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Abstract— Liquid water has rich thermodynamic behavior
over a range of temperatures and pressures[1]. Models
of water used in protein folding simulations must be fast
and reflect the underlying hydrogen bond network accu-
rately. Although greatly simplified, current models of water
can account for more then 99% of the CPU time during
numerical simulations[2]. Current models assume simple
additivity of free energy which is incorrect over coupled
degrees of freedom[3], [4] - and in the liquid state all of
the water is coupled. A novel statistical mechanical model
of water is presented encapsulating the essential nonadditive
free energies without recourse to computationally expensive
techniques.
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1. Introduction
Liquid water is a system of great significance for the

study of biomolecules[5], [6]. Although pure liquid water
is a poor analog of the aqueous environments found in cells,
in nature, it is nonetheless widely used in both experiment
and numerical simulation. Even simple models of water are
computationally expensive with orders of magnitude more
CPU time spent on the water rather then the biomolecule
itself, in typical simulations[2]. Typically one to a few
layers of molecules are modeled around the biomolecule and
beyond that bulk water is described with a continuum model.
The water molecules are modeled as a set of points, with
fixed distances between each, and interact with one another
and with the biomolecule by a set of energy functions[7],
[8]. Among other, simplified, models of water are treating
water as two dimensional disks[9] and the Mercedes-Benz
model[10]. Simple models, such as the Ising model in mag-
netism, assist fundamental understanding without employing
complex or computationally expensive mathematics.

The first step in many models of liquid water for use with
biomolecules is to model pure water and reproduce physical
properties of liquid water[7], [8]. For the purposes of this
work, the density and specific heat of liquid water over a
broad range of temperatures and pressures is employed.

Instead of using continuous energy functions, a new model
where the bond between adjacent molecules can be classified
in one of a discrete set of states is presented. The character of
each bond is given by an average length, energy and entropy.
Further model parameters employed give rise to long range
interactions: (A) a strain energy parameter which adds a

small energy term if two parallel bonds across a single unit
cell are of dissimilar length and (B) an extra bond entropy
term which adds extra entropy to atoms which more then
one high-entropy bond adjoining them.

Specific heat at constant pressure, cp, and density, ρ,
are computed by standard statistical methods[11] from the
partition function. An average value, x, such as the average
energy E, required above, or the average bond length from
which the density can be computed, is found via a sum
over all states i as follows:

x =
Σxi exp (−Gi/kBT )

Σ exp (−Gi/kBT )
, (1)

where kB is Boltzmann’s constant and T is the temperature.
The Gibbs free energy, Gi, is detailed below.

To compute the specific heat at constant pressure, the
average energy of the system is found via Eq. 1, above,
and the appropriate derivitive is taken at fixed pressure as
follows:

cp =
∂E

∂T

∣∣∣∣
p

. (2)

However, the complete sum over all states of the system is
daunting for even modest size systems: the number of states
is 3N . Most of these states are highly unfavorable. Further,
most are very similar to a very large number of other states.
For small systems, the exact results of sums over all states
is compared with approximations of summing over all types
of states, as detailed below and checked for consistency.

Having three bond lengths implies the oxygen to oxygen
distance distribution would be a collection of delta func-
tions. However, these should be regarded as the centroids
of gaussian-like distributions of possible bond lengths. To
illustrate this, using the Heisenberg uncertainty relation with
the equipartition of energy, it is possible to estimate a lower
limit on the size of the width of such gaussians, in angstroms,
as a function of temperature. At room temperature, 300
Kelvin, this is about 0.05 angstrom, which is about six times
smaller then the experimental width of the nearest neighbor
peak of the oxygen-oxygen distribution function[12], [13].
The details of this calculation are reproduced in appendix
A, below.

2. Contributions to the Free Energy
The Gibbs Free Energy of some state i of the system is

given by, Gi = Ei + PVi − TSi, where E is the energy, P



the pressure, T the temperature, V the volume, and S the
entropy. The energy, volume and entropy of the states are
adjustable model parameters of each type of bond modeled,
thus for three states nine parameters are required. However
the zero of both energy and entropy are arbitrary, reducing
the number of parameters to seven.

The three states are referred to as short, medium and long
in this article, reflecting the rank ordering of their bond
length parameters. The short bond has the lowest entropy
and energy and the long bond has the highest. Thus the low
temperature anomalies of water[14] are not studied currently
within this model, since that would require one or more extra
states which violate these rules. The goal of this work is to
show that most of the temperature and pressure phase space
can be modeled well with a limited model.

In addition to straightforward local statistical mechanics,
in which only energy and entropy are required, long range
interactions are invoked to model strain energy and the local-
ization of bonds by neighbors. These are termed nonadditive
interactions as they are extra terms on top of the regular
summation of energy and entropies. The two terms lead to
quite different effects.

The first is the strain energy for parallel mismatched
bonds. A small energy penalty is added to the state energy
Ei, for each mismatched pair of bonds.

To give all bonds a physical location, all bonds are placed
in an idealized hexagonal lattice and neighboring bonds, and
the six nearest parallel bonds, are identified for each. This
exercise was carried out by hand for 128 atoms in a 4x4x8
lattice and used to construct computer code which identifies
neighboring bonds and parallel bonds for lattices of arbitrary
size. Periodic boundary conditions are employed.

The second term is the extra bond entropy. A small
entropy term is added when two or more non-ground state
bonds meet at an oxygen atom. Six parameters are employed
to account for two, three or four of either the medium
or long bonds meeting at an oxygen. What about mixed
states? A long bond can be treated as a medium bond if
it will increase the extra bond entropy. For example, if
one short, one medium and two long bonds meet at an
oxygen, the larger of the extra bond entropy due to two
long or three medium bonds will be used. In future work, a
single parameter controlling the strength of these interactions
will be employed from which all possible combinations of
bond entropies will be derived. There is no unique way to
determine such a parameter and many possibilities are being
considered. Further, due to the tiny magnitudes of some of
these parameters, they may be dropped altogether and only
four, or perhaps three or four, higher entropy bonds meeting
at an oxygen will warrent consideration for extra bond
entropy. However, this is of great interest when increasing
the number of states, or generalizing this model in any way.
For the moment, only rank ordering of the six parameters
is enforced such that: the extra bond entropy must increase

as the number of non-ground state bonds increases and (b)
the extra bond entropy is greater for an equal number of
long bonds over medium bonds. The total number of free
parameters is 14, although as will be seen below, some of
these parameters are quite tiny - four orders of magnitude
smaller then the bond entropies.

3. Scaling the System
Even for the 128 atom system described above (256

bonds) the number of terms in the partition function is
3256 ≈ 10122. Since this would take longer then the age of
the universe to compute on all CPUs in existence, some kind
of approximation must be made. First a very small system
was created, a six atom oxygen ring with 18 bonds for
which the partition function could be computed exactly and
compared with various methods of sampling. The method
arrived at is to sample each combination of numbers of
short, medium and long bonds some large number of times,
weighing each triplet of numbers (e.g. the number of short,
medium, long bonds) by the appropriate multinomial coeffi-
cient. This is checked to ensure the two results are consistent
and then the sampling algorithm is scaled to the larger
systems. All possible triplets of number of types of bonds
are sampled, although for large enough systems, sampling
over various fractions of each could replace the numbers
(1% short bonds, 3% medium bonds and 96% long bonds
would be a sampled state instead of, say, 2 short 4 medium
and 250 long bonds, for example).

4. Results
Three different pressures are considered, 0.013 MPa, 400

MPa and 1000 MPa. The lowest and highest pressures avail-
able from a thorough set of experiments[1] were employed
and the middle number was chosen such that the density of
the 400 MPa data should fall about half way between the
two extremes. With only the three states considered and the
fourteen adjustable parameters, excellent agreement to either
density or specific heat and adequate fits to the other physical
property are possible. In the data below, the closer fit is to
density, as seen in Fig. 2 below. The excellent agreement
with density across temperature and pressure is superior to
the results of the TIP-5p model[7]. The TIP-5p model, along
with the SPC/E[8] model are the most commonly employed
models for molecular dynamics[7].

The effect of introducing the extra bond entropy and the
strain is to improve the goodness of fit (chi-squared) by
a factor of 3.5 - despite many of the extra bond entropy
parameters being very small, see Table 1 below.

5. Conclusions
A simple three state model of liquid water yields excellent

agreement with experimental density measurements, and
adequate agreement with experimental specific heat data
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Fig. 1: Number of long, medium and short bonds at medium
(400 MPa) pressure as a function of temperature. Note the
crossover from a plurality of short to medium bonds at a
temperature near 350 K. At higher pressure, the short bond
state is more highly favored, with both the medium and
long bonds suppressed. At low pressure, the longer bond is
significantly more favored at the expense of the short bond,
with about equal propensity for medium length bonds.

over a broad range of temperatures (273-373 kelvin) and
pressures (0.013 MPa - 1000 MPa). The model employs two
novel nonadditive terms: a (generally small) extra entropy
term added at the intersection of multiple high-entropy bonds
and a strain energy term for mismatched parallel bonds.
Despite some terms being small, these nonadditive terms
improve the goodness of fit by a factor of three and a half.

6. Future Work
A study of physical properties of small molecules in water

shall be employed to determine similar parameters for a
small set (as small as possible) between water and various
atoms of biological relevance. Such a set of parameters
would then be employed to model the water around and
between proteins for the purposes of protein folding, drug
design and docking. By replacing traditional means, either
the run-time of simulations can be greatly reduced or the
quantity of water modeled around proteins greatly increased.
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Fig. 2: Density in units of kilograms per cubic meter versus
temperature in kelvin for liquid water at three pressures: low
(0.013 MPa), medium (400 MPa) and high (1000 MPa). The
higher pressure result in correspondingly higher densities.
At each pressure, the density is nearly linear in temperature
with a small negative slope. The calculated values are
represented by squares (at low pressure), upright triangles
(at medium pressure) and left pointing triangles (at high
pressure). Agreement is within the size of the symbols at
high and medium pressure and only slight differences exist
at the lowest pressure, the largest of which is an 0.5%
difference at the lowest temperature.

8. Appendix A
The Heisenberg uncertainty relation is that the product

of the uncertainties in position and momentum must exceed
half the rationalized Plank’s constant. Applying this to the
axis of the bond, for convenience labeled the x-axis, gives:

∆x∆px > ~/2. (3)

The x-momentum is the product of mass times velocity
(since any velocity here is far below the speed of light
thus relativistic effects are negligible). All that is needed
is a relation between momentum and position to give a
lower bound on the uncertainty in position. There is a
relation in energy, but to employ it, a specific form of
potential (binding) energy is required. For this purpose,
an approximation is introduced: that the bond acts like a
single harmonic oscillator and thus the potential energy is
given by 1

2kx
2, where k is the spring constant and x is

the displacement from equilibrium position. More complex
relations such as the Lennard-Jones (6-12) potential can be
considered, but these are well approximated by a harmonic
oscillator when the energy is far below the dissociation
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Fig. 3: Specific heat at constant pressure of liquid water in
units of joules per gram-kelvin versus temperature in kelvin
for three different pressures: low (0.013 MPa), medium (400
MPa) and high (1000 MPa). With only three states, the
calculated data reflects the correct magnitudes in specific
heat but is unable to account for the more abrupt changes at
low temperature.

energy, which should be the case in question (liquid water
at room temperature).

The equipartition of energy theorem requires each the
degree of freedom to have the same energy as given below:

1

2
kBT =

p2x
2m

=
1

2
kx2. (4)

Combining these relations by setting ∆x = x and ∆px =
px, we find:

x >
~

2(mkBT )0.5
(5)

and

k2 < kBT/~. (6)

Plugging in known values at room temperature, the mini-
mum value of x is about 0.05 angstroms, which is about six
times smaller then the experimental width from the radial
distribution function. It is worth noting that for a single,
isolated harmonic oscillator, the wavefunctions can be found
exactly along with the uncertainties in both position and
momentum. In that case, equality in the Heisenberg relation
holds, meaning the wavefunctions are the “tightest” possible.
It is not surprising that a fluid cannot be modeled as a
collection of isolated single harmonic oscillators.

Table 1: Model parameters for short, medium and long bonds
of liquid water. All enthalpies, ∆H , have units of kcal/mol
and all entropies are dimensionless “pure” entropies (to pro-
duce entropies in the proper units, these values need only be
multiplied by Boltzmann’s constant in the appropriate units).
The bond lengths, < x >, are in angstroms and the extra
bond entropies xbs, are also unitless. The energy, entropy of
the short bond is set to zero without loss of generality[11].
The subscript of the extra bond entropy parameter denotes
the number of such bonds meeting at a particular oxygen
atom. The strain energy is 2.22×10−4 kcal/mol-K. Although
fourteen free parameters are employed, three of the six extra
bond entropy parameters are very small - three or four orders
of magnitude less then the typical change in entropy from
state to state of a single bond.

Parameter long medium short

∆H 3.25e-3 6.21e-4 0
∆S 4.47e-3 2.89e-3 0
< x > 3.37 3.01 2.71
xbs2 7.32e-7 6.83e-7 0
xbs3 3.84e-5 5.36e-6 0
xbs4 1.51e-4 1.83e-5 0
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