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Abstract - Clustering is a key process in data mining for 
revealing structure and patterns in data. Fuzzy C-means 
(FCM) is a popular algorithm using a partitioning 
approach for clustering. One advantage of FCM is that it 
converges rapidly. In addition, using fuzzy sets to represent 
the degrees of cluster membership of each data point 
provides more information regarding relationships within 
the data than do alternative approaches that use crisp 
clustering. However, a limitation of FCM is that it requires 
initial specification of the number of clusters and 
subsequent validation of this number. Here, we propose a 
Bayesian method for fuzzy clustering validation using the 
fuzzy partition. We show that this method outperforms 
popular fuzzy cluster indices on both artificial and real 
biological datasets. 

Availability: The supplementary documents and the 
method software are at http://ouray.ucdenver.edu/~tnle/fzble. 
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1 Introduction 
Cluster analysis groups data points based on their similar 

properties and can help to discover patterns and correlations 
in large datasets. Successful clustering maximizes both the 
compactness of data points within a cluster and the 
discrimination between clusters. Fuzzy C-Means (FCM, 
Bezdek 1981) is a popular algorithm that uses a partitioning 
approach with fuzzy cluster boundaries and fuzzy sets that 
associate each data point with one or more clusters. An 
advantage of FCM is that it converges rapidly, however, 
like most partitioning clustering algorithms, it depends 
strongly on the initial parameters and requires estimation of 
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the number of clusters. While for some initial values, FCM 
may converge to a global optimum, for others, it may get 
stuck in a local optimum. In addition, during the clustering 
process, the optimization of the compactness and separation 
of a fuzzy partition may be inconsistent with the optimal 
number of clusters in the dataset. For these reasons, final 
clustering results require validation to assess how good the 
fuzzy partition is, if better fuzzy partitions exist, and, when 
not known a priori, the optimal number of clusters in the 
dataset. 

Several cluster validity index functions have been 
proposed. Bezdek [1] measured performance using partition 
entropy and the overlap of adjacent clusters. Fukuyama and 
Sugeno [2] combined the FCM objective function with the 
separation factor, while Xie and Beni [3], integrated the 
Bezdek index [1] with the cluster separation factor. Rezaee 
et al. [4] combined the compactness and separation factors, 
and Pakhira et al. [5] combined the same two factors where 
the separation factor was normalized. Recently, Rezaee [6] 
proposed a new cluster index in which the two factors are 
normalized across the range of possible numbers of clusters. 

Here, we propose a fuzzy clustering cluster index that 
uses the fuzzy partition and the distance matrix between 
cluster centers and data points. Instead of compactness and 
separation, our cluster index is based on a Bayesian model 
and a log-likelihood estimator. With the use of both the 
possibility model and the probability model to represent the 
data distribution, our method is appropriate for artificial 
data where the distribution follows a standard model, as 
well as for real datasets, in particular, gene expression data, 
that lack a standard distribution. We show that our method 
outperforms popular cluster indices on both artificial and 
biological datasets. 

2 Fuzzy C-Means and popular cluster 
indices 

2.1 Fuzzy C-Means algorithm 

Fuzzy C-Means (FCM) is an unsupervised clustering 
algorithm that has been applied successfully to numerous 
problems involving feature analysis. Its applications include 
biological data analysis, in particular, gene expression data. 



Given a dataset X = {xi  Rp, i=1..n}, where n>0 is the 
number of data points and p>0 is the dimension of the data 
space of X, let c, cN, 2 c n, be the number of clusters in 
X. Denote V={vkRp, k=1..c} as the set of center points of 
c clusters in the fuzzy partition; U={uki[0,1], i=1..n, 
k=1..c} as the partition matrix, where uki is the membership 
degree of the data point xi to the kth cluster, and 
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The clustering problem is to determine the values of c and 
V such that: 
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where ||x-y|| is the distance between the data points x and y 
in Rp, defined using Euclidean distance as: 
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By using fuzzy sets to assign data points to clusters, FCM 
allows adjacent clusters to overlap. It thus provides more 
information on the relationships of data points. In addition, 
by using a fuzzifier factor, m, 1≤m<, in its objective 
function (4), the clustering model from FCM is more 
flexible in changing the overlap regions among clusters. 
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The following is a solution of (4) with respect to (1): 
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FCM uses an iteration process to estimate the solution of 
(5) and (6). This process is iterated until convergent where 

u>0, T > 0: t>T, 
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Or, v>0, T > 0: t>T, 
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While FCM can converge quickly, it is unable to 
determine the optimal number of clusters in the dataset. 

2.2 Cluster validation indices 

(i) To determine if the fuzzy partition is valid, traditional 
cluster indices use two criteria, compactness, which 
measures the closeness of cluster elements typically 
using the variance. Because variance indicates how 
different the members are, a low value of variance is an 
indicator of closeness, and (ii) 

(ii) Separation, which computes the “distance” between 
two different clusters, e.g., the distance between 
representative objects of two clusters. This measure has 
been widely used due to its computational efficiency 
and its effectiveness for hyper sphere-shaped clusters. 

2.2.1 PC index 

The partition coefficient (PC) index was proposed by 
Bezdek [1] as in (9). It indicates the average relative 
amount of shared membership between pairs of fuzzy 
subsets in U, by combining into a single number, the 
average content of pairs of fuzzy algebraic products. The 
index values range from [1/c, 1].  
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An optimal cluster number c can be found by	solving,  
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2.2.2 PE index 

The partition entropy (PE) index was proposed by Bezdek 
[1] as  
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where a is the base of the logarithm. According to [1], the 
limitation of the PE can be attributed to its apparent 
monotonicity and to an extent, to the heuristic nature of the 
rationale underlying its formulation. An optimal cluster 
number c can be found by solving VPEmin. 

2.2.3 FS index 

The Fukuyama-Sugeno cluster index (FS) was proposed 
by Fukuyama and Sugeno [2] as  
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where, cvv
c

1k k 
 . An optimal number of clusters can 

be found by solving VFSmin. 



2.2.4 XB index 

The XB index was proposed by Xie and Beni as in (12). 
The numerator indicates the compactness of the fuzzy 
partition, while the denominator indicates the strength of 
the separation between clusters. A good partition produces a 
small value for the compactness, and well-separated {vi} 
will produce a high value for the separation. An optimal c 
therefore is found by solving VXBmin. 
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2.2.5 CWB index 

The Compose Within and Between scattering (CWB) 
index was proposed by Rezaee et al. [4]. 
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where α is a weighting factor equal to Dis(cmax). The 
average scatter is defined as 
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where Dmin = mink,l||vk-vl|| and Dmax = maxk,l||vk-vl||. The 
Scat() function indicates the average of the scattering 
variation within the clusters. A small value for this term 
indicates a compact partition. The Dis() function indicates 
the total scattering separation between the clusters, it is 
influenced by the geometry of the cluster centroids and 
increases with the number of clusters. An optimal number 
of clusters c is found by solving VCWBmin. 

2.2.6 PBMF index 

The PBMF index is a fuzzy version of the PBM index 
proposed by Pakhira, Bandyopadhyay and Maulik [5] as 
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where Dc = maxk,l||vk – vl||. The value of VPBMF decreases as 
the number of clusters c increases. An optimal number of 
clusters can be found by solving VPBMFmax. 

2.2.7 BR index 

The cluster index of Rezaee B. (BR) [6] uses both the 
compactness and separation criteria normalized across 
clustering partitions using possible numbers of clusters in a 
given range. The index is defined as 
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where )u,umin()v,v:x(S likilki  ,  
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Because VBR is a sum of compactness and separation 
factors, the smaller it is, the better the fuzzy partition is. An 
optimal number of clusters c therefore can be found by 
solving VBR min. 

3 The proposed validation method 

3.1 The proposed validation method (fzBLE) 

Instead of compactness and separation factors, we 
propose a validation method (fzBLE) that is based on a log 
likelihood estimator with a fuzzy based Bayesian model. 
Each fuzzy clustering solution is modeled with  = {U, V}, 
where V represents the cluster centers and, U is the partition 
matrix representing the membership degrees of the data 
points to the clusters. The likelihood of the clustering model 
and the data is measured as 
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The log likelihood estimator is then computed as 
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An optimal number of clusters is obtained by solving (21). 



3.2 Possibility to probability transformation 

Because our clustering model is possibility-based, before 
applying equations (20) and (21), a transformation of 
possibility to probability is needed. Given a fuzzy clustering 
model  = {U, V}, according to [7], uki is the possibility 
that vk = xi. If  is a proper fuzzy partition, then there exists 
some x* such that Uk(x

*) = 1, k=1..c, and Uk is a normal 
possibility distribution. Assume Pk is the probability 
distribution of vk on X where pk1 ≥  pk2 ≥ pk3 ≥… ≥ pkn. We 
associate with Pk a possibility distribution Uk on X [7] such 
that uki is the possibility of xi where  
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Reversing (22), we obtain the transformation of a 
possibility distribution to a probability distribution. Assume 
that Uk is ordered the same way with Pk on X: uk1 ≥ uk2 ≥ 
uk3 ≥…≥ ukn. 
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Pk is an approximate probability distribution of vk on X, 
and pki = P(xi|vk). If Uk is a normal possibility distribution 
then pki = 1. 

3.3 Data distributions 

Using the value of Pk, we can estimate the variance k, 
the prior probability P(vk) and the normal distribution of vk.  
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In real datasets, for a cluster vk, the data points usually 
come from different random distributions. Because they 
cluster in vk, they tend to follow the normal distribution 
estimated as in (26). This idea is based on the Central Limit 
Theorem. We therefore integrate the probabilities computed 
in (23) and (26) for the probability of the data point xi given 
cluster vk as 

  .)v|x(P),v|x(Pmax)v|x(P kinkiki
*   (27) 

Equation (27) better represents the data distribution, 
particularly in real datasets. The fzBLE method is based on 
(21) with (25) and (27). 

3.4 fzBLE and FCM combination 

fzBLE can be used with the standard FCM algorithm to 
search for the optimal number of clusters for a dataset using 
a cluster range. 

 Input: 
 The data to cluster X={xi}, i=1..n 
 Cluster range [cmin, cmax] 

 Output: An optimal fuzzy partition solution, 
 copt: Optimal number of clusters 
 V = {vi }, i =1..c: Cluster centers 
 U={uki}, i=1..n, k=1..c: Partition matrix 

Steps 
1. Set copt = cmin 
2. For each value of c in [cmin, cmax] 

 Generate a fuzzy partition using FCM 
 Validate the partition using fzBLE 
 If the current partition is better than the 

optimal one then, set copt = c  
3. Return { copt, U, V} an optimal solution. 

 

4 Experimental results 
To evaluate fzBLE, we generated 84 artificial datasets 

using the method in [8]. Datasets are distinguished by the 
dimensions and cluster number, and we generated (3-
2+1)*(9-3+1)=14 dataset types. For each type, we 
generated 6 datasets, for a total of 6*14=84. For real 
datasets, we used the Iris, Wine and Glass datasets from the 
UC Irvine Machine Learning Repository [9], and the gene 
expression datasets, Yeast [13], Yeast-MIPS [14, 15] and 
RCNS [10]. These datasets contain classification 
information, useful for comparing cluster indices. We 
compared performance of fzBLE with the cluster indices 
from PC, PE, FS, XB, CWR, PBMF and BR [1-6]. The 
compactness factor (CF) of the FCM algorithm is also 
recorded in the results. 

4.1 Artificial datasets 

For each artificial dataset, we ran the standard FCM 
algorithm five times with m set to 2.0 and the partition 
matrix initialized randomly. In each case, the best fuzzy 
partition was then selected to run fzBLE and the other 
cluster indices to search for the optimal number of clusters 
between 2-12 and to compare this with the known number 
of clusters. We repeated the experiment 20 times and 
averaged the performance of each method. Table 1 shows 
the fraction of correct predictions. fzBLE and PBMF 
outperform other approaches, while CF is the least 
effective. 



Table 1 

Fraction of correct cluster predictions on artificial datasets 

#c fzble PC PE FS XB CWB PBMF BR CF 
3 1.00 0.42 0.42 0.42 0.42 1.00 1.00 0.83 0.00 
4 1.00 0.92 0.92 0.92 0.83 1.00 1.00 1.00 0.00 
5 1.00 0.75 0.75 0.83 0.75 0.83 1.00 1.00 0.00 
6 1.00 0.92 0.83 0.92 0.58 0.58 1.00 0.92 0.00 
7 1.00 0.83 0.83 0.83 0.67 0.58 1.00 0.67 0.00 
8 1.00 1.00 0.92 1.00 0.92 0.67 1.00 0.83 0.00 
9 1.00 0.92 0.67 0.92 0.67 0.33 1.00 0.83 0.00 

Table 2 

Validation method performance on the Iris dataset 

#c fzble PC PE FS XB CWB PBMF BR CF 
2 -763.0965 0.9554 0.0977 -10.6467 0.0203 177.1838 12.3280 1.1910 0.9420 
3 -762.8034 0.8522 0.2732 -9.3369 0.1292 213.4392 17.7131 1.0382 0.3632 
4 -764.8687 0.7616 0.4381 -7.4821 0.2508 613.2656 14.4981 1.1344 0.2665 
5 -770.2670 0.6930 0.5703 -8.2331 0.3473 783.4697 13.6101 1.0465 0.1977 
6 -773.6223 0.6549 0.6702 -7.3202 0.2805 904.3365 12.3695 1.0612 0.1542 
7 -774.4740 0.6155 0.7530 -6.8508 0.2245 1029.7342 11.2850 0.9246 0.1262 
8 -774.8463 0.6000 0.8111 -6.9273 0.3546 1635.3593 10.5320 0.8692 0.1072 
9 -780.1901 0.5865 0.8556 -6.6474 0.3147 1831.5705 9.9357 0.7653 0.0905 

10 -781.7951 0.5765 0.8991 -6.0251 0.2829 2080.3339 9.3580 0.7076 0.0787 

Table 3 

Validation method performance on the Wine dataset 

#c fzble PC PE FS XB CWB PBMF BR CF 
2 -926.4540 0.9264 0.1235 -113.0951 0.1786 3.9100 1.3996 2.0000 61.1350 
3 -924.0916 0.8977 0.1764 -104.9060 0.2154 3.2981 0.9316 1.4199 39.3986 
4 -932.8377 0.8607 0.2525 -139.9144 0.5295 6.6108 0.6306 1.1983 33.7059 
5 -929.6146 0.8225 0.3281 -126.5746 0.5028 6.9001 0.4700 1.0401 28.4741 
6 -928.8121 0.8066 0.3669 -118.4715 0.6173 9.2558 0.3706 0.9111 25.3451 
7 -930.6451 0.7988 0.3874 -120.3128 0.6465 10.3803 0.2972 0.7629 23.1742 
8 -932.0462 0.7993 0.3917 -124.7999 0.6459 11.0836 0.2471 0.6392 21.4411 
9 -932.1902 0.7929 0.4120 -122.8396 0.6367 11.8373 0.2100 0.5801 19.9154 

10 -935.0478 0.7909 0.4217 -130.9089 0.6270 11.9941 0.1773 0.5252 18.9891 

Table 4 

Validation method performance on the Glass dataset  

#c fzble PC PE FS XB CWB PBMF BR CF 
2 -1135.6886 0.8884 0.1776 0.3700 0.7222 6538.9311 0.3732 1.9817 0.5782 
3 -1127.6854 0.8386 0.2747 0.1081 0.7817 4410.3006 0.4821 1.5004 0.4150 
4 -1119.2457 0.8625 0.2515 -0.0630 0.6917 3266.5876 0.4463 1.0455 0.3354 
5 -1123.2826 0.8577 0.2698 -0.1978 0.6450 2878.8912 0.4610 0.8380 0.2818 
6 -1113.8339 0.8004 0.3865 -0.2050 1.4944 5001.1752 0.3400 0.8371 0.2430 
7 -1116.5724 0.8183 0.3650 -0.2834 1.3802 5109.6082 0.3891 0.6914 0.2214 
8 -1127.2626 0.8190 0.3637 -0.3948 1.4904 7172.2250 0.6065 0.5916 0.2108 
9 -1117.7484 0.8119 0.3925 -0.3583 1.7503 8148.7667 0.3225 0.5634 0.1887 

10 -1122.1585 0.8161 0.3852 -0.4214 1.7821 9439.3785 0.3909 0.4926 0.1758 
11 -1121.9848 0.8259 0.3689 -0.4305 1.6260 9826.4211 0.3265 0.4470 0.1704 
12 -1135.0453 0.8325 0.3555 -0.5183 1.4213 11318.4879 0.5317 0.3949 0.1591 
13 -1138.9462 0.8317 0.3556 -0.5816 1.4918 14316.7592 0.6243 0.3544 0.1472 



Table 5 

Validation method performance on the Yeast dataset 

#c fzble PC PE FS XB CWB PBMF BR CF 
2 -2289.8269 0.9275 0.1172 -85.1435 0.2060 8.3660 1.2138 2.0000 133.0734 
3 -2296.4502 0.9419 0.0983 -157.2825 0.2099 4.7637 0.6894 1.0470 94.6589 
4 -2305.3369 0.9437 0.1000 -191.7664 0.2175 4.0639 0.5575 0.7240 74.7629 
5 -2289.3070 0.9087 0.1648 -187.1073 1.0473 13.6838 0.4087 0.6722 65.9119 
6 -2296.3098 0.8945 0.1939 -196.6711 0.9932 13.8624 0.3050 0.6170 60.8480 
7 -2296.6017 0.8759 0.2299 -198.2858 1.0558 15.4911 0.2434 0.5686 56.1525 
8 -2299.4225 0.8634 0.2526 -201.7688 1.0994 16.9644 0.2050 0.5132 51.2865 
9 -2299.3653 0.8453 0.2871 -205.1489 1.2340 20.2532 0.1741 0.4819 48.0737 

10 -2302.7581 0.8413 0.2992 -208.5687 1.1947 20.7818 0.1512 0.4533 45.9442 
11 -2300.3294 0.8325 0.3186 -209.4023 1.1731 21.1525 0.1307 0.4272 43.6600 
12 -2307.5701 0.8290 0.3272 -213.4658 1.2245 23.0389 0.1157 0.4040 42.1594 
13 -2310.7819 0.8270 0.3354 -215.2463 1.3036 25.4062 0.1016 0.3847 40.8654 

Table 6 

Validation method performance on the YEAST-MIPS dataset 

#c fzble PC PE FS XB CWB PBMF BR CF 
2 -1316.4936 0.9000 0.1625 25.4302 0.3527 16.7630 0.7155 1.9978 81.0848 
3 -1317.3751 0.9092 0.1615 -32.8476 0.2981 10.1546 0.8032 1.2476 58.2557 
4 -1304.0374 0.8216 0.3252 -39.4858 2.5297 39.8434 0.5400 1.3218 48.6275 
5 -1308.6776 0.8279 0.3216 -54.4979 2.4245 34.9963 0.3620 0.9558 41.9671 
6 -1309.9191 0.8211 0.3460 -59.8918 2.3511 35.4533 0.2691 0.8291 38.5468 
7 -1315.3692 0.8139 0.3654 -65.4866 2.3562 38.8797 0.2423 0.7252 36.0906 
8 -1315.1479 0.8062 0.3918 -67.6774 2.4958 43.9502 0.1966 0.6712 34.1387 
9 -1321.2280 0.8109 0.3874 -72.3197 2.2854 41.2112 0.1664 0.6072 32.3289 

10 -1324.1578 0.8158 0.3847 -74.7867 2.0433 37.6154 0.1395 0.5588 30.9686 

Table 7 

Validation method performance on the RCNS dataset 

#c fzble PC PE FS XB CWB PBMF BR CF 
2 -580.0728 0.9942 0.0121 -568.7972 0.0594 5.5107 4.2087 1.1107 177.8094 
3 -564.1986 0.9430 0.0942 -487.6104 0.4877 4.1309 4.2839 1.6634 117.9632 
4 -561.0169 0.9142 0.1470 -430.4863 0.9245 6.1224 3.3723 1.3184 99.1409 
5 -561.7420 0.8900 0.1941 -397.0935 1.3006 9.4770 2.6071 1.1669 88.5963 
6 -552.9153 0.8695 0.2387 -300.6564 2.5231 20.6496 1.9499 1.1026 84.0905 
7 -556.2905 0.8707 0.2386 -468.3121 2.1422 21.0187 2.8692 0.7875 57.5159 
8 -555.3507 0.8925 0.2078 -462.0673 1.7245 20.0113 2.5323 0.5894 52.0348 
9 -558.8686 0.8863 0.2192 -512.4278 1.6208 22.4772 2.6041 0.5019 45.9214 

10 -565.8360 0.8847 0.2241 -644.1451 1.1897 21.9932 3.4949 0.3918 33.1378 

4.2 Real datasets 

The Iris, Wine and Glass datasets contain 3, 3 and 6 
clusters, respectively. For the Iris dataset, only fzBLE and 
PBMF detected the correct number of clusters (Table 2). For 
the Wine and Glass datasets, only fzBLE and CWB, and 
only fzBLE, respectively, detected the correct number of 
clusters (Tables 3 and 4). 

4.3 Biological datasets  

4.3.1 Yeast 

The Yeast dataset [13] reports expression levels of yeast 
genes throughout two cell cycles at 17 time points spaced at 
10-minute intervals. Each of the 384 differentially 
expressed genes was labeled with one of the five cell cycle 
phases where their expression changed. We ran the FCM 
algorithm with m set to 1.17 [12] and used the clustering 
partition to test all methods as in previous sections. Table 5 
shows that only fzBLE detected the correct number of 
clusters (5) in Yeast dataset. 



4.3.2 Yeast-MIPS 

The Yeast-MIPS dataset [14] is a subset of the Yeast 
dataset [14]. It contains 237 genes belonging to four 
functional categories: DNA synthesis and replication, 
organization of centrosome, nitrogen and sulphur 
metabolism, and ribosomal proteins [15]. We ran the FCM 
algorithm using the same parameters as with Yeast dataset. 
The results in Table 6 show that only fzBLE detected the 
four clusters in the Yeast-MIPS dataset. 

4.3.3 RCNS 

The RCNS (Rat Central Nervous System) dataset 
contains expression levels of 112 genes measured at nine 
time points during rat central nervous system development 
[10]. Wen et al. [11] preprocessed the dataset using a 
normalization method and scaling across adjacent axises to 
generate a 112x17 dataset so that Euclidean distance can be 
applied. The FITCH software was used to detect 6 clusters 
with biological relevance. Dembélé and Kastner [12] used 
the FCM algorithm varying the number of clusters and 
reported that 6 is the optimal number. We ran fzBLE and 
the other cluster indices on the dataset clustering partition 
found by the standard FCM algorithm using the Euclidean 
metric for distance measurement. Table 7 shows that again 
only fzBLE detected the correct number of clusters. 

5 Conclusions 
We have presented a novel method, fzBLE to evaluate 

results of fuzzy partitioning by the standard FCM 
algorithm. fzBLE is novel in that it uses the log likelihood 
estimator with a Bayesian model and the possibility, rather 
than the probability, distribution model of the dataset from 
the fuzzy partition. By using the Central Limit Theorem, 
fzBLE effectively represents distributions in real datasets. 
Results have shown that fzBLE performs effectively on 
both artificial and real datasets. In future work, we will 
integrate this method with optimization algorithms, to 
develop new clustering algorithms that can effectively 
support clustering analysis on real datasets. 
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