
Comparative Analysis of Krylov Iterative Methods in Support
Vector Machines

Matthew Freed, Joseph Collins, and Jeonghwa Lee
Department of Computer Science, Shippensburg University, Shippensburg, PA, U.S.A

Abstract— Data mining and classification is a growing
and important field in bioinformatics. Machine learning
algorithms such as support vector machines can be used with
genetic information to predict disease susceptibility. In par-
ticular, single nucleotide polymorphisms have been analyzed
to classify an individual into "sick" or "healthy" categories
for a specific genetic disorder. The most computationally
intensive part of the support vector machine algorithm
involves solving a quadratic programming problem through
the use of an iterative solver. This research examines various
iterative solving methods that are utilized within support
vector machines. In such a solver, the solution of the problem
is obtained through successively converging on an optimal
result. These solvers are analyzed based on efficiency and
the accuracy of the classification.

Keywords: Data mining, gene classification, Krylov iterative
methods, support vector machine

1. Introduction
With the development of the deoxyribonucleic acid (DNA)

microarray technique, it has become possible to gather
genetic information at lower costs [2]. The greater amount
of information available has led to an effort to apply data
mining and classification techniques to this information [11].
The end goal is to develop an algorithm that, when given
genetic information as input, can predict an individual’s
susceptibility to disease.

Single nucleotide polymorphisms (SNPs) show much
promise in this search. SNPs are single base changes of
one nucleotide in a strand of DNA. Sets of SNPs present
in a single block of DNA can be gathered together in a
genotype [4]. One method that has been used to analyze
genetic information is the support vector machine (SVM).
This classification algorithm treats each SNP genotype as a
feature vector. The SVM builds a model after reading in sets
of genotypes from individuals in the "healthy" and "sick"
categories [6].

In building the model, the SVM constructs a hyperplane
that best separates the data points into the two categories.
To do this, it solves a quadratic programming problem [6].
When dealing with genetic information, the dimensionality
of the data can be very large. There may be hundreds or thou-
sands of SNPs in each feature vector. The resulting quadratic

programming (QP) problem can be computationally inten-
sive, and not feasibly solvable with a direct solver [12].
To overcome this, iterative solvers can be used. Iterative
solvers approach a solution over many iterations to provide
an approximation. In many cases, this approximation is good
enough for practical purposes [12].

This paper is organized as follows: Section 2 gives a
concise introduction to the implementation of the SVM.
In Section 3, a selection of Krylov iterative methods are
discussed in detail. Section 4 presents the numerical results
of our experiments. Concluding remarks are made in Section
5.

2. Support Vector Machines
The SVM, first introduced by Vladimir Vapnik in 1992,

has been established as a powerful algorithmic approach to
the problem of classification, which belongs to the larger
context known as supervised learning [12]. Within this
supervised learning problem of classification, one is given a
set of training data consisting of n individual points,

D = {(xi, yi) | xi ∈ Rp, yi ∈ {−1, 1}}ni=1 , (1)

where yi may be the value of ±1, which indicates the
class for which xi belongs—either in (+1) or out (−1) of
the set that one wishes to learn to recognize [3]. Each xi

from Eq. (1) is a real vector in p-dimensions that describes
the data point. The initial goal of the SVM is to locate
the maximum margin hyperplane that divides the points
described by yi = 1 from those as yi = −1. A hyperplane
may be represented as the set of points x which satisfies the
following decision rule:

f(x) ≡ w · x− b = 0, (2)

where w is a normal vector perpendicular to the hyperplane,
and all training points with yi = 1 lie on one side of the
hyperplane, while all the training points with yi = −1 lie
on the other side [12]. SVMs aim to choose w (a normal
vector to the hyperplane) and b (some offset) to maximize
the distance between the parallel hyperplanes such that they
are as far apart as possible while still separating the data,
hence establishing f(x) as the decision rule. Using Eq. (2),
these parallel hyperplanes may be described as follows:

w · x− b = 1, (3)



and
w · x− b = −1. (4)

For training data that are linearly separable—that is, two
sets of points in p-dimensions that may be separated by
a hyperplane—one may select the two hyperplanes of the
margin in such a way that there are no points between them
and then try to maximize their distance. As one increases
the size of the margin, one must prevent data points from
falling into it. To ensure that this does not occur, one must
utilize the following constraints on Eq. (3) – (4):

w · xi + b ≥ +1 when yi = +1 (5)

and
w · xi + b ≤ −1 when yi = −1. (6)

Eq. (5) – (6) represent parallel hyperplanes that separate the
data, which—together—are referred to as the fat plane [12].
Eq (5) – (6) may be rewritten as

yi(w · xi + b) ≥ 1, for all 1 ≤ i ≤ n. (7)

Using geometry, the perpendicular distance between these
parallel hyperplanes (twice the margin) is

2×margin = 2(w ·w)−
1
2 . (8)

Utilizing Eq. (7) – (8), one may construct the fattest possible
fat plane, known as the maximum margin SVM [12], by
solving a particular problem in quadratic programming:

minimize: 1
2w ·w (9a)

subject to: yi(w · xi + b) i = 1, . . . ,m. (9b)

When arriving to the solution of Eq. (9), some of the training
data points will lie on the extreme boundaries of the fat
plane, denoted the support vectors [12]. The Krylov iterative
methods for solving this quadratic programming problem are
discussed in the following section.

3. Krylov Iterative Methods
Given a square system of n linear equations with a vector

of unknowns x, we may construct the following matrix
equation:

Ax = b, (10)

where the components of Eq. (10) may be represented as

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 , x =


x1
x2
...
xn

 , b =


b1
b2
...
bn

 .
(11)

From Eq. (11), A may then be decomposed into a diag-
onal component D and strictly lower and upper triangular
components L and U:

A = D + L + U, (12)

where the components of Eq. (12) may be represented as

D =


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

, L =


0 0 · · · 0
a21 0 · · · 0

...
...

. . .
...

an1 an2 · · · 0

,
(13a)

U =


0 a12 · · · a1n
0 0 · · · a2n
...

...
. . .

...
0 0 · · · 0

. (13b)

The system of linear equations from Eq. (10) – (13) may be
rewritten as

(D + ωL)x = ωb− [ωU + (ω − 1)D]x (14)

for a constant ω > 1 [1]. Various iterative methods exist to
solve the expression of Eq. (14).

3.1 Successive Overrelaxation Method
The successive overrelaxtion (SOR) method is derived

by extrapolating the Gauss-Seidel method [8]. This ex-
trapolation takes the form of a weighted average between
the previous iterate and the computed Gauss-Seidel iterate
successively for each component:

xi
k = ωx̄ki + (1− ω)xi

k−1, (15)

where x̄ represents a Gauss-Seidel iterate and ω is the
extrapolation factor [1].

In matrix terms, the SOR algorithm may be written as
follows:

xk = (D−ωL)−1[ωU+(1−ω)D]xk−1 +ω(D−ωL)−1b,
(16)

where the matrices D, L and U represent the diagonal,
strictly lower-triangular and strictly upper-triangular parts of
A from Eq. (13), respectively [1].

The underlying success behind SOR is to choose a value
for ω that accelerates the rate of convergence. When ω = 1,
the SOR method simplifies to the Gauss-Seidel method [1],
yet it will fail to converge if ω /∈ {0, 2} [8]. Generally
speaking, it is impossible to choose the most desirable value
for ω in advance, thus it is common to utilize the following
heuristic estimate:

ω = 2−O(h), (17)

where h is the mesh spacing of the discretization of the
underlying physical domain [1].

3.2 Quasi-Minimal Residual Method
Iterative methods often exhibit irregular convergence be-

haviors. A related algorithm, known as the quasi-minimal
residual (QMR) method [5], attempts to overcome this
problem. The underlying idea behind this algorithm is to



solve the reduced tridiagonal system in a least squares sense.
QMR also uses look-ahead techniques to avoid breakdowns
in its Lanczos process, which makes it more robust than
SOR [1].

3.3 Biconjugate Gradient Method
The biconjugate gradient (BiCG) method [9] is commonly

used in solving systems of linear equations. It is a general-
ized form of the conjugate gradient method, in that it can
be applied to matrices that are non-symmetric. To formulate
the biconjugate gradient method as an iterative method, it is
necessary to use a metric at each iteration to determine if
the approximation vector x is closer to the solution x∗. It
has been shown that this solution is also the minimizer for
the quadratic function [13]:

f(x) = 1
2x

TAx− xTb, x ∈ Rn. (18)

Therefore, as Eq. (18) is smaller than the previous iteration,
the value of x is closer to the solution. Starting with an initial
guess x0, the gradient of the function will be Ax0 − b. If
x0 is assumed to start at 0, the first basis vector p1 will
equal b. Each of the other vectors in the basis is conjugate
to the gradient of the function.

The error at each iteration is measured as the residual.
This residual is defined as

rk = b−Axk. (19)

In calculating the basis vectors at each step, this residual
from Eq. (19) is taken into account in order to move the
approximation towards the solution. The value of x therefore
is updated during each iteration to

x = x+ α× p, (20)

where α is based on the residual divided by A× p.
The resulting algorithm involves two matrix vector prod-

ucts, including one transpose product. This is the major
computational cost of the biconjugate gradient method [10].

3.4 Biconjugate Gradient Stabilized Method
The biconjugate gradient stabilized (BiCGSTAB)

method [14] is a variation of the biconjugate gradient and
conjugate gradient squared (CGS) methods. BiCGSTAB
makes several improvements, most importantly in that it
stabilizes the algorithm. CGS relies on the squaring of the
residual, which can result in rounding errors that affect
the approximation in greater amounts at each iteration.
As a result, the convergence pattern may be irregular.
BiCGSTAB smooths this convergence by updating the way
the approximation x is determined at each step:

x = x+ α× p+ ω × s. (21)

Here, ω from Eq. (21) is a scaling factor that allows the
distance that the approximation changes to vary. Larger steps
may be taken during iterations, which assists in speeding up

convergence. The stabilizer s is what allows for a smoother
convergence. It is based on the residual and the matrix:

s = r − αA× p. (22)

Eq. (22) results in avoiding the irregular convergence that is
associated with BiCG. Further, there is no transpose involved
in this algorithm, which is often desirable for solving certain
matrices [13].

4. Numerical Results
The dataset used with the SVM was taken from publicly

available genetic information. It is derived from the 616
kilobase region on Chromosome 5q31 [4]. Within this re-
gion may contain the genetic variation that is responsible
for Crohn’s disease [3]. The data contains a total of 103
genotyped single nucleotide polymorphisms for each of the
387 genotypes. Of this, 144 of them are case and 243 are
control.

The SVM package chosen was the Mangasarian-Musicant
variation due to its brevity [12]. Each of the genotypes was
treated as a feature vector and read as input to the SVM. The
kernel function increased the dimensionality of the dataset
using a linear kernel. Half of the genotypes were used as
the training set. During the solving of the SVM, each of the
four different iterative solvers was used to solve the quadratic
programming portion. The other half of the genotypes was
then classified using the training data. Table 1 shows the
resulting data that was collected.

For each of the solvers, we measured the efficiency of the
solver as well as the accuracy of the classification resulting
from the solution. The number of iterations each solver took
to converge as well as the time it took can be considered
a measure of its efficiency. For the classification, a simple
accuracy measurement consisting of the percent of genotypes
correctly classified. The sensitivity and specificity of the
data was also taken. The sensitivity is the proportion of
individuals who have the disease and are correctly identified
as such. The specificity is the proportion of individuals who
do not have the disease and are correctly identified.

All of the solvers except QMR were able to achieve con-
vergence within the maximum number of iterations. QMR
terminated after 43 iterations as a result of a breakdown in
the gamma variable. However, it still was able to produce a
viable classification. The QMR algorithm is not as robust as
some of the other methods, and the algorithm failed on this
particular matrix.

Out of the four solvers, BiCG was the most accurate,
correctly placing 64.1% of the SNPs into the proper category.
The classification of BiCGSTAB was similar with a 62.1%
accuracy. SOR and QMR both resulted in classifications with
60.2% accuracies. The accuracies of each of the solvers were
relatively similar. Further, the results were comparable to the
same dataset used with other SVM packages. In particular,



Table 1: Classification results of the QP solvers
Solver Iterations Solve Time (sec) Accuracy (%) Specificity (%) Sensitivity (%)
SOR 60 0.0500 60.2 51.9 68.6
QMR 43 0.0050 60.2 51.9 68.6
BiCG 149 0.0020 64.1 61.5 66.7

BiCGSTAB 63 0.0012 62.1 53.8 70.5

Fig. 1. Convergence history of the SOR solver Fig. 2. Convergence history of the QMR solver

Fig. 3. Convergence history of the BiCG solver Fig. 4. Convergence history of the BiCGSTAB solver

the commonly used SVM-Light package resulted in 62%
accuracy [7].

The convergence histories of the solvers can be seen in
Figures 1–4. The failure of the QMR method can be seen
as no change in the residual. SOR converges slower than
BiCG and BiCGSTAB. These two solvers quickly reached
a low residual value, and then slowly converged within the
tolerance. The stabilizing effect of the BiCGSTAB algorithm
over the BiCG can clearly be seen. The convergence history
of BiCG is erratic, with many increases in the residual. The
BiCGSTAB smooths this, resulting in a much more stable
convergence.

In terms of time, BiCGSTAB was clearly the most effi-

cient solver, converging in 0.0012s. Of note is that not all
times correlated with the number of iterations. For example,
SOR iterated a similar number of times as BiCGSTAB.
However, each iteration took a greater amount of time, and as
a result took longer to converge. The BiCG took the greatest
number of iterations. The time per iteration was smaller than
QMR and SOR, and as a result converged in less time.

5. Conclusion
Support vector machines can be applied confidently to

the problem of classification of genetic data. As more and
more genetic information becomes available, classification
algorithms such as the SVM can be used to make useful



models based on the data. With the addition of sophisticated
iterative methods, an accurate solution can be achieved in
less time.

The numerical results demonstrate the efficiency of var-
ious iterative solvers. As can be seen with the failure of
QMR, certain methods may not be applicable with certain
matrices. The BiCGSTAB provided a model with high
classification accuracy. It is also the most efficient of the
methods examined in terms of time. Overall, the results
suggest that BiCGSTAB is a robust algorithm that is a good
choice for solving large quadratic programming problems.
This experiment may assist researchers in selecting an iter-
ative method when dealing with data mining using genetic
information.

References
[1] Barrett, R., Berry, M., Chan, T. F,; Demmel, J., Donato, J., Dongarra, J.,

Eijkhout, V., Pozo, R., Romine, C. & van der Vorst, H., Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods,
2nd ed. Society for Industrial and Applied Mathematics, Philadelphia,
PA, (1994).

[2] Caron, L., Bell, J., Association Study Designs for Complex Diseases,
Nature Reviews: Genetics, 91–98, (2001).

[3] Cortest, C. & Vapnik, V., Support-Vector Networks, Machine Learning,
Vol. 20, No. 3, 273–297, (1995).

[4] Daly, M., Rioux, J., Schaffner, S., Hudson, T. & Lander, E., High Res-
olution Haplotype Structure in the Human Genome, Nature Genetics,
Vol. 29, 229–232, (2001).

[5] Freund, R. & Nachtigal, N., QMR: A Quasi-Minimal Residual Method
for Non-Hermitian Linear Systems, Numer. Math., Vol. 60, 315-339,
(1991).

[6] Guyon, I., Weston, J., Barnhill, S., Gene Selection for Cancer Classi-
fication using Support Vector Machines, Machine Learning, 389–422,
(2002).

[7] Joachims, T. Making Large Scale SVM Learning Practical. Advances
in Kernel Methods – Support Vector Learning, MIT (1999).

[8] Kahan, W., Gauss-Seidel Methods of Solving Large Systems of Linear
Equations, Ph.D. Thesis, Toronto, Canada, University of Toronto,
(1958).

[9] Lanczos, C., Solution of Systems of Linear Equations by Minimzed
Iterations, J. Research National Bureau Standards, Vol. 49, 33–53,
(1952).

[10] Lee, J., Zhang, J. & Lu, C., Performance of Preconditioned Krylov
Iterative Methods for Solving Hybrid Integral Equations in Electro-
magnetics, Journal of Applied Computational Electromagnetics Society,
Vol. 18, No. 4, 54–61, (2003).

[11] Mao, W., Lee, J., A Combinatorial Analysis of Genetic Data for
Crohn’s Disease, Journal of Biomedical Science and Engineering, 52–
58, (2008).

[12] Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B.
P., Numerical Recipes: The Art of Scientific Computing, 3rd ed.,
Cambridge University Press, Cambridge, (2007).

[13] Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd ed.,
Society for Industrial and Applied Mathematics, (2003).

[14] van der Vorst, H., Bi-CGSTAB: A Fast and Smoothly Converging
Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems,
SIAM J. Sci. Stat. Comput., Vol. 13, 631–644, (1992).


