets using Support Vector Machines (SVM).
SVM has received considerable attention due to its optimal
solution, discriminative power and performance. Lately some
SVM classification algorithms have been used in splice
site detection with acceptable accuracies [1] [2] [3] [10]
[12] [14]. Cheng et al [2] use SVMs in order to predict
mRNA polyadenylation sites [poly(A) sites] the method can
help identify genes, define gene boundaries, and elucidate
regulatory mechanisms. Damaevicius [3] and Xia [12] use
SVMs in order to detect splice-junction (intron-exon or
exon-intron) sites in DNA sequences. In [14] the authors use
a SVM in order to discover sequence information that could
be used to distinguish real exons from pseudo exons. Baten
et al. [1] make use of SVM with polynomial kernel in order
to obtain an effective detection of splice sites, the authors
used a first order Markov model as a pre-processing step of
DNA sequences. Some authors have been using SVM for
the detection of splicing sites. However, when faced SVM
with imbalanced data-sets the performance of SVM drops



significantly. Other important disadvantage of SVMs is due
to memory requirements grows with square of input data
points, so training complexity of SVMs is highly dependent
on the size of a data-set.

This paper presents a novel splice sites fast classification
model using SVM for imbalanced data-sets. The proposed
method reduces intelligently the input data-set, tackling the
problem of imbalanced data-sets with SVM and reducing
significatively the training time. The rest of the paper is or-
ganized as following: Section II reviews some preliminaries
of SVM. Section III focuses on explaining the methodology
of proposed SVM classification algorithm. Section IV shows
experimental results. Conclusions are given in Section V.

2. Preliminaries
2.1 Support Vector Machines

Support Vector Machines aim at estimating an optimal
classification function using labeled training data from Xtr

such that f will correctly classify unseen examples (test
data). In our case, input space X will contain simple
representations of sequences A,C, G, T while corresponds to
true splice and decoy sites, respectively. Considering binary
classification, we assume that a training set Xtr is given as:

(x1,y1), (x2,y2), . . . , (xn,yn) (1)

i.e. Xtr = {xi, yi}ni=1 where xi ∈ Rd and yi ∈ (+1,−1) is
the label of example xi. The generated classification function
can be written as

g(x) = sign

(
n∑

i=1

αiyiK(xi,xj) + b

)
(2)

where x = [x1, x2, . . . , xl] is the input data, αi and yi are
Lagrange multipliers. SVM training obtain a set of real-
valued weights αi ≥ 0 such the normal vector can be
expressed as a linear combination of input vectors, w =
n∑

i=1

yiαixi. Input vectors xi having non-zero weight are

called support vectors and they determine the SVM solution.
Once the SVM is trained, a new object x can be classified
using (2). The vector xi is shown only in the way of inner
product. The αis are Lagrange multipliers and b is the usual
bias which are the result of SVM training.

The principal disadvantage of SVMs is due to complexity
that grows with square of input data points. Sequential
minimal optimization (SMO) breaks the large Quadratic
Programming (QP) problem into a series of smallest possible
QP problems [9]. These small QP problems can be solved
analytically, which avoids using a time-consuming numerical
QP optimization as an inner loop. The memory required by
SMO is linear in the training set size, which allows SMO
to handle very large training sets [9]. A requirement in (3)

is
n∑

i=1

αiyi = 0, it is enforced throughout the iterations

and implies that the smallest number of multipliers can be

optimized at each step is two. At each step SMO chooses
two elements αi and αj to jointly optimize, it finds the
optimal values for these two parameters while all others
are fixed. The choice of the two points is determined by a
heuristic algorithm, the optimization of the two multipliers
is performed analytically.

2.2 Methods for imbalanced classification
The classification of imbalanced data-sets is a crucial

problem in machine learning because it normally causes neg-
ative effects on the performance of a classification method.
There are two methods to tackle this problem. At the data
level, re-sampling training data is a popular solution to
classification of imbalanced data-sets, the most important
techniques used at the data level or by preprocessing data
exist are Over-sampling and Under-sampling.

2.2.1 Over-sampling
This technique over samples the minority class to balance

the class distribution of a training data-set. Specifically, the
minority class is over sampled until the size is equal to
the size of the maximum class. Over sampling is a popular
technique tackle some imbalanced classification problems.
However in SVM increases significatively the training time.

2.2.2 Under-sampling
This technique under samples the majority class to balance

the class distribution of a training data-set. Specifically,
the majority class is under sampled until the size is equal
to the size of the minimum class. Some previous studies
showed that under sampling was better than over sampling
in classification of imbalanced data-sets. It should also noted
that under sampling usually reduces the training time but
discard some potentially useful training examples and may
degrade the performance of the classifier.

On the other hand, at the algorithmic level, weighting
training data assign a larger weight to the minority class
in order to balance the input data-set.

3. Methodology
In the following, we describe the methodology for splice

sites recognition. Given a sequence, the proposed algorithm
starts by encoding the DNA sequences. DNA encoding is
crucial to successful intron/exon prediction. The next step is
done by training SVMs on the training data and tuning their
hyperparameters on the validation data.

3.1 DNA Encoding
DNA encoding has been extensively researched in recent

years [5][8]. Each technique is based on the most important
features to be shown. Sparse encoding is a widely used
encoding schema which represents each nucleotide with 4
bits: A → 1000, C → 0100, G → 0010 and T → 0001 [7].



Suppose we have a DNA sequence of AGGCGTATGAGG.
With the sparse encoding, the sequence is represented as:
1000 | 0010 | 0010 | 0100 | 0010 | 0001 | 1000 | 0001 |
0010 | 1000 | 0010 | 0010. where | is a virtual separator
used to illustrate the example.

We use 18 additional features with the sparse encoding
schema. The first 16 components define the nucleotide pairs
into a DNA sequence, which are defined as β = {(xAA),
(xAC), (xAG), (xAT ),. . .,(xTA),(xTC),(xTG),(xTT )}.
When some nucleotide pair is in the sequence, it is marked
with 1 and an absence of this pair is marked with 0. The
DNA sequence, AGGCGTATGAGG can be encoding by
this schema as: 0 0 1 1 0 0 1 0 1 1 1 1 1 0 1 0.

The last two components correspond to the informative
function of each triples in the sequence ranked by their F -
value. For each triple, we specify its location relative (pre
and post) and its mean frequency among exons and decoys
µ+
k − µ

−
k respectively.

The F -value criterium is that used by Golub et al [6].
For each triple xk,k = 1, ..., n, we calculated the mean
µ+
k (µ

−
k ) and the standard deviation σ+

k (σ
−
k ) using positive

and negative examples. The F -value criterium is given by

F (xk) =

∣∣∣∣µ+
k − µ

−
k

σ+
k + σ−

k

∣∣∣∣ (3)

where xk is the k − esime triple, the F -value serves as a
simple heuristic for ranking the triples according to how well
they discriminate. The last point in the vector is represented
by the relative presence of each triple of nucleotides. If this
sequence AGGCGTATGAGG belong to data-set of example
1 can be encoding by this schema as: γ = {fAGG, fAGG} =
{0.231, 0.231}, where γ is computed using the F -value
criterium. The F -value is repeated because the triple AGG is
in the sequence pre and post (AGG...CGTATG... AGG).

The proposed encoding schema allows to obtain the
nucleotides of each sequence, encoding the pairs show the
importance of some pairs in the sequence, and obtain the
importance of each triple at the begin and at the end of each
sequence. The previous DNA sequence can be encoding by
the complete schema as: 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1,
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0,
0, 0, 0, 0, 1, 0, 0, 0, 1, 0 |0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1,
0, 1, 0 | 0.231, 0.231. Where | is a virtual separator which
objective is just illustrate the three techniques used. With
the proposed encoding schema SVM can use the features
and discriminate between the categories.

1000 | 0010 | 0010 | 0100 | 0010 | 0001 | 1000 | 0001 |
0010 | 1000 | 0010 | 0010.

3.2 Classification algorithm
SVM classification aim at estimating a classification func-

tion H : X → {±1} using labeled training data from
X×{±1} such that H will correctly classify unseen exam-
ples (testing data). In our case, input space X will contain

simple representations of sequences {A,C,G, T}N , while
±1 corresponds to true splice and decoy sites, respectively.

Learning with imbalanced data is one of the recent
challenges in machine learning. There are some techniques
proposed in order to find a solution for this problem, such
as the application of a preprocessing stage focused on
balancing data, in preprocessing data two tendencies exist:
reduce the set of examples (under-sampling) or replicate
minority class examples (over-sampling). Over-sampling of
minority classes can be done by re-sampling the exam-
ples from minority classes thus increasing the bias of the
learned classifier towards them and increasing the accuracy
on minority classes. Under-sampling with imbalanced data-
sets could be considered as a prototype selection procedure
which the majority class can reduce the bias of the learned
classifier towards it and thus improve the accuracy on the
minority classes. In this paper, we used under-sampling, the
selection process under-sample the majority class in order
to remove noisy and redundant training instances however
the proposed algorithm recover the most important data
points and the outliers keeping all the information in the
training data-set. Our goal in this case is to retain and
use this information, because even though under-sampling
the majority class provokes an inherent loss of valuable
information.

INPUT: XEDS

//XEDS ; Entire Imbalanced data-set
OUTPUT: Hf : {xi ∈ xEDS : xi ∈ SV s} ;
Initialization;
1. X+

r ← 0 /* training data-set with positive labels
begins empty */
2. X−

r ← 0 /* training data-set with negative labels
begins empty */
3. X+

r ← {xi ∈ xEDS : yi = +1} , i = 1, 2, ..., p;
4. X− ←
get_RandomSampling {xi ∈ xEDS : yi = −1} , i =
1, 2, ..., p;
5. Obtain outliers (O+, O−) using Algorithm 2;

6. Obtain
(
X+

f , X
−
f

)
using Algorithm 2;

7. X+
RD ←

(
X+

f ∪O+
)

;

8. X−
RD ←

(
X−

f ∪O−
)

;

9. Hf

(
X+

RD, X
−
RD

)
← trainSVM

(
X+

RD, X
−
RD

)
;

10. return Hf

(
X+

RD, X
−
RD

)
Algorithm 1: SVM training

In this paper, we propose a fast SVM algorithm to work
with imbalanced data-sets. The proposed algorithm is based
in the sparse property of SVM When using SVM for
classification, in most cases has been found that after the



training, the number of SV is very small compared with
the number of elements of the training data-set, so taking
advantage of this fact, the basic idea behind the reduction
of the training data-set strategy is to select elements most
likely to be SV. The Algorithm 1 shows the general process
to detect splices sites or decoys by our technique.

The first step in the proposed algorithm consists in ob-
tain the minority class which contains p instances, in the
imbalanced data-set and label them as positive X+

r , we also
randomly select from the entire data-set XEDS and label
them as negative X−

r .
X+

r and X−
r are used by the algorithm 2 in order to

find an introductory hyperplane H1 (X
+
r , X

−
r ), from H1 we

obtain SV, non-SV and O+ ∪O− by testing the hyperplane
obtained in the entire data-set, the data-set O+∪O− contains
all data points that are misclassified with H1 and contains
valuable information in this process. In order to obtain
the most important data points in the entire data-set we
train a SVM and obtain H2

(
X+

ch, X
−
ch

)
where X+

chandX
−
ch

represent the data points that are SV and non SV with H1

respectively. Testing H2 in the entire data-set we obtain the
most important data points and eliminate redundant training
instances.

The small size of (X+
RD, X

−
RD) contributes to speed up the

training of the proposed method. Furthermore, the reduced
data-set obtained contains the most important data points in
the entire data-set.
∩

INPUT: X+
r , X

+
r

//XTr; Training data-set
OUTPUT: X+

f , X
−
f , O

+, O−;
Initialization;
1. H1 (X

+
r , X

−
r )← trainSVM (X+

r , X
−
r );

2. SV ← get_SV (H1 (X
+
r , X

−
r );

3. nonSV ← get_nonSV (H1 (X
+
r , X

−
r );

4. X+
r ← 0 /* positive outliers or missclassified data

points with H1 are empty */ ;
5. X−

r ← 0 /* negative outliers or missclassified data
points with H1 are empty */ ;
6. O+ ∪O− ← testing_SVMH1 (X

+
r , X

−
r ) ;

7. X+
ch ← SV ;

8. X−
ch ← nonSV ;

9. H2

(
X+

ch, X
−
ch

)
← trainSVM

(
X+

ch, X
−
ch

)
;

10. (X+
f , X

−
f )← testing_SVMH2

(
X+

ch, X
−
ch

)
;

11. return X+
f , X

−
f , O

+, O−.

Algorithm 2: Proposed under-sampling algorithm

The main advantages of proposed model include a) it can
make use of the discriminative features (features which show
relevant differences between true splices sites and decoys),

reducing the influence of some irrelevant and redundant fea-
tures; b) it can work on imbalanced data-sets, the algorithm
implements an undersampling technique in order to balance
the data points and recover the most important data points in
the data-set, retain valuable information with the proposed
process; c) The training time obtained with the proposed
method is very fast in comparison with other fast SVM
implementations.

4. Experimental Results
In this section, we describe the methodology used and

show the results obtained with the proposed algorithm,

4.1 Metrics for Imbalanced Classification
In order to evaluate classifiers on highly imbalanced data-

sets, is necessary to use an adequate metric. With highly
skewed data distribution, the overall accuracy metric is not
sufficient any more. This is because with an imbalance of
99 to 1, a classifier that classifies everything negative will be
99% accurate, but it will be completely useless as a classifier
to detect rare positive samples.

The medical community, and increasingly the machine
learning community, use two metrics, the sensitivity and
the specificity, when evaluating the performance of various
tests. The sensitivity is the performance of proposed SVM to
calculate the proportion of noncoding nucleotides that have
been correctly predicted as noncoding and it is evaluated as

Sfalse
n =

TN
TN + FP

(4)

Sn is the proportion of candidate sites in the testing data-set
that have been correctly predicted and it is expressed as

Sn =
Nc

Nt
(5)

Strue
n is the proportion of coding nucleotides that have been

correctly predicted as coding, i.e.,

Strue
n =

TP
TP + FN

(6)

where TP is the number os sequences with real splice sites
which are predicted to be true (true positives), TN is the
number of sequences without real splice sites which are
predicted to be false (true negatives), FP is the number of
sequences without real splice sites which are predicted to be
true (false positives) FN is the number of sequences with real
splice sites which are predicted to be false (false negatives),
Nc is the number of exons that have been correctly predicted
in the testing data-set, and Nt is the total number of exons
sites in the testing data-set.

The receiver operator characteristic curve (ROC) analysis
describes the sensitivity and specificity of a classification
model using graphics. It is considered as an effective method
to assess the performance of a classification method. We also
used this metric to evaluate our classifier. We also list the



sensitivity and specificity separately to give the reader an
even better idea of the performance of our classifier.

4.2 Model selection
SVM training involves to fixing several parameters. The

parameters chosen have a crucial effect of the performance
of the trained classifier. To be able to apply the SVM, we
select the radial basis function (RBF) kernel function to train
the SVM. The RBF kernel function is defined as

K(xi − xj) = exp(−γ ‖xi − xj‖2), γ > 0 (7)

we have to find the complexity parameter C and γ, con-
trolling the tradeoff between training error and complexity,
and the kernel parameters. In order to identify an optimal
hyperparameter set, we applied a “grid search” on C and γ
using cross-validation.

4.3 Examples
In order to show the experimental results of the proposed

method, we use two examples. First example is a small
data-set with balance data-set, but the second example is
an imbalanced and large data-set example.

4.3.1 Example 1

We use Primate splice-junction gene sequences(DNA)
taken from Genbank64.1 (ftp site: genbank.bio.net).The
DNA data-set contains 3190 DNA sequences with 62
descriptors for each sequence, 767exon/intron bound-
aries(referred to as EI sites), 768 intron/exon bound-
aries(referred to as IE sites) and 1655 neither.

In this example, we use 80% of the input data to train the
SVM and 20% to test. The SVM was trained and evaluated
20 times, the experimental results are shown in the Table I.
It shows the experimental results obtained with the proposed
approach with the average accuracy (Acc) and the standard
deviation(SD). The results obtained with Sfalse

n , Sn and
Strue
n provide a good measure of the classifier. However,

in this case the data-set is very small, the training time is
almost the same with some SVM implementations like Sim-
pleSVM, Libsvm, Sequential Minimal Optimization(SMO),
but when the training data-set is large the training time grows
exponentially.

Table I
Genbank 64.1 data-set

Av_EI Av_IE Av_Neither
Acc 99.37 99.18 97.8
SD 0.16 0.27 0.24
Strue
n 0.99 0.98 0.97
Sfalse
n 0.99 0.98 0.97
Sn 0.99 0.99 0.97

Acc.-average accuracy, SD.- standard deviation.

0.05 0.1 0.15 0.2

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

False Positive rate(%)

T
ru

e 
P

os
iti

ve
 r

at
e 

(%
)

 

 

SMO
LibSVM
Proposed Method
SimpleSVM

Fig. 1: ROC curves of the four classifiers. The proposed
method, LibSVM, SMO and SimpleSVM.

4.3.2 Example 2
The second example is acceptor/donor

data-set which was obtained from
http://www2.fml.tuebingen.mpg.de/raetsch/projects/.
The data-set contains 91546 training data points and
75905(2132 true sites) testing data points for acceptors
and 89163 training data points and 73784(2132 true sites)
testing data points for donors. In this example we show the
difference of training time between the proposed approach
and other fast SVM implementations.

The Figure 1 shows the ROC curves obtained with the
proposed algorithm, The AUC for the proposed method,
LibSVM, SMO and SimpleSVM are 0.9894, 0.9860, 9865
and 9823 respectively. The Figure 2 shows the discriminative
power of the proposed method, in the Figure 2 are shown the
AUC of LibSVM with only the sparse encoding and the AUC
of proposed method. It is clear that, a set of highly discrimi-
native features could significantly improve the classification
accuracy. Some features were added with the purpose of
enhancing the classifier performance. Moreover, not only in
the performance measure is more robust, but also we get a
small training time as can we see in the Table II.

Table II
Acceptor data-set Donnor data-set
Algorithm t AUC t Acc
Proposed App 469 98.9 673 98.7
LIBSVM 6371 98.6 4924 98.5
SMO 123493 98.6 104525 98.4
SimpleSVM 432919 98.2 381049 98.1

# traininig data, t training time in seconds, Acc accuracy.
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Fig. 2: ROC curves of the four classifiers. The proposed
method, LibSVM, SMO and SimpleSVM.

5. Conclusions
In this paper we present a novel SVM classification

approach for large data-sets using imbalanced data-sets. In
order to reduce SVM training time for large data-sets, we
use a modified algorithm which overcomes the drawback that
only part of the original data near the support vectors are
trained. Experiments done with real world data-sets, show
that the proposed method has advantage in large data-sets.
Furthermore, not only in the training time is more robust,
but also we get much area under the ROC curve, providing
an adequate measure for the quality of the classifier. Some
features have been proposed for the classification Don-
nor/acceptor. introducing a new encoding method. However,
not all features are equally effective for the classification
task. Therefore, the careful choice of features is crucial for
building accurate splice detectors and if an appropiate system
for imbalanced data-sets is implemented, the SVM classifier
easily outperform previously proposed methods. Choosing a
set of highly discriminative features could significantly im-
prove the classification accuracy. In this work, we study the
some features with the purpose of enhancing the classifier
performance, and improve significatively the training time
used with other fast SVM implementations.
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