
GPU Accelerated PK-means Algorithm for Gene
Clustering

Wuchao Situ, Yau-King Lam, Yi Xiao, P.W.M. Tsang, and Chi-Sing Leung

Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China

Abstract - In this paper, a novel GPU accelerated scheme for
the PK-means gene clustering algorithm is proposed.
According to the native particle-pair structure of the PK-
means algorithm, a fragment shader program is tailor-made
to process a pair of particles in one pass for the computation-
intensive portion. As the output channel of a fragment
consisting of 4 floating-point values is fully utilized, overhead
for each data points in searching for its nearest centroid
throughout the particle-pair is reduced. Experimental
evaluations on three popular gene expression datasets show
that the proposed GPU accelerated scheme can attain an
order of magnitude speedup as compared with the original
PK-means algorithm.

Keywords: Gene clustering, K-Means, PK-means, GPU

1 Introduction
 Nowadays, gene clustering has attracted more and more
attentions as the advancement of the technologies both in
microarray [1] and computing. Microarray technology allows
producing gene expression data in lower cost and monitoring
large amount of data simultaneously for whole genome
though a single chip only [2]. There is a huge of gene
expression data produced in laboratory. To study the
interactions among thousands of genes in the massive data
sets, cluster analysis is the first and important step. An
efficient cluster analysis is required to rapidly extract useful
information from the raw data. Later advanced processing can
be done further, such as protein structure prediction,
biological network modeling, by using some natural
computing [3].

 There are numerous methods developed for clustering in
the past [4-7], and among them K-means, with its simplicity
and effectiveness, is perhaps the most popular one. However,
due to its sensitivity to the initial condition, it is easy to get
trapped in local optimal. To overcome this problem, recently
a new clustering algorithm, known as PK-means, is proposed
[8], which merges K-Means with the particle swarm
optimization (PSO) [9, 10] algorithm. Experimental
evaluation shows that it can reach better clustering results.
However, its computation time is rather long, especially for
large dimensional dataset. The bottleneck lies in the operation
of K-means, which is a basic part of PK-means.

 To overcome this problem, we propose to introduce the
graphics process units (GPU), with its powerful stream
processing units, to perform the tedious K-means operation.
As the PK-means is working on particle-pairs, each particle-
pair is packed together and fit to the programmable graphics
pipeline [11] in GPU, where the two particles are together
evaluated within a single fragment program. With the output
channel of each fragment fully utilized, overhead for each
data point in searching for its nearest centroid throughout the
particle-pair is reduced. Organization of this paper is listed as
follows. Section 2 gives a brief review of the PK-means
algorithm. In section 3, we describe GPU accelerated scheme
for PK-means. This is followed by the experimental
evaluation on the proposed method in Section 4. Finally, a
conclusion summarizing the essential findings is drawn in
Section 5.

2 The PK-means clustering algorithm
 The PK-means clustering method is the integration of
the particle-pair optimizer (PPO) [12] and the well-known K-
means. The former is a variation of the traditional particle
swarm optimization (PSO) algorithm, while introducing a
smaller swarm size based on particle pairs. For the clustering
problem, a particle’s position is a set of K cluster centroids,
each of which is a D-dimensional vector, i.e.,

 ()Knininini xxxX ,,2,,1,,, ,,,= , (1)

where n is the iteration number. The velocity vector of this
particle towards its next position is denoted by

() ()ninininni XGbestrCXprCwVV ,22,,111, −+−+=+ , (2)

where w is the inertia weight; nip , is the best position for

the particle ‘i’ recorded so far; Gbest represents the
globally best position for the whole swarm throughout history;

1C and 2C are called acceleration factors; 1r and 2r are two
random numbers within [0,1) . With the velocity vector
available, the particle updates its position by

1,,1, ++ += ninini VXX . (3)

 To begin with, an initial swarm of four randomly
generated particles is created and partitioned into two
particle-pairs: {P1, P2} and {P3, P4}, as shown in Fig 1.
Each particle pair evolves independently. Particles in each
pair update their positions and velocity according to Eqs. (2)
and (3), and perform K-means to update and evaluate its
fitness. After a certain number of iterations, two particles
(denoted as EP1 and EP2) with the better fitness values in
their respective particle-pair are selected and combined
together to form an elitist particle-pair {EP1, EP2}. The latter
will continue to evolve and finally the particle EP3 with a
better fitness value as the winner of {EP1, EP2} will
represent the final solution.

P1 P2 P3 P4

EP1 EP2

EP3

two initial particle pairs

elitist particle pairs

: particle

Fig 1. The evolution model of the Particle-Pair
Optimizer.

3 The proposed GPU scheme for PK-
means clustering

3.1 Overview of the GPU accelerated PK-
means

 The majority of computational cost in the PK-means
algorithm lies in the operations of K-means for each particle-
pair, and hence becomes the bottleneck of the algorithm. In
view of this, we propose to convert this tedious step into a
programmable graphics pipeline, where the Cg fragment
shader program is tailor-made to perform the K-means
operations for each particle-pair. An overview of the
integration of GPU and PK-means algorithm is depicted in
Fig. 2, where the building block “GPU accelerated K-means
for particle-pair”, performing K-means for two particles, will
be explained in detail in next subsection.

Swarm{P1, P2}

PSO Operation

GPU accelerated K-means
for particle-pair

GPU accelerated K-means
for particle-pair

PSO Operation

GPU accelerated K-means
for particle-pair

Swarm{P2, P3}

PSO Operation

P1 P2 P3 P4

P1 P2 P4P3

EP1 EP2

EP3

EP2EP1

Fig 2. Overview of GPU accelerated PK-means

3.2 Fragment shader program based GPU
Implementation of K-means for particle-
pair

 In the proposed GPU accelerated scheme, membership
assignment for the particle-pair is conducted in the GPU
while particle-pair updates (centroids updates) and the Mean
Squared Error (MSE) calculation are carried out in the CPU.
Fig. 3 gives the architecture of the GPU accelerated scheme.

 Due to the large dimensionality of datasets we are
dealing with (e.g. 77 for the Yeast cell-cycle data), both the
data vectors and the particle-pair (each particle containing a
set of K centriods) are stored in GPU textures, serving as
look-up tables in the fragment shader program. Since a
texture can store four single precision floating-point values
(RGBA) per texel, a D-dimensional vector occupies ⎡ ⎤D/4
texels.

 In the fragment shader program, each data vector is
addressed by each fragment, and a pair of its nearest centroids
is found in the two particles, respectively. Consequently, a
pair of clustering memberships (each consisting of the ID of
the nearest centroid and the nearest distance) is formed and
rendered to the render texture. The latter is then downloaded
to the CPU side where the particle-pair is updated and the
MSEs are computed. Next round of iteration will be triggered
from the CPU and the shader program repeats until a certain
number of iterations has elapsed. Table 1 gives the Cg codes
and Table 2 lists the notations for the fragment shader
program.

Prepare
texture maps

Update
centroids and

calculate
MSEs for

particle-pair

Texture 2:
Holding

particle-pair
containing
two sets of
centroids

Texture 1:
Holding
the data
vectors

Fragment
shader:

Find the nearest
centriods (the ID

and nearest
distance) from

the two particles,
respectively, for
each data vector

Render
texture:

Holding a pair
of clustering
memberships

GPUCPU

Fig 3. Overview of GPU accelerated K-means for
particle-pair

Table 2 Notations for the fragment shader program in
Table 1

Variable Description

w Equal to ⎡ ⎤D/4 .
srctex Texture holding the data vectors.

booktex Texture holding the centroids.

index.y The index of a vector in the data set.

codebook_size Number of clusters/centroids.

minIndex1,

minIndex2
The two IDs of the nearest centroid in
the particle-pair, respectively.

mindist1,

mindist2

Distances of a vector to its nearest
centroids in the particle-pair,
respectively.

memberships

A pair of clustering memberships,
each consisting of the ID of the
nearest centroid and the nearest
distance.

Table 1 Fragment shader program - forming a pair of
clustering memberships of the particle-pair for each data
vector
#define num_of_centroids 256
#define FLT_MAX 3.402823466e+38F

void cgKMeans(

float2 index: TEXCOORD0,
uniform samplerRECT srctex,
uniform samplerRECT booktex,
out float4 memberships: COLOR0

){
 float mindist1, distance1, mindist2, distance2;
 float4 dn, dt;
 int i, k, minIndex1, minIndex2;
 minIndex1=minIndex2=-1;
 mindist2=mindist1=FLT_MAX;

 for (k=0; k<num_of_centroids; k++)
{

 distance2=distance1=0;
for (i=0; i<w; i++) // for all dimensions in a vector
{
 // position of the data vector

dn=texRECT(srctex,
float2(i+(index.x-0.5)*w+0.5, index.y));

// distance to the k-th centroid in particle 1
dt= dn - texRECT(booktex, float2(i+0.5, k+0.5));
distance1 += dot(dt, dt);

// distance to the k-th centroid in particle 2
dt= dn - texRECT(booktex,

float2(i+0.5, k+num_of_centroids+0.5));
distance2 +=dot(dt, dt);

 }

 if (distance1<mindist1) // for particle 1

{
 mindist1=distance1; //minimum distance

minIndex1=k; // ID of the nearest centroid
 }
 if (distance2<mindist2) // for particle 2

{
 mindist2=distance2;
 minIndex2=k;
 }
}

// output the pair of clustering memberships
memberships=float4 (minIndex1, mindist1,

minIndex2, mindist2);
}

4 Experimental evaluation
 The proposed scheme is evaluated with three popular
gene expression datasets: Yeast cell-cycle [13] with 77
dimensions, Lymphoma [14] with 96 dimensions and
Sporulation [15] with 7 dimensions. They have over 5
thousands, 4 thousands and 6 thousands of genes,
respectively.

 Performance of the GPU accelerated PK-means method
is compared against the same PK-means algorithm
implemented without GPU (referred to as the parent scheme).
Both methods are applied to cluster each of the dataset into
256 clusters. To obtain reliable statistics, a total of 10
repeated trials for the three datasets are conducted. All the
evaluations are based on the CPU (Intel Core2 Duo E6550
2.33GHz) and GPU (NVIDIA GTX260). The results of
average computation time (in second) taken to reach
convergence for both methods, are listed in Table 3. It can be
seen that the GPU accelerated PK-means is at least 11 times
faster than the parent scheme, and for the lower-dimensional
dataset (i.e. Sporulation), over 20 times’ speedup can be
noted.

Table 3. Average computation time for the parent
scheme and proposed scheme (Speed-up ratio: time of
parent scheme / time of proposed GPU scheme)

Gene dataset Scheme Time
(Sec)

Speed-up
ratio

Parent scheme 78.6 Yeast cell-
cycle GPU scheme 7.0

11.2

Parent scheme 68.4
Lymphoma GPU scheme 6.0

11.4

Parent scheme 16.7
Sporulation GPU scheme 0.8

20.5

5 Conclusions
 Gene cluster analysis plays an important role in
discovering the function of gene. K-means is one of the well-
known clustering methods for its simplicity and effectiveness.
However, due to its sensitivity to the initial clustering, it is
prone to be trapped in a local minimum. Recently, an
enhanced clustering method, known as PK-means, which
incorporates K-means with the particle swam optimization is
developed. Despites its success in finding better clustering
results, the process is usually too time-consuming. The
bottleneck lies in the K-means operation which is a basic
portion of PK-means. To address the shortcoming, this paper
proposes a novel GPU accelerated scheme for the PK-means
algorithm. Based on the particle-pair structure of PK-means,

each particle-pair is packed together and fit to a tailor-made
fragment shader program, where a pair of clustering
membership is formed for the particle-pair and then sent to
the entire output channel of each fragment. As the latter is
fully utilized, overhead is reduced. Experimental evaluation
on three gene expression datasets reveals that the proposed
GPU accelerated scheme can attain an order of magnitude
speedup as compared with the parent scheme.

6 References

[1] P. Brown, D. Botstein, “Exploring the New World of
the Genome with DNA Microarrays”; Nature Genetics, Vol.
21, 33-37, 1999

[2] A. Brazma, A. Robinson, G. Cameron, M. Ashburner.
“One-stop Shop for Microarray Data”; Nature, Vol. 403, 699-
700, 2000

[3] F. Masulli, S. Mitra. “Natural computing methods in
bioinformatics: A survey”; Information Fusion, Vol. 10, issue
3, 211–216, 2009.

[4] R. Shamir, R. Sharan. “Algorithmic approaches to
clustering gene expression data”. Current Topics in
Computational Biology, MIT Press, Cambridge, MA, pp.
269–299, 2002

[5] M.B. Eisen, P.T. Spellman, P.O. Brown, D. Botstein.
“Cluster analysis and display of genome-wide expression
patterns”; PNAS, Vol. 95, 14863–14868, 1998.

[6] T. Kohonen; “The self-organizing map”; Proc. IEEE 78,
1464–1480, 1990.

[7] J.C. Bezdek, R. Ehrlich, W. Full. “FCM: the Fuzzy c-
means clustering algorithm”; Comput. Geosci. Vol. 10 issue
2–3, 191–203, 1984.

[8] Z. Du, Y. Wang, Z. Ji. “PK-Means: A new algorithm for
gene clustering”; Comput. Biol. Chem., Vol. 32, issue 4, 243-
247, 2008.

[9] R. Eberhart, J. Kennedy. “A new optimizer using
particle swarm theory”; In: Proceedings of the Sixth
International Symposium on Micro Machine and Human
Science. IEEE Service Center, Nagoya, Japan, pp. 39–43.
1995.

[10] J. Kennedy, R. Eberhart. “Particle swarm optimization”;
In: Proceedings of IEEE International Conference on Neural
Networks. IEEE Service Center, Piscataway, NJ, pp. 1942–
1948, 1995.

[11] R. Fernando, M. J. Kilgard. “The Cg tutorial: the
definitive guide to programmable real-time graphics”.
Addison-Wesley, 2003.

[12] Z. Ji, H., Liao, W. Xu, L. Jiang. “A strategy of particle-
pair for vector quantization in image coding”; Acta Electron.
Sin., Vol. 35, issue 7, 86-89, 2007.

[13] P.T. Spellman, et al. “Comprehensive identification of
cell cycle-regulated genes of the yeast Saccharomyces
cerevisiae by microarray hybridization”; Mol. Biol. Cell, Vol.
9, 3273–3297, 1998.

[14] A.A. Alizadeh, et al. “Distinct types of diffuse large B-
cell lymphoma identified by gene expression profiling”;
Nature, Vol. 403, 503–511, 2000.

[15] S. Chu, et al. “The transcriptional program of
sporulation in budding yeast”; Science, Vol. 282, 699–705,
1998.

