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Abstract - In this paper, a novel GPU accelerated scheme for 
the PK-means gene clustering algorithm is proposed. 
According to the native particle-pair structure of the PK-
means algorithm, a fragment shader program is tailor-made 
to process a pair of particles in one pass for the computation-
intensive portion. As the output channel of a fragment 
consisting of 4 floating-point values is fully utilized, overhead 
for each data points in searching for its nearest centroid 
throughout the particle-pair is reduced. Experimental 
evaluations on three popular gene expression datasets show 
that the proposed GPU accelerated scheme can attain an 
order of magnitude speedup as compared with the original 
PK-means algorithm. 
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1 Introduction 
  Nowadays, gene clustering has attracted more and more 
attentions as the advancement of the technologies both in 
microarray [1] and computing. Microarray technology allows 
producing gene expression data in lower cost and monitoring 
large amount of data simultaneously for whole genome 
though a single chip only [2]. There is a huge of gene 
expression data produced in laboratory. To study the 
interactions among thousands of genes in the massive data 
sets, cluster analysis is the first and important step. An 
efficient cluster analysis is required to rapidly extract useful 
information from the raw data. Later advanced processing can 
be done further, such as protein structure prediction, 
biological network modeling, by using some natural 
computing [3].  

 There are numerous methods developed for clustering in 
the past [4-7], and among them K-means, with its simplicity 
and effectiveness, is perhaps the most popular one. However, 
due to its sensitivity to the initial condition, it is easy to get 
trapped in local optimal. To overcome this problem, recently 
a new clustering algorithm, known as PK-means, is proposed 
[8], which merges K-Means with the particle swarm 
optimization (PSO) [9, 10] algorithm. Experimental 
evaluation shows that it can reach better clustering results. 
However, its computation time is rather long, especially for 
large dimensional dataset. The bottleneck lies in the operation 
of K-means, which is a basic part of PK-means.  

 To overcome this problem, we propose to introduce the 
graphics process units (GPU), with its powerful stream 
processing units, to perform the tedious K-means operation. 
As the PK-means is working on particle-pairs, each particle-
pair is packed together and fit to the programmable graphics 
pipeline [11] in GPU, where the two particles are together 
evaluated within a single fragment program. With the output 
channel of each fragment fully utilized, overhead for each 
data point in searching for its nearest centroid throughout the 
particle-pair is reduced. Organization of this paper is listed as 
follows. Section 2 gives a brief review of the PK-means 
algorithm. In section 3, we describe GPU accelerated scheme 
for PK-means. This is followed by the experimental 
evaluation on the proposed method in Section 4. Finally, a 
conclusion summarizing the essential findings is drawn in 
Section 5. 

2 The PK-means clustering algorithm 
 The PK-means clustering method is the integration of 
the particle-pair optimizer (PPO) [12] and the well-known K-
means. The former is a variation of the traditional particle 
swarm optimization (PSO) algorithm, while introducing a 
smaller swarm size based on particle pairs. For the clustering 
problem, a particle’s position is a set of K cluster centroids, 
each of which is a D-dimensional vector, i.e., 

 ( )Knininini xxxX ,,2,,1,,, ,,,= ,      (1) 

where n is the iteration number. The velocity vector of this 
particle towards its next position is denoted by 

( ) ( )ninininni XGbestrCXprCwVV ,22,,111, −+−+=+ ,  (2) 

where w  is the inertia weight; nip ,  is the best position for 

the particle ‘i’ recorded so far; Gbest  represents the 
globally best position for the whole swarm throughout history; 

1C  and 2C are called acceleration factors; 1r  and 2r are two 
random numbers within [0,1) . With the velocity vector 
available, the particle updates its position by 

1,,1, ++ += ninini VXX .        (3) 



 To begin with, an initial swarm of four randomly 
generated particles is created and partitioned into two 
particle-pairs: {P1, P2} and {P3, P4}, as shown in Fig 1. 
Each particle pair evolves independently. Particles in each 
pair update their positions and velocity according to Eqs. (2) 
and (3), and perform K-means to update and evaluate its 
fitness. After a certain number of iterations, two particles 
(denoted as EP1 and EP2) with the better fitness values in 
their respective particle-pair are selected and combined 
together to form an elitist particle-pair {EP1, EP2}. The latter 
will continue to evolve and finally the particle EP3 with a 
better fitness value as the winner of {EP1, EP2} will 
represent the final solution. 
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Fig 1. The evolution model of the Particle-Pair 
Optimizer. 

 

3 The proposed GPU scheme for PK-
means clustering 

3.1 Overview of the GPU accelerated PK- 
means 

 The majority of computational cost in the PK-means 
algorithm lies in the operations of K-means for each particle-
pair, and hence becomes the bottleneck of the algorithm. In 
view of this, we propose to convert this tedious step into a 
programmable graphics pipeline, where the Cg fragment 
shader program is tailor-made to perform the K-means 
operations for each particle-pair. An overview of the 
integration of GPU and PK-means algorithm is depicted in 
Fig. 2, where the building block “GPU accelerated K-means 
for particle-pair”, performing K-means for two particles, will 
be explained in detail in next subsection. 
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Fig 2. Overview of GPU accelerated PK-means 

 

3.2 Fragment shader program based GPU 
Implementation of K-means for particle-
pair 

 In the proposed GPU accelerated scheme, membership 
assignment for the particle-pair is conducted in the GPU 
while particle-pair updates (centroids updates) and the Mean 
Squared Error (MSE) calculation are carried out in the CPU. 
Fig. 3 gives the architecture of the GPU accelerated scheme. 

 Due to the large dimensionality of datasets we are 
dealing with (e.g. 77 for the Yeast cell-cycle data), both the 
data vectors and the particle-pair (each particle containing a 
set of K centriods) are stored in GPU textures, serving as 
look-up tables in the fragment shader program. Since a 
texture can store four single precision floating-point values 
(RGBA) per texel, a D-dimensional vector occupies ⎡ ⎤D/4  
texels.  

 In the fragment shader program, each data vector is 
addressed by each fragment, and a pair of its nearest centroids 
is found in the two particles, respectively. Consequently, a 
pair of clustering memberships (each consisting of the ID of 
the nearest centroid and the nearest distance) is formed and 
rendered to the render texture. The latter is then downloaded 
to the CPU side where the particle-pair is updated and the 
MSEs are computed. Next round of iteration will be triggered 
from the CPU and the shader program repeats until a certain 
number of iterations has elapsed. Table 1 gives the Cg codes 
and Table 2 lists the notations for the fragment shader 
program. 
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Fig 3. Overview of GPU accelerated K-means for 
particle-pair 

 

Table 2 Notations for the fragment shader program in 
Table 1 

Variable Description 

w Equal to ⎡ ⎤D/4 . 
srctex Texture holding the data vectors. 

booktex Texture holding the centroids. 

index.y The index of a vector in the data set. 

codebook_size Number of clusters/centroids. 

minIndex1, 

minIndex2 
The two IDs of the nearest centroid in 
the particle-pair, respectively. 

mindist1, 

mindist2 

Distances of a vector to its nearest 
centroids in the particle-pair, 
respectively. 

memberships 

A pair of clustering memberships, 
each consisting of the ID of the 
nearest centroid and the nearest 
distance. 

 

 

Table 1 Fragment shader program - forming a pair of 
clustering memberships of the particle-pair for each data 
vector 
#define num_of_centroids 256 
#define FLT_MAX 3.402823466e+38F  
 
void cgKMeans( 

float2 index: TEXCOORD0, 
uniform samplerRECT srctex, 
uniform samplerRECT booktex, 
out float4 memberships: COLOR0  

){ 
  float mindist1, distance1, mindist2, distance2; 
  float4 dn, dt; 
  int i, k, minIndex1, minIndex2;  
  minIndex1=minIndex2=-1; 
  mindist2=mindist1=FLT_MAX; 
 
  for ( k=0; k<num_of_centroids; k++)  
{    

      distance2=distance1=0;     
for ( i=0; i<w; i++ ) // for all dimensions in a vector  
{  
    // position of the data vector 

dn=texRECT(srctex,  
float2(i+(index.x-0.5)*w+0.5, index.y ) );  
 

// distance to the k-th centroid in particle 1 
dt= dn - texRECT( booktex, float2(i+0.5, k+0.5) ); 
distance1 += dot(dt, dt);  
 
// distance to the k-th centroid in particle 2 
dt= dn - texRECT( booktex, 

float2(i+0.5, k+num_of_centroids+0.5) ); 
distance2 +=dot(dt, dt);  

      } 
 
      if ( distance1<mindist1 ) // for particle 1 

{ 
          mindist1=distance1;  //minimum distance 

minIndex1=k;  // ID of the nearest centroid 
      } 
      if ( distance2<mindist2 ) // for particle 2 

{  
          mindist2=distance2;  
          minIndex2=k;  
      }  
} 

 
// output the pair of clustering memberships 
memberships=float4 (minIndex1, mindist1, 

minIndex2, mindist2); 
} 

 

 



4 Experimental evaluation 
 The proposed scheme is evaluated with three popular 
gene expression datasets: Yeast cell-cycle [13] with 77 
dimensions, Lymphoma [14] with 96 dimensions and 
Sporulation [15] with 7 dimensions. They have over 5 
thousands, 4 thousands and 6 thousands of genes, 
respectively. 

 Performance of the GPU accelerated PK-means method 
is compared against the same PK-means algorithm 
implemented without GPU (referred to as the parent scheme). 
Both methods are applied to cluster each of the dataset into 
256 clusters. To obtain reliable statistics, a total of 10 
repeated trials for the three datasets are conducted. All the 
evaluations are based on the CPU (Intel Core2 Duo E6550 
2.33GHz) and GPU (NVIDIA GTX260). The results of 
average computation time (in second) taken to reach 
convergence for both methods, are listed in Table 3. It can be 
seen that the GPU accelerated PK-means is at least 11 times 
faster than the parent scheme, and for the lower-dimensional 
dataset (i.e. Sporulation), over 20 times’ speedup can be 
noted.  

Table 3. Average computation time for the parent 
scheme and proposed scheme (Speed-up ratio: time of 
parent scheme / time of proposed GPU scheme) 

Gene dataset Scheme Time 
(Sec) 

Speed-up 
ratio  

Parent scheme 78.6 Yeast cell-
cycle GPU scheme 7.0 

11.2 

Parent scheme 68.4 
Lymphoma GPU scheme 6.0 

11.4 

Parent scheme 16.7 
Sporulation GPU scheme 0.8 

20.5 

 

5 Conclusions 
 Gene cluster analysis plays an important role in 
discovering the function of gene. K-means is one of the well-
known clustering methods for its simplicity and effectiveness. 
However, due to its sensitivity to the initial clustering, it is 
prone to be trapped in a local minimum. Recently, an 
enhanced clustering method, known as PK-means, which 
incorporates K-means with the particle swam optimization is 
developed. Despites its success in finding better clustering 
results, the process is usually too time-consuming. The 
bottleneck lies in the K-means operation which is a basic 
portion of PK-means. To address the shortcoming, this paper 
proposes a novel GPU accelerated scheme for the PK-means 
algorithm. Based on the particle-pair structure of PK-means, 

each particle-pair is packed together and fit to a tailor-made 
fragment shader program, where a pair of clustering 
membership is formed for the particle-pair and then sent to 
the entire output channel of each fragment. As the latter is 
fully utilized, overhead is reduced. Experimental evaluation 
on three gene expression datasets reveals that the proposed 
GPU accelerated scheme can attain an order of magnitude 
speedup as compared with the parent scheme. 
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