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Abstract – The recent large scale advances in science and 

technology has resulted in accumulation of large amount of 

biological pathways data. Any metabolic pathway contains 

large number of enzymes, metabolites and reactions. To 

make sense of diverse data available on a system, one needs 

to correlate and analyze them as a whole. Motivated by the 

potential benefits of graph theory and its applications in 

biological data, we discuss the automated reconstruction and 

analysis of metabolite network of Arabidopsis thaliana using 

concepts of graph theory. A.thaliana metabolite network was 

reconstructed and the analysis of the global properties of its 

metabolite-centric graph shows that the network is small-

world and scale-free in nature. The investigation of nodes 

with high centrality values like high degree and high 

betweeness in this network help in identifying important 

metabolites, reactions, etc. Newman’s modularity-based 

approach has been used in the analysis of the metabolite 

network of A. thaliana to identify pathway clusters, isolated 

pathways, and orphan metabolites or products. Our analysis 

on network representations helps in understanding the 

relationship between the metabolites, enzymes and reactions 

of metabolic pathways in A. thaliana. 
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1 Introduction 
In recent decades, a large number of complete and draft 

genomes have been sequenced very rapidly. In spite of 

enormous metabolic reaction data, the accurate prediction of 

metabolite phenotypes remains difficult. Pathway 

reconstruction is an approach to corroborate the experimental 

data and to widen its utilities. Oldest and dynamic method of 

pathway reconstruction is the kinetic metabolic modeling [1]. 

It is based on rate laws of participating reactions and 

corresponding kinetic parameters. Despite the utilities, kinetic 

approach is not handy because, the determination and 

interpretation of concentrations and rate reactions are much 

difficult. On the other hand, pathway reconstruction using 

graph theory becomes advantageous since only very less 

information is required to construct the metabolite network of 

the entire pathways in the organism. In depth functional 

analysis of metabolic pathways is succeeded by decomposition 

of this network. 

 

A complete graph can be constructed using the existing 

knowledge of metabolites, enzymes and reactions from the 

metabolic pathway databases. The undirected metabolite 

network was constructed by considering each substrate as a 

node and an edge drawn between two substrates sharing the 

same reaction [2]. Even though the utility of pathway 

reconstruction is very high in plants, only a very few plant 

metabolic pathways have been reconstructed. We have chosen 

Arabidopsis thaliana for the study since it is a model organism 

which has significant metabolic pathways with remarkable 

functionalities like defense against pathogens and herbivores, 

UV protection, resistance against oxidative stress and Auxin 

transport. 

 

Here, we have used an automated and efficient metabolite 

pathway reconstruction of A.thaliana using data set extracted 

from Kyoto Encyclopedia of Genes and Genomes (KEGG) 

Release 50.0, April 1, 2009 [3]. The XML file in the KEGG 

FTP contains reactions grouped under pathways of a specific 

organism. The XML file does not contain currency 

metabolites like ATP, H20 etc. List of edges and arcs that 

capture the biological relationship was computed. This file 

was visualized using open source visualization tools, such as 

Pajek and Centibin that help in plotting distributions, 

navigation within the network and calculating centralities of 

the biological networks. 

 

The degree of a node in a network is the number of 

connections or edges the node has with other nodes. The 

degree distribution of the A.thaliana metabolite network 

shows that a few nodes have high degree and most of the 

nodes have low degree revealing the scale free nature [4]. 

Construction of a random network with the same number of 

nodes and edges as the A.thaliana metabolite network 

exhibited similar path length but smaller clustering coefficient 

compared to the A.thaliana metabolite network suggesting its 

small world nature. Correlation between high degree and high 

betweeness of the network shows that there are many nodes 

with high betweeness and low degree. These nodes connect 

pathways or two groups of reactions and are important to be 

analyzed. 

 

We analyzed the robustness of the network by random and 

targeted removal of nodes in both the metabolite network and 

its random counterpart. Targeted removal was performed on 

nodes exhibiting high centrality values (degree and 

betweeness). When under attack by nodes with high degrees, 

the random network does not show any difference whether the 

nodes are selected randomly or based on the decreasing values 



of degree, whereas the metabolite network shows a drastic 

change in diameter when the nodes are targeted for removal. 

The community detection analysis of A.thaliana metabolite 

network suggests its modular nature. Modularity analysis 

(using Newman’s algorithm) of the network showed 

hierarchical architecture and also helped in identifying isolated 

and orphan metabolites. 

 

2 Materials and Methods 
In KEGG metabolic pathway database, the pathway maps are 

validated, manually drawn and updated frequently and the 

enzymes are cross-referenced to other relevant databases like 

GenBank, PDB, etc. [9]. Hence for reconstruction of 

metabolic network of A.thaliana, we have used the Kyoto 

Encyclopedia of Genes and Genomes database 

(http://www.genome.jp/kegg). 

 

2.1 Dataset 
 KEGG FTP contains metabolic pathways as XML files for 

each listed organisms. In KEGG one hundred metabolic 

pathways, listed for A.thaliana, have been downloaded as 

XML files for analysis 

(ftp://ftp.genome.jp/pub/kegg/xml/kgml/metabolic/organisms/a

th/). 

 

2.2  Substrate Centric Graph 
The KEGG XML file has unique reaction id for each 

reaction in the pathway followed by the unique ids for the 

reactants and products. These files are incomplete without 

detailed information of secondary metabolites in reactants and 

products.  Using  perl  scripts,  the reaction  id  are  matched  

with  KEGG  entire  reaction  list  which  has  complete  

reaction information  and  the  missing  information  are  made  

complete.  Since the network we constructed is undirected and 

does not contain currency metabolites, the information on the 

direction of the reactions and the currency metabolites are 

neglected. Reactants and products of the same reaction are 

connected by edges. Each reactant and the product becomes 

each node in the  network,  the reaction  id  is  assigned  to  the  

edge  connecting  two  nodes.  Edge list is computed by listing 

the connected edges and their corresponding reaction ids. The 

edge list captures the network property and this file is used for 

the network analysis. 

 

3 Results and Discussion 
The metabolite network constructed has metabolites as nodes 

and the corresponding reactions they take part as edges. The 

metabolite network we generated for A.thaliana has 2801 

unique metabolites.  

 

The network does not contain the common small molecules or 

currency metabolites such as ATP, NADH, water etc. There 

are 3639 unique reactions in the network. The diameter of the 

network, which is the largest distance between two nodes is 56. 

To know how our network differs from similar networks, we 

compare the properties of our metabolite network with the 

random network constructed with same number of nodes and 

edges and with the Radrich’s Arabidopsis metabolite network 

model (Table1). 

 
Table 1: Global properties of metabolite network, random network and 

the metabolic network by Radrich in A.thaliana network construction 

 

The random network has low clustering coefficient compared 

to the metabolite network constructed by us. Radrich’s semi 

automated genome-scale reconstruction network on 

Arabidopsis by integration of metabolic databases [6] uses 

current metabolites and pathway data that were common in 

both KEGG and AraCyc. There are more edges in Radrich 

model due to the currency metabolites. The diameter of the 

metabolite network is very high compared to that of random 

network with same number of nodes and edges and Radrich 

network. The larger diameter  in  our  network reveals  that  

the information  flow is  between  metabolites  of  two 

completely unrelated pathways leading to larger path lengths 

between those nodes. The lower clustering  coefficient  of  a  

random  network  compared  to  A.thaliana  metabolite  

network explains occurrence of meaningful clustering in 

biological network. In metabolite network, we see the average 

path length depends on the system size but does not change 

drastically with it. 

 

3.1 Arabidopsis thaliana Metabolite Network is 

Scale free and Small world 
The degree of a node in a network is the number of 

connections or edges the node has to other nodes. The degree 

distribution P(k) gives the fraction of nodes that have degree k 

and is obtained by counting the number of nodes N(k) that 

have k = 1, 2, 3… edges and dividing it by the total number of 

nodes N. From Fig.1a, degree distribution graph, we see that it 

follows the power law which appears as a straight line on a 

logarithmic plot (Fig 1.b) and hence proving metabolite 

network follows ‘scale free nature’[2]. Using this function P(k) 

it is evident that there is a high diversity in the degree of the 

nodes (Fig.1).  

 

This nature becomes more evident by comparing it with a 

random graph with the same number of edges and arcs. We 

constructed a random graph, using the Erdoes Renyi model 

that assumes each pair of nodes in the network is connected 

randomly with probability p.  This graph reflects the expected 

properties of a network which is random with respect to the 

node’s position and their interaction  compared to a metabolite 

network of the same size [3]. Random network have a bell-

  Metabolite 

Network 

Random 

Network 

Radrich 

Network 

Nodes 2801 2801 2288 

Edges 3639 3639 6547 

Diameter 56 8 10 

Clustering Coeff. 0.215 0.001 0.186 

Avg. Path length 3.486 4.642 3.286 



shaped degree distribution (Fig.1c), indicating that the 

majority of nodes have a degree close to the average degree 

<k>. The average clustering coefficient of a random graph 

equals <k>/N and thus is very small for large N [7]. We 

compare the degree distribution of the metabolite network with 

random network containing same number of nodes (Fig 1). 

 

 
Fig. 1a: Metabolite graph in linear scale 
 

 

 

 
Fig. 1b: Metabolite graph in logarithmic scale 
 

 

 

 
Fig. 1c: Random graph in linear scale 

 
Fig. 1d: Random graph in logarithmic scale 
 
Fig. 1: Comparison between the degree distribution of (a) Random graph 

having the same number of nodes and edges as the Arabidopsis 

metabolite network Arabidopsis thaliana metabolite network and for 

clarity the same two distributions are plotted both on a linear and 

logarithmic scale for all the networks. The bell-shaped degree 

distribution of random graphs peaks at the average degree and decreases 

fast for both smaller and larger degrees, indicating that these graphs are 

statistically homogeneous. By contrast, the degree distribution of the 

scale-free network follows the power law P (k) = Ak–3, which appears as 

a straight line on a logarithmic plot. 

 

We compare the metabolite network with random network. 

Another observation by comparing the metabolite network 

with and random network is that the average clustering 

coefficient of the random network is much smaller than that of 

A.thaliana metabolite network and the average path length was 

closer in the random graph, justifying the small world nature of 

the metabolite network [7]. 

 

3.2 Error and Attack Tolerance nature 
The nodes in A.thaliana metabolite network are capable of 

staying interconnected and communicate even by 

unrealistically high failure rates.  However, most networks 

become extremely vulnerable to attacks on selected nodes that 

bridge highly interconnected nodes in the network. We tested 

the error and attack tolerance nature of A.thaliana network 

comparing random and scale free networks. 

 

Attack vulnerability shows a decreased performance of a 

network due to the selected removal of nodes or edges [8]. 

Here, it means the prevention of a metabolic reaction to take 

place due to the removal of an enzyme or primary substrate. 

Studying the attack vulnerability of networks is very important 

for identifying the weak or strong ‘links’ in the network [1]. 

Subsequently, this knowledge can be used to protect the 

network from outside attacks. In order to  study  the  attack  

tolerance,  we  removed  a  fraction  of  nodes  from  both  

random  and A.thaliana metabolite networks and studied the 

effect of this removal on the diameter and clustering 

coefficient. 

 

We randomly removed 5, 10, 15, 20, 25 percentage of nodes 

from the A.thaliana metabolite network. In random network, 

due to the homogeneity all nodes contribute equally to the 

diameter, so the removal of each node caused the same effect 



(Table 2a, 2b). But in case of metabolite network (scale free) 

due to the extremely inhomogeneous degree distribution, many 

nodes have only a few links. The nodes with small connectivity 

will be selected with a much higher probability and these 

removals changed the diameter in a small scale [4]. During 

attack on high degrees nodes, the random network does not 

show any difference irrespective of selection with random or 

descending degree nodes [4].  In scale-free metabolite 

network, targeted removal (Table 3a, 3b) show drastic change 

in diameter due to small number of nodes with very high 

connectivity.  The diameter almost doubles when 5% of the 

nodes were removed. 

 
Table 2a: Random Removal of Nodes from the Metabolite Network 

Nodes Clustering Coefficient Diameter 

90 0.045 56 

180 0.045 51 

270 0.045 39 

360 0.046 37 

450 0.048 34 

 
Table 2b: Random Removal of Nodes from the Random Network 

Nodes Clustering Coefficient Diameter 

90 0.001 9 

180 0.001 10 

270 0.001 10 

360 0.001 10 

450 0.001 11 

 
Table3a: Targeted Removal of Nodes from the Metabolite network 

Nodes Clustering Coefficient Diameter 

90 0.01853 53 

180 0.0123 30 

270 0.00525 25 

360 0.00225 25 

450 0.002 25 

540 0.002 11 

 

Table 3b: Targeted Removal of Nodes from the Random Network 

 

 

 

 

 

 

 

 

 
 

 

3.3 Betweeness vs. Degree Distribution 
In  order  to  understand  the  relation  between  high  degree  

and  high  betweeness,  the betweeness is plotted as a function 

of connectivity (Fig. 2). The metabolite network shows that 

most metabolites have low neighborhood connectivity but very 

high betweeness. This shows that many metabolites typically 

connect pathways and are potentially important metabolites. 

These results suggest that the network has modular 

organization with the high-betweenness and low-connectivity 

nodes as important links between these modules. The selected 

nodes with high degree and betweeness centrality are hubs and 

they are important nodes that control the overall network 

interaction. Hub metabolites include Pyruvate, Gibberelin, 

Stemmadine, Anthracene cis-1,2-dihydrodiol which have been 

investigated to important in A.thaliana. 

 

 
Fig. 2: Betweenness (B) is plotted as a function of connectivity (k) for 

metabolite network 

 

3.4 Modularity 
Modularity can be defined as a cellular functionality which can 

be seamlessly partitioned into a collection of modules. Each 

module is a discrete entity of several elementary components 

and performs an identifiable task, separable from the functions 

of other modules.  

 

We used the Newman and Girvan edge-betweenness method to 

calculate the number of clusters available in the network. This 

algorithm identifies edges in a network that falls between 

communities and then removes them, leaving behind just the 

communities themselves [6]. We have utilized the Radatools 

[9] to apply the algorithm and the input files were the .NET 

files of the network. 

 

Community detection   using   Newman’s   algorithm [10]   

detects   101   communities   in metabolite network.  The 

largest community had 506 metabolites that had the highest 

interaction within the group and lower interaction outside the 

group (Table 4a). Metabolites taking part in similar functional 

type of reactions will share common properties. 

 

 

 

Nodes Clustering Coefficient Diameter 

90 0.001 8 

180 0.001 9 

270 0.001 9 

360 0.001 11 

450 0.001 12 



Table 4a: The Communities in A.thaliana Substrate graph and the 

number of Nodes in each Community  

 

Number of Community Number of Nodes 

1 506 

2 399 

3 375 

4 337 

5 295 

6 250 

7 37 

8 36 

9 36 

10 18 

11 16 

12 15 

12 14 

14 14 

15 13 

16 12 

17 12 

18 12 

19 11 

20 10 

21 10 

22-24 9 

25-28 7 

29-32 6 

33-37 5 

38-46 4 

47-51 3 

52-72 2 

 
 

Table 4b: Pathways corresponding to the single node communities in the 

metabolite centric graph 

  Isolated Pathways 

1 Steroid hormone biosynthesis 

2 Tyrosine metabolism 

3 Monoterpenoid biosynthesis 

4 Arachidonic acid metabolism 

5 Indole alkaloid biosynthesis 

6 Glycine, serine and threonine metabolism 

7 Porphyrin and chlorophyll metabolism 

8 Fructose and mannose metabolism 

Table 4c: The Pathways corresponding to Nodes in largest 

Community(1) with 506 Nodes 

 

These metabolites were further traced back to the pathways 

(Table 4c) that contained these metabolites and the list of 

pathways for the largest community was collected. They 

mainly constituted the amino acid metabolism pathways. There 

were 27 communities with only one metabolite called isolated 

metabolites (Table 4b). They produce similar intermediate 

compound and hence have interacted more closely. The 

pathways in the highest cluster were the amino acid 

metabolism pathways and the chlorophyll metabolism 

pathways. 

 

4 Conclusion 
Using earlier proposed methods we designed an automated 

method of metabolite network construction with KEGG 

metabolic pathway data.  Analysis of this network gives us a 

complete idea of interaction between enzymes, reactions, and 

metabolites. The substrate centric graph helps in finding the 

conserved metabolites and reactions. This construction and 

analysis procedures  can  be  further  applied  to  an  enzyme  

network  and  the  enzyme  evolution studies in A.thaliana. 
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