
 

 

 

 

 

Bio-Medical Data Integration Based on MetaQuerier 

Architecture 
 

1
Khondker Shajadul Hasan, 

2
Munirul Islam, 

3
M Samiullah Chowdhury, 

3
Eusuf Abdullah Mim, and 

3
Naieem Khan  

1
School of Computer Science, University of Oklahoma, 110 W. Boyd St., Norman, OK 73019, USA 

shajadul@ou.edu 

2
Department of Computer Science, Wayne State University, Detroit, MI 48202, USA 

munirul@wayne.edu 
3
Department of EECS, North South University, Bashundhara, Dhaka, Bangladesh, {samiullah.chowdhury, 

 eusuf9001, ntkhan}@yahoo.com 
 

 

Abstract - The emergence of a large number of bio 

medical datasets on the Internet has resulted in the need for 

flexible and efficient approaches to integrate information 

from multiple bio medical data sources and services. Thus 

data are scattered in different web sites and web databases. 

User struggling hard and for them it is extremely difficult for 

them to find accurate data from the web efficiently. In this 

paper, we tried to present our approach to establish an 

architecture which will automatically generate web data 

integration, optimize the composition, and execute the 

required output efficiently. While data integration techniques 

have been applied to the bio medical data domain, the focus 

has been on answering specific user queries. Thus we have 

found the indication towards large scale data integration. So 

the issue arises for which data integration architecture can 

be used. There are so many proposed large scale data 

integration architecture are available. Among all of them we 

designed our paper based on the MetaQuerier architecture. 

It’s large scale integration over web databases. MetaQuerier 

architecture has five basic processes which will be clarified 

in this paper briefly. We used this architecture to implement 

our bio medical data integration and try to generate a well 

structured output. Here our first task is to explore the 

MetaQuerier architecture and secondly we will explore the 

design in terms of bio medical data.  

 

Keywords: MetaQuerier architecture, Data crawling, 

Source clustering, Schema etc. 

I. INTRODUCTION 

Biologists are now faced with the problem of integrating 

information from multiple heterogeneous public sources with 

their own experimental data contained in individual sources. 

The selection of the sources to be considered is thus critically 

important. There is a compelling demand for the integration 

and exploitation of heterogeneous biomedical information for 

improved clinical practice, medical research, and 

personalized healthcare across the EU. The ultimate goal of 

the project is to provide uninhibited access to universal 

biomedical knowledge repositories, large-scale 

information-based biomedical research and training.  

 

Now-a-days new treatments come about as a result of 

other, earlier discoveries. They are often unconnected to each 

other, and in various field. Sometimes the research was done 

for non-medical purpose and only by accident contributes to 

the field of medicine. Like the discoveries of penicillin. But 

now  all the treatment has to be done through research. In the 

terms of Bio-Medical, we are considering the data from 

medical diseases , different kind of elements of human being 

and analysis of various medicine, the experiments and result 

obtained from them, analyzing zinc, proteins, bacteria and 

many more for advance research. For example, changes in 

genomic DNA, presence of various protein modification, 

mRNA and protein levels etc. The possibilities from 

bio-medical data integration are enormous. For example, the 

central tumor suppressor protein p53 provides a potential 

target for new anti-cancer drugs. By integrating the datasets 

from different laboratory various result of protein p53 like its 

characteristic, behavior, effect, mutations, etc. in one single 

database.  

    Data for bio-medical researches integrated from the web. 

Data can be stored on the WEB in different form. The data 

can be non-structured or semi structured in the web. Like 

plain text files, HTML text files, native XML. Data might be 

found in online libraries, catalogues, etc. Databases in the 

research repositories are like genome databases, scientific 

databases, environmental databases, etc. There might be web 

services, semantic web, and knowledge base system. There 

are Ontologies, which are structurally and semantically 

research domain description with associated data. The 

following charts are important for our paper. Here we have 

shown some biomedical data sets. There are unlimited bio 

medical datasets. Here our main focus actually to introduce 

the fact that bio medical data are needed to be integrated and 

also it is possible to be integrated. So in order to clarify our 

paper we focus on specific data sets which are in the group of 

Protein. 

Database systems except from the web must have to 

inter-operate, cooperate and coordinate with each other. 

These data have to shared, exchanged and ultimately 

integrated. In this regard our target to see the sights of the  

mailto:shajadul@ou.edu
mailto:munirul@wayne.edu
mailto:ntkhan%7D@yahoo.com


 

 

 

Table 1: Contains an example of Bio-medical data and 

attributes. [2] 

 
 

MetaQuerier architecture. MetaQuerier architecture is one of 

the most recent data integration architecture. The following 

figure will give some basic idea about the data flow and data 

manipulation inside the MetaQuerier mechanism. 

 
 Figure 1: MetaQuerier: System Architecture. [1] 

 

The above figure 1 is the complete scenario of the 

MetaQuerier architecture. Based on the MetaQuerier 

mechanism, our goal has two directions– First, to make the 

deep Web systematically accessible, it will help users find 

online databases useful for their queries. Second, to make the 

deep Web uniformly usable, it will help users query online 

databases [1]. In this paper we first describe the work flow of 

MetaQuerier engine and then explore the bio medical data 

inside MetaQuerier. At the end, Integration of related works 

will clarify the necessity of MetaQuerier in bio medical data 

integration. Actually the necessity of an efficient data 

integration engine arises due to the extremely huge volume of 

queryable databases. One side the data collection are 

dynamic another side they are non systemic. 

To our knowledge, our goal of integration at a large scale 

has largely remained unexplored. The MetaQuerier engine 

actually integrates data from the web. One of the critical 

issues is that data are not predefined. Data are flourishing in 

every moment and datasets are getting larger. Since datasets 

are not predefined data discovery become dynamic. If one 

user search for different types of protein for example, for the 

next search he or she will not get the same datasets from the 

web resources. So this is a challenge while data searching. 

That‟s why we need data crawler. Another major issue which 

steps in more complexity situation is that data are needed to 

be integrated on the fly. The engine will work at a time [1].  

II. RELATED WORK 

Our complete work has two basic direction and stands. 

One part deals with MetaQuerier engine and other part focus 

on bio medical data and how MetaQuerier engine will 

manipulate bio medical data. What do we understand about 

bio medical data? There exist a large number of bio medical 

datasets on the web in various formats. There is a need for 

flexible and efficient approaches to integrate information 

from these datasets. Unlike other domains, the bio medical 

domain has hold web standards, such as XML and web 

services. There exists a large number of bio medical data 

sources that are either accessible as web services or provide 

data using XML. For the bio medical data sources that 

provide their data as semi-structured web or text documents, 

we can use wrapper- based techniques to access the data.  

For example, when a user queries the UniProt1 website for 

details of a protein, the user provides a uniprotid and gets 

back the information about the protein. The emergence of the 

large number of information providing services has 

highlighted the need for a framework to integrate information 

from the available data sources and services. In this paper, we 

describe our approach to automatically compose integration 

procedure to create new information-providing the 

MetaQuerier engine.  

When the MetaQuerier receives a request based on bio 

medical data to create a new web service, it generates a 

parameterized integration that accepts the values of the input 

parameters such as protein name or its id and then retrieves 

and integrates information from relevant web pages, and 

returns the results to the user. The parameterized integration 

procedure is then hosted as a new web page what is known as 

data crawling. The discoveries of the pages according to the 

user requirement are dynamic and they are absolutely 

unsorted. This is the key challenge in composing web data for 

a new web based on the fly integration. 

To further clarify these consider the example shown in 

Figure 2. We have access to three web services where each 

providing protein information for different organisms. We 

would like to create a new web service that accepts the name 

of an organism and the id of a protein and returns the protein 

information from the relevant web service. Given specific 

values of the input parameters, traditional data integration 

systems can decide which web service should be queried. 

However, without knowing the values of the parameters, the 

traditional integration systems would generate a procedure 

that requires querying all three web services for each request.  
 

 
 

 

Figure 2: Protein Information. [2] 



 

 

 

The key contribution of our approach is to extend the 

existing techniques to generate parameterized integration 

technique that can answer requests with different sets of 

values for the input parameters. 

Now the key issue arises when it‟s needed to optimize the 

web data and in order to reduce the deep web data for 

optimizing the number of user request sent to existing data 

sources we need the help of MetaQuerier. Thus when data 

optimization with user satisfaction will be needed 

MetaQuerier will be in action. The existing optimization 

techniques means the MetaQuerier will utilize the searchable 

user query to filter out unnecessary source requests and/or 

reorder the joins to produce more efficient ordered web data. 

However, as we show with a detailed example later in the 

paper, the MetaQuerier techniques are enough when we 

apply them to the task of data integration.  

Next section will describe each of the processes of the 

MetaQuerier techniques in more detail, show how they can 

be applied to the bio medical domain. We begin by describing 

a motivating example that we use throughout the paper to 

provide a detailed explanation of various concepts. Next, we 

discuss how existing data integration techniques can be 

extended to model web sources as data sources and 

reformulate web data creation requests into parameterized 

integrated data.  

In MetaQuerier there are five basic processes. First is 

Database crawler, second Interface Extraction, third source 

clustering, fourth Schema Matching and fifth Result 

Compilation. [1] 

There are three parts of the complete MetaQuerier. Front 

end, back end and deep web repository.  But before 

understand the parts of MetaQuerier we need to understand 

its starting and action point. As it handles large volume of 

data, first, such integration is dynamic: Since sources are 

blooming and evolving on the Web, they cannot be statically 

configured for integration. Second, it is absolutely unsorted: 

Since queries are submitted by users for different needs, they 

will each interact with different sources. Thus, toward the 

large-scale integration, the MetaQuerier must achieve dual 

requirements–Dynamics discovery and on the fly integration. 

To our knowledge, MetaQuerier is the first one to present the 

overall system issues of building large scale integration. Next 

section we will elaborate about MetaQuerier architecture. [1] 

III. SYSTEM DESCRIPTIONS 

On the way towards bio-medical data integration, we have 

accounted the large scale of data and these data can be found 

on the web database. But data are not predefined. It means, 

we are doing a deep web searching as user‟s request but 

sources are not in a single domain, which we are calling 

“dynamic discoveries‟” and “on-the-fly” integration. Based 

on the processes used in MetaQuerier, we have structured the 

idea of bio-medical data integration. We will now describe 

the whole system of the application. [1] 

The MetaQuerier was developed for large scale 

integration. In its way of integration, it basically search and 

collect the database on the web, extract the required data from 

the database and gather it into its own database and show 

users the output as requested.  To understand the system 

easily, we have divided the whole process into five major 

parts. On sequence, Data Crawling, Interface extraction, 

Source clustering, Schema Matching, Query Translation, 

Source Selection, and Result Compilation. Data Crawling, 

Interface extraction, Source Clustering, Schema Matching all 

these processes work at the back-end. Query Translation, 

Source selection and Result Compilation all these work on 

front-end. In this interim paper we are giving a short brief for 

ease of understand bio-medical data integration. [1] 

A. Data Crawling 

Collect data from enormous web environment is the main 

part of the challenge that we face while data integration. So 

actually we need data crawler. There is a difference between 

data crawler and web crawler. Existing and available search 

engines are efficient for necessary site searching. They search 

based on the root pages and also check user keywords as 

interface keyword [3]. Here if we go in that process we will 

be in the messy situation of managing terabyte of data. So in 

the MetaQuerier our task to find web pages that are 

exclusively important for us including the databases involved 

with these sites. Thus MetaQuerier design data crawling in 

two different segments to face the challenge of dynamic 

discovery. The first segment named site crawler and second 

segment is shallow crawler [1]. Together these two segments 

MetaQuerier named the data crawler as site based crawler. 

For site crawler the efficiency of query interfaces are very 

important.  

Query interfaces are important because based on the 

interface keyword crawler will filter web sites. It will 

minimize unsorted and unnecessary data. Suppose the 

following interface can use to find more appropriate and 

mandatory data while search wed sites. The more keyword 

will be used from the interface the more data filtering will be 

in action. Since we are not focusing on how efficient interface 

can be designed here, we just discuss the important of query 

interfaces and its necessity for data integration. In this paper 

we are actually trying to explore one of the important uses of 

data integration in the field of bio medical research. Site base 

crawler will go through the root pages and will indentify IP 

addresses and shallow crawler will follow these IP addresses 

and will search web servers which will be found from site 

crawler [1].  

 

Bio-medical Data SearchBio-medical Data Search

Search

Bio-medical Keywords

Founder

Category

Producer

Bar Code

Refine your search(Optional)

Used Only

Format

Onlooker’s Age

Language

Production Date

Sort Result By

All Formats

All ages

All Languages

All Dates

Featured Item

e.g. 2008

Keyword(s) Start of Keyword(s)

First Name/initials Start of Last Name

Category Word(s) Start of Category

Reset

 
 

Figure 3: Sample Search Interface. [9] 



 

 

 

B. Interface Extraction 

Interface extraction basically extracts the required data 

from the query interfaces. Query interface sometimes share 

similar or common query patterns but sometimes it shares 

different query patterns. In case of different query patterns 

the problem arises due to some hidden information or 

attributes. Hidden attributes are not visual on interface that‟s 

why its extraction normally out of interaction at the 

beginning. Thus for the hypothesized syntax, in metaQuierer 

the determined structure are rationalize by asserting the 

creation of query interfaces as guided by some hypothetical 

syntax [5].  Therefore handle this hypothetical syntax 

effectively creates new problem. So it‟s needed to be 

visualizing as a visual language whose composition conforms 

to a hidden non-prescribed, grammar. In this case 

MetaQuerier solve the problem in terms of parsing the visual 

language. Here the MetaQuerier approach is to introduce a 

parsing paradigm by assuming that there exists hidden syntax 

to describe the layout and semantic of query interfaces. 

Specifically, we develop the subsystem IE as a visual 

language parser, given a query interface in HTML format; IE 

tokenizes the page, parses the tokens, and then merges 

potentially multiple parse trees, to finally generate the query 

capability. [1,4] 

Finally after parsing Interface Extraction basically extracts 

query capabilities from the query interfaces. The 

semantically related labels and elements of a search interface 

are viewed as logical attributes, though they are scattered in 

the html text or into the database without formal definitions. 

Therefore, attributes have to be identified by grouping 

associated labels and elements. Moreover, beyond the labels 

and elements, a significant amount of semantic/meta 

information for attributes exists on the query interfaces [5].  

For example, in figure 4, “invention date” implies the 

Attribute is semantically a date data type, and its two 

elements are used to specify a range query condition with 

different roles in specifying the condition. Unlike the 

conventional database schemas, such semantic/meta 

information is “hidden” from computers and not formally 

defined on query interfaces. As such, the “hidden” 

information about each attribute needs to be revealed and 

defined to enrich the schema matching. [5] 
 

 

Query InterfaceQuery Interface

E90A

Membrane Protein

January 1900

Protein Name

Protein Type

Invention Date

 
  Figure 4: Sample query interface. 

 

C. Source Clustering 

Before move on to Schema Matching we need to 

understand Source Clustering. Source clustering collaborates 

with source selection which works in front end. These two 

processes help schema matching to get actual scenario. After 

determining query capabilities based on query interfaces 

source clustering sorted data as mediated process which 

provides data towards schema process. Here the second 

challenge of MetaQuerier after the dynamic discovery, the on 

the fly integration comes in action. Source Cluster actually 

clusters sources according to subject domain. Going towards 

data integration, we need clustering sources by their query 

capabilities, specifically, given a set of query capabilities 

representing structured sources, our task is thus to construct a 

hierarchy of clusters, each representing an object domain of 

“structurally-consistent” sources. Thus we need to cluster the 

query interfaces into subject domains.  

Domain elements and constraint elements have the 

following characteristics: 

 Textboxes cannot be used for constraint elements. 

 Radio buttons or checkboxes or selection lists may 

appear as constraint elements. 

 An attribute consists of a single element cannot have 

constraint elements. 

 An attribute consisting of only radio buttons or 

checkboxes does not have constraint elements. 
 

Based on these characteristics, a simple two-step method 

has to be used to differentiate domain elements and constraint 

elements. First of all, we have to identify the attributes that 

contain only one element or whose elements are all radio 

buttons, or checkboxes or textboxes. Such attributes are 

considered to have only domain elements. Then an Element 

Classifier is needed to process other attributes that may 

contain both domain elements and constraint elements. [1,9] 

D. Schema Matching 

The schema of a database system is its structure described 

in a formal language supported by the database management 

system. In a relational database, the schema defines the 

tables, the fields in each table, and the relationships between 

fields and tables. Schemas are generally stored in a data 

dictionary. Although a schema is defined in text database 

language, the term is often used to refer to a graphical 

depiction of the database structure. Schema matching is the 

process of identifying that two objects are semantically 

related while mapping refers to the transformations between 

the objects. 

 

 

Figure 5: Schema matching for data integration. 

 

   In data integration process, schema matching find out the 

semantic domain values among the attributes, which we have 

found through query interfaces. In MetaQuerier, the 



 

 

 

subsystem “Schema matching” was developed for the large 

scale databases, which stored the discovered matching 

elements in the deep web repository. Schema Matching is an 

important process which use data from query capabilities 

and organize the data as per requirement. It provides data to 

source selection and Query Translation has the urge such 

data for translate user‟s query and finally send it to users at 

the front-end. What MetaQuerier actually does, it redesigns 

the process in terms of complex matching instead of one by 

one process. [7] 

E. Query Translation 

Query Translation is a front-end process. We know that 

with all those massive sources, the deep Web is clearly an 

important frontier for data integration. In particular, to enable 

query mediation for effective access of Web databases, it is 

critical to automatically translate queries across their query 

interfaces. Such translation is, in essence, to match and 

express query conditions in terms of what an interface can 

“say”: Each query interface consists of a set of constraint 

templates. For complete query translation, first we need to 

extract constraint templates from a query interface. Second, 

from given source and target constraint templates, we need to 

find matching templates. Specifically, the deep Web is of 

large scale and of a dynamic nature as the sources are 

changing and new ones are emerging. Also, it is very diverse, 

with various sources. Users will thus interact with “ad-hoc” 

or unplanned sources to satisfy their various information 

needs. This large-scale, dynamic, and unplanned nature 

mandates effective integration to enable “on the fly” query 

translation. That is, the mapping technique should be able to 

translate queries for unseen sources, where no pre-configured 

translation knowledge can be assumed. In the MetaQuerier, 

query translation will translate the user‟s query to query 

interface. [6] 

F. Source Selection 

From the large scale database, following the typical 

approach to data integration we define a common mediated 

schema for all the data sources, then to match and map the 

data sources to this mediated schema [1].  The target user 

may understand the concepts in their own domain, means 

they know how and where to search, but may not know the 

data on other domains. In case of this problem, we need to 

choose which sources to include in the data integration and 

what mediated schema to use. So our goal is to develop 

“source selection” subsystem to choose a set of data sources 

and a global mediated schema over these resources.  

G. Result Compilation 

This is the final process of data integration which 

essentially aggregates query results to the user. Result 

Compilation compiles data results from different sources into 

coherent pieces. For establishing result compilation, we need 

to build it for extracting data from schema matching and 

matching other attributes across different sources.[1] 

IV. PROCESSES WITH BIO MEDICAL DATA 

In this section we describe an extension to the existing data 

integration techniques to solve the problem of generating 

parameterized integration plan for new bio medical web 

services. Most Life Sciences web services are 

information-providing services. We can treat 

information-providing services as data sources with binding 

restrictions. Data integration systems require a set of domain 

relations, a set of source relations, and a set of rules that 

define the relationships between the source relations and the 

domain relations. 
 

 
 

Figure 6: Relationships between Domain Concepts and 

Data Sources. [2] 
 

In order to utilize the existing web services as data sources, 

we need to model them as available data sources and create 

rules to relate the existing web services with various concepts 

in the domain. Typically, a domain expert consults the users 

and determines a set of domain relations. The users form their 

queries on the domain relations. We have two domain 

relations with the following attributes: 

 Protein (id, name, location, function, sequence, 

pubmedid, taxonid) 

 ProteinProteinInteractions (fromid, toid, taxonid, 

source, verified) [2]. 
 

The Protein relation provides information about different 

proteins. The Protein-Protein Interactions relation contains 

interactions between different proteins. As the id attribute in 

the Protein relation is the primary key, all other attributes in 

the Protein relation functionally depend on the id attribute. 

For the Protein Protein Interactions domain relation, the 

combination of fromid and toid forms a primary key. [2] 
 

 
Figure 7: Integration Plan of a Desired Web Service [2] 
 

A. Database Crawler 

On a search interface, an attribute may have multiple 

associated elements and they may be related in different 

ways. There can exist four types of element relationships: 

range type, part type, group type (multiple checkboxes/radio 

buttons are sometimes used together to form a single 

semantic concept/attribute) and constraint type. For example, 

in Figure 8, the relationships between the elements of 

Production Year are of range type. 



 

 

 

 
 

Figure 8: Example of element relations. 

 

When an attribute has multiple associated elements, we 

shall classify them into two types: domain elements and 

constraint elements because they usually play different roles 

in specifying a query. Domain elements are used to specify 

domain values for the attribute while constraint elements 

enforce some constraints to domain elements. For example, 

element “Exact phrase” is a constraint element while the 

textbox following Title keywords is a domain element. 

Consider two interfaces. One interface contains an 

attribute protein Production date, and another interface 

contains an attribute protein production year, and they should 

be matched in terms of their semantics. But we cannot match 

them by only using names because they do not have exactly 

the same attribute name. However, if we can identify that the 

elements of both attributes are of range type, it would 

increase the confidence of matching them. When a user 

specifies a query on the global attribute Title of a 

MetaQuerier interface, during the query translation the query 

value should be mapped to the domain element of 

Bio-Medical keywords instead of the constraint element 

“Exact phrase”. [3] 

B. Interface Extraction 

Labels and elements are the basic components of a search 

interface, but it is insufficient to just extract individual labels 

and elements because many applications rely on the logical 

attributes formed by related labels and elements. In order to 

extract logical attributes, it is essential to determine the 

semantic associations of labels and elements. However, there 

are no explicit definitions of such associations in the HTML 

text of the search interface. We observe that labels and 

elements that represent the same attribute have a certain 

layout pattern and are usually close to each other and that in 

most cases they have some similar information in common. 

On the basis of this, we develop a three-step approach to 

tackle the problem of automatic interface extraction or in 

other words attribute extraction. 

1) Extracting Individual Labels and Elements 

This is the first step of our automatic attribute extraction 

method. Given a search interface, the extraction starts with its 

“<FORM>” tag. Each element itself contains its values (if 

available). Four types of input elements are considered: 

textbox, selection list, and checkbox and radio button. When 

a row delimiter like “<BR>”, “<P>” or “</TR>” is 

encountered, a „|‟ is appended to the Interface expression. 

This process continues until the “</FORM>” tag is 

encountered. In this process, some irrelevant texts may be 

included in the INTERFACE EXPRESSION even though 

some efforts are made to identify and discard them. [8] 

2) Identifying the Names of Exclusive Attributes 

Exclusive attributes are actually the ones whose names 

may appear as values in some elements, such as a group of 

radio buttons or a selection list. Correctly recognizing such 

attributes automatically is difficult because they do not 

appear on search interfaces as descriptive texts. [5] 
 

 
 

 
 

Figure 9: Examples of exclusive attributes. [9] 

 

Exclusive attributes appear frequently on real Web search 

interfaces. A significant flaw of existing approaches for 

interface extraction is that they do not extract exclusive 

attributes.  

The names of exclusive attributes are often the most 

commonly used attribute names of a domain. The basic idea 

is that we consider multiple interfaces in the same domain at 

the same time rather than separately. Then we use the 

extracted labels from all search interfaces of the same domain 

to construct a vocabulary for the domain. Finally we use the 

vocabulary to automatically identify and extract the names of 

exclusive attributes. 

3) Grouping Labels and Elements 

This step is to group the labels and elements that 

semantically correspond to the same attribute, and to find the 

appropriate attribute label/name for each group. For example, 

label “Bio-Medical Keywords”, the textbox, the three radio 

buttons and their values below the textbox all belong to the 

same attribute and this step aims to group them together and 

identify label “Bio-Medical Keywords” as the name of the 

attribute. 

C. Source Clustering 

Going towards MetaQuerier, we need clustering sources 

by their query schemas, i.e., attributes in their query 

interfaces.  

 

Table 2: Translation Rules. 

 

 

r1 [category; contain; $s]  emit: [source; all; $s] 

r2 [name; contain; $t]  emit: [name; contain; $t] 

r3 [concentration range; between; $s, $t]  $p = 

ChooseClosestNum($s), emit: [concentration; 

less than; $p] 

r4 [onlooker‟s age; between; $s]  $r = 

ChooseClosestRange($s), emit: [age; between; 

$r] 



 

 

 

For instance, for the advanced query interface of 

amazon.com, the query schema is specifically, given a set of 

query schemas representing structured sources, our task is 

thus to construct a hierarchy of clusters, each representing an 

object domain of “structurally-homogeneous” sources [1]. 

Apparently, we are focusing on Bio-Medical data. We 

explain a particular method of source clustering, which is 

quite efficient in terms of domain attributes. 

1) Deriving information from Attributes  

In our proposed interface schema model, we recommend 

four types of information for each attribute are defined: 

domain type, value type, default value and unit. These 

meta-data are only for domain elements of each attribute.  

Domain type: Domain type indicates how many distinct 

values can be used for an attribute for queries. Four domain 

types are defined in our model: range, infinite and Boolean. 

[9]   

Value type: Each attribute on a search interface has its 

own semantic value type even though all input values are 

treated as text values to be sent to Web databases through 

HTTP. [9] 

Default value: Default values in many cases indicate some 

semantics of the attributes. A default value may occur in a 

selection list, a group of radio buttons and a group of 

checkboxes. It is always marked as “checked” or “selected” 

in the HTML text of search forms. Therefore, it is easy to 

identify default values. [9] 

Unit: A unit defines the meaning of an attribute value 

(e.g., kilogram is a unit for weight). Different sites may use 

different units for values of the same attributes. For example, 

one search interface may use “Milligrams” as the unit of its 

Concentration attribute, while another may use “Liters” for 

its Concentration attribute. [9] 

2) Translation Rules 

Firstly, we have to consider another term named, query 

mediation. Query mediation works have been mainly 

focusing on mediating queries across multiple sources and 

thus abstract the problem as a paradigm of answering query 

using views. In particular, they assume each source has a 

wrapper, which encapsulates the tasks of extracting query 

capability, schema matching and constraint mapping for that 

source. The main focus of query mediation is thus on how to 

decompose a user query into sub-queries across multiple 

sources. In contrast, we have to focus on query translation 

between two sources other than mediating queries across 

multiple sources. In particular, we are dealing with the 

mapping of constraint heterogeneity. For our scenario of 

large scale integration, we have to on-the-fly translated 

queries and thus need the following mapping techniques.  

Secondly, Schema mapping aims at translating a set of data 

values from one source to another one, according to given 

matching. Therefore, schema mapping only concerns about 

the equality relation between different schemas, based upon 

which data is converted. In particular, no constraint 

heterogeneity is considered in schema mapping. In contrast, 

constraint mapping focuses on translating specific queries 

other than the data values.  

3) Discussion 

We have proposed a generic type-based search-driven 

translation framework, which is well suited for the 

requirements of the on-the-fly constraint mapping among 

large scale data sources and our concern here is mainly 

focused on Bio-Medical Data. 

V. CONCLUDING DISCUSSION 

This paper contains the core proposal we made through 

MetaQuerier architecture. Actually, the issue over here is that 

bio-medical data integration is an example of data 

integration. There are so many proposed data integration 

process. Our target is to deploy MetaQuerier as efficient data 

integration architecture and show one of its implementation. 

We proposed that we can use data integration for bio medical 

data or in the field of bio informatics. Here one part mainly 

gives idea about the MetaQuerier architecture and its sub 

processes and how each of the processes work. Although it‟s 

not focused how we can improve this MetaQuerier, we 

considered MetaQuerier is one most efficient data integration 

engine/design.  

Inside the subsystem of metaquirer there are some 

conceptual changes of many common things to improve the 

efficiency of handling extremely huge and unsorted data. The 

three basic process of back-end were discussed elaborately. 

Other two processes are just briefly discussed. Our future 

work to make real time implementation based on some 

specific requirement and based on some ongoing bio medical 

research. 

REFERENCES 

[1] Kevin Chen-Chuan Chang, Bin He, and Zhen Zhang. 

Toward Large Scale Integration: Building a MetaQuerier 

over Databases on the Web.  

[2] Snehal Thakkar, Jos´e Luis Ambite, Craig A. Knoblock. 

Composing, Optimizing, and Executing Plans for 

Bioinformatics Web Services. In September 2, 2005. 

[3] Gautam Pant, Padmini Srinivasan, and Filippo 

Menczer. Crawling the Web. 

[4] Ping Wu, Ji-Rong Wen, Huan Liu, Wei-Ying Ma. Query 

Selection Techniques for Efficient Crawling of Structured 

Web Sources. 

[5] Hai He, Weiyi Meng, Clement Yu, Zonghuan Wu. 

WISE-Integrator: A System for Extracting and Integrating 

Complex Web Search Interfaces of the Deep Web. 

[6] Z. Zhang, B. He, and K. C.-C. Chang. On-the-fly 

constraint mapping across web query interfaces. In 

Proceedings of the VLDB Workshop on Information 

Integration on the Web (VLDB-IIWeb’04), 2004. 

[7] Bin He and Kevin Chen-Chuan Chang. Automatic 

Complex Schema Matching Across Web Query Interfaces: A 

Correlation Mining Approach. 

[8] Chengyong Yang, Erliang Zeng, Tao Li, and Giri 

Narasimhan. A Knowledge-Driven Method to Evaluate 

Multi-Source Clustering. 

[9] Hai He, Weiyi Meng, Clement Yu, Zonghuan Wu. 

Automatic Extraction of Web Search Interfaces for Interface 

Schema Integration. 


