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Abstract
When using the Gene Ontology (GO), nucleotide and

amino acid sequences are annotated by terms in a structured
and controlled vocabulary organized into a relational graph.
The usage of the vocabulary (GO terms) in the annotation
of these sequences may diverge from the relations defined
in the ontology. We measure the consistency of the use
of GO terms by comparing GO’s defined structure to the
terms’ application. To do this, we first use synthetic data with
different characteristics to understand how these character-
istics influence the correlation values determined by various
similarity measures. Using these results as a baseline, we
found that the correlation between GO’s definition and its
application to real data is relatively low, suggesting that GO
annotations might not be applied in a manner consistent with
its definition. In contrast, we found a sub-ontology of GO
that correlates well with its usage in UniProtKB.

1. Introduction
The Gene Ontology (GO) [1] is a controlled vocabulary

describing the domain of gene products, i.e., enzymes and
other proteins encoded in DNA. GO is made up of three
independent, orthogonal ontologies: (1) the Cellular Com-
ponent ontology, which describes where a gene product is
located at a subcellular level; (2) the Molecular Function
ontology, which describes the function a gene product can
perform; and (3) the Biological Process ontology, which
describes series of events and molecular functions. Each
ontology is structured as a directed acyclic graph (DAG).
Each node of each DAG is a term with a distinct name and
description. The edges of a DAG represent the relations be-
tween the connected nodes. The relations are endowed with
descriptive logic so that inferences can be made between
parent and child nodes. A gene product can be annotated by
assigning GO terms to the description of the gene product.
This assignment is also referred to as an association between
a term and a gene product.

GO has become widely accepted in the genomics com-
munity as a concise means of annotating gene products for
machine translation [2]. However, due to the wide scope of
the genomics community, ambiguities in term usage exist.

The GO project is a collaborative effort between groups
sharing their vocabularies. Group members participate on
a self-interested, best-effort basis to reach consensus on
the addition, deletion or editing of terms within the three
ontologies. However, individual curators from different com-
munities may interpret the definitions differently, resulting in
inconsistent usage, and thus it is necessary to continually
refine terms. With the large increase of gene products
that are annotated with GO, methods to evaluate semantic
similarity based on annotations are critical in evaluating the
consistency of usage. This motivates our study, which is
to apply measures of semantic similarity to estimate the
consistency between how GO is defined and how it is used
in practice.

The notion of semantic similarity is frequently used in
information retrieval, where terms are indexed by similar
meaning rather than similar words. This concept was used in
early research with natural language processing techniques:
associating descriptive language with terms and quantifying
this similarity. The ontology terms in GO may be examined
by clustering terms together with similar semantics [3] using
these techniques.

Earlier work done [4], [5] to determine semantic similarity
of terms using the annotation they have been associated
with were designed for specific applications: malapropism
correction (the correction of outliers in the annotation),
assessing functional similarity of gene products [6], pre-
dicting protein interaction [7], assessing the influence of
electronic annotations [8] and assisting in the annotation of
new sequences [4]. In contrast, we use some of the same
measures they do, but for the purposes of measuring the
consistency of the use of GO.

All three ontologies within GO contain many biologi-
cally/biochemically descriptive terms that have not been used
(not applied to any annotation). A large number of terms are
used only once or not at all. This creates a usage pattern
where a large percent of GO terms fall in the tail of the
distribution, (called the long tail phenomenon). Because of
this phenomenon, certain types of similarity measures may
be preferable to others in evaluating ontology usage. Thus,
one of our results is a test using synthetic data with different
characteristics to understand how various similarity measures



measure correlation, and how these measures are influenced
by various properties of the data. We then describe how
the synthetic data parameters imply properties of real data.
Our results show that one measure (called “Cosine”) is only
useful in recognizing correlations when the gene product
usage comes with a long tail and each term is annotated by
many moderately concentrated terms in the ontology. An-
other measure (“Jiang’s”) is not well suited for unbalanced
usage of terms in the ontology. The remaining measures
(“Resnik’s,” “Lin’s,” and “Rel”) are almost independent of
the data characteristics that we varied, especially Resnik’s.

Using our results on synthetic data as a baseline, we then
sampled partial ontologies from GO and measured corre-
lations between their definitions and their usage. Relative
to correlation results found in synthetic data with similar
configurations to the real data, we found that the average
correlation is low. This might suggest that GO annotations
are not applied in a manner consistent with their definition.
In contrast, we found that the sub-ontology rooted at the term
“GO:0005275: amine transmembrane transporter activity”
correlates well with its usage in UniProtKB.

2. Method
2.1 Problem Formalization

An ontology G = (V,E) is a directed acyclic graph
(DAG), where each vertex corresponds to a term ci. There
is an edge from ci to cj if and only if cj is explicitly a
ci. Since this “is_a” relation is transitive, cj is_a ci if and
only if there is a path from ci to cj . We consider cj to be a
descendant of ci if a path from ci to cj exists.

According to the gene product annotation guidelines [9],
a gene product can be annotated by zero or more nodes of
each ontology. Let Ci be the set of terms used to annotate
gene product ei. Similarly, we can define Ej as the set of
gene products annotated by term cj . By definition, cj ∈
Ci ⇔ ei ∈ Ej . In addition, annotating a gene product with
a term implies that the gene product is also annotated by
all ancestors of the term. Thus, ci is a descendant of cj
implies Ei ⊆ Ej . The ancestor term inherits all annotations
from its descendant, so the root term has all annotations:
Eroot =

⋃
i

Ei.

2.2 Similarity Measures
There are many different functions for calculating seman-

tic similarity between terms. We consider the following five
measures.

Resnik [10] proposed that the amount of information
provided by the common ancestors of the two terms may
be used as a measure:

SimResnik(ci, ci) = max
ck∈S(ci,cj)

− logP (ck) , (1)

where S(ci, ci) is the set of ancestors shared by both ci and
cj and P (ck) is the probability that a randomly selected gene
product is annotated by term ck: P (ck) = |Ek|/|Eroot|.

Lin [11] extended Resnik’s measure by modifying the
information content of a term to take both descendants into
consideration:

SimLin(ci, ci) = max
ck∈S(ci,cj)

(
2 logP (ck)

logP (ci) + logP (cj)

)
.

(2)
Generic terms do not have a high relevance for the com-

parison of different gene products. Andreas’s [5] relevance
measure combined both Lin’s and Resnik’s measure by
weighting Lin’s similarity measure with 1 − P (ck). For a
detailed term ck, P (ck) becomes relatively very small and
makes 1− P (ck) close to 1 and negligible:

SimRel(ci, ci) = max
ck∈S(ci,cj)

(
2(1− P (ck)) logP (ck)

logP (ci) + logP (cj)

)
.

(3)
Jiang [12] proposed a similarity measure as the reciprocal

of semantic distance:

SimJiang(ci, ci) =

max
ck∈S(ci,cj)

(
1

− logP (ci)− logP (cj) + 2 logP (ck)

)
.

(4)

The Cosine similarity [13] is a measure frequently used in
data mining. It is defined as the cosine of the angle between
two vectors in a hyperspace. We model each term ci as
a vector vi = (vi1, vi2, . . . , vin), in which vij = 1 if ci
annotates ej , and 0 otherwise. The measure is then defined
as

Simcos(ci, ck) =
〈vi, vk〉
‖vi‖‖vk‖

, (5)

where 〈vi, vk〉 is the dot product of vectors vi and vk and
‖vi‖ is the length of vi.

2.3 Evaluation
In order to measure how well an ontology’s usage corre-

lates with its definition, we measure the correlation between
how the gene products are annotated with terms (via the
similarity measures in Section 2.2) and the terms as they
are defined in the ontology. Formally, for each pair of terms
(ci, cj), we measure their distance in the ontology DAG. We
then sort all term pairs in descending order (greatest distance
first) and put them into a sorted list LDAG. We then measure
the similarity between each pair of terms via the similarity
measures in Section 2.2, sort the term pairs in ascending
order (loweset similarity first) and put them into a sorted
list Lmeasure, where the measure is Resnik’s, Lin’s, Jiang’s,
Rel or Cosine. Finally, we measure the correlation between



the two sorted lists LDAG and Lmeasure using Kendall’s τ
coefficient [14].

The basic τ method requires all values in the ranked lists
to be unique, which cannot be guaranteed in our problem
setting. Therefore, we make a common modification [15]
to the basic method as follows. Let L1 and L2 be the two
(equal-length) lists that we are comparing. Let `i1 ∈ L1 be
the ith element in L1, and `i2 ∈ L2 be the ith element in
L2. Similarly define `j1 and `j2 for j 6= i. Now consider each
pair of pairs ((`i1, `

i
2), (`j1, `

j
2)) for i 6= j. We say that this

pair is concordant if `i1 > `j1 and `i2 > `j2 or `i1 < `j1 and
`i2 < `j2. The pair is discordant if `i1 > `j1 and `i2 < `j2 or
`i1 < `j1 and `i2 > `j2. (Note that all inequalities are strict.)
Now let nc be the number of concordant pairs, and nd be
the number of discordant pairs. Finally, let n1 be the number
of ties among elements of L1 and n2 be the number of ties
among elements of L2. Then the τ coeficient is defined as:

τ(L1, L2) =
nc − nd√

(nc + nd + n1)(nc + nd + n2)
. (6)

The τ coefficient ranges from −1 (perfect negative correla-
tion) to +1 (perfect positive correlation).

3. Generating Synthetic Data
Before we apply our correlation technique to real on-

tological data, we must first determine what τ values we
should expect if an ontology’s application to annotating
gene products in fact does reflect its definition, under each
similarity measure of Section 2.2. Thus we generated pairs
(ei, Ci), where ei is a synthetic gene product and Ci is its
simulated annotation set, i.e. each term cj ∈ Ci annotates
gene product ei. The synthetic data has various properties,
which we use to characterize the similarity measures.

Let G = (V,E) be the ontology DAG and m = |V |. For
simplicity, we assume G to be a complete tree of depth d
and branching factor k. The synthetic annotation data was
generated using the following randomized process on G. For
each of the n distinct gene products, we select one term as
the first term according to a predetermined initial distribution
ω0. The annotation data set is then generated using three
parameters n, r, and γ as follows.

1) Choose a initial distribution ω0 =
{P0(c1), P0(c2), P0(c3), ..., P0(cm)} over terms
C = {c1, c2, c3, ..., cm}. We will examine the
distribution ω0 in Section 4.

2) Randomly choose a starting term si ∈ C according to
ω0 for each of the n synthesized gene products ei.

3) Let D be the all-pairs shortest path matrix on the
ontology DAG G, where Dij is the number of steps
needed to reach cj from ci. For each si, generate a
distribution Qi over C, where the probability for each
term decreases exponentially with its distance to si,
i.e. Qi(cj) = γDij .

4) Choose r terms from C according to Qi, and add them
to Ci. For each cj chosen, add all of its ancestors to
Ci.

4. Result and Discussion
4.1 Synthetic Data: Parameter Sensitivity
Analysis

To observe how the parameters of Section 3 influence
correlation, we start by choosing ω0 to be the uniform
distribution. Thus each starting term was chosen uniformly
from the ontology DAG. Twenty sets of annotations were
generated for each configuration of (n, r, γ) on a complete
binary tree of depth 7. We evaluated the mean values of
the correlation between LDAG defined in Section 2.3 and
the sorted list for each measure, which are τ(LDAG, LLin),
τ(LDAG, LResnik), τ(LDAG, LRel), τ(LDAG, LJiang) and
τ(LDAG, LCos) on various configurations of parameter val-
ues.

Figure 1 shows the the average τ for a variable number n
of gene products using r = 15 and γ = 0.6. In Figure 1, the
average correlation for Cosine increases with increasing n
(the number of annotations), while the four other measures
are not affected by n. Also, we notice that when n > 170,
further increase of n will not increase τ for any measure
very much.

Fig. 1: Average τ of each similarity measure with respect to
n the number of distinct gene product when fixing r and γ
(n ∈ [40, 200], r = 15, γ = 0.6).

Figure 2 shows the results for variable γ when n = 200
and r = 8. For γ < 0.65, the correlation for Jiang’s measure
decreases with growing γ. In contrast, τ for Cosine increases
with growing γ. Also, the change of γ does not influence
the correlation for other three measures. When γ > 0.65,
τ for every measure begins to decrease with increasing γ,
especially for Cosine, which decreases dramatically.

In Figure 3, we chose a moderate γ = 0.6 and sufficiently
large n = 200 to examine the trend in the values of r. Similar
to the results in Figure 1, correlations for Resnik’s, Lin’s, and
Rel change little with increasing r, Jiang’s decreases slightly,
and the correlation for Cosine increases significantly.

From the three figures, we can see that γ affects τ of
all similarity measures, though less so for Lin’s, Rel, and



Fig. 2: Average τ of each similarity measure with respect to
γ when fixing n and r (n = 200, r = 8, γ ∈ [0.2, 0.9]).

Fig. 3: Average τ of each similarity measure with respect
to r the number of terms associated with each gene product
when fixing n and γ (n = 200, r ∈ [2, 20], γ = 0.6).

Resnik’s. A gene product can be associated with a number
of distinct terms, and γ defines how sparse the annotation
of a gene product is distributed in the ontology. A small γ
indicates that the gene product has been annotated by several
terms close each other. Results show that Cosine correlates
more when γ ≈ 0.65 while the correlation for the other four
increases when γ is low.

The parameter r defines the number of terms assigned to
a gene product. Higher r indicates that an individual gene
product receives more annotations. This parameter affects
Cosine significantly: its correlation goes high with increasing
r. In contrast, Resnik’s, Lin’s and Rel show a very slight
decrease when r increases, though they are still quite stable.

In contrast to γ and r, the number of gene products n
has limited influence on the correlation. Generally, higher τ
can be obtained for all measures when more annotations are
made. However, as long as there is a sufficient number of
annotation records (n > 170), further increase brings only a
slight increase to the correlation.

From these results we see that Cosine is only suited
for evenly annotated data with moderate γ ≈ 0.65 and
high r, which means each gene product is annotated by
many moderately concentrated terms in the ontology. Jiang’s
measure is best suited for data with low γ and r, which
means each gene product is annotated by very few closely
related terms in the ontology. Also, we found that Resnik’s,

Lin’s and Rel are almost independent of the three parameters.

4.2 Synthetic Data: Geometrically Distributed
Number of Annotations

We now modify the synthetic data generation model to
be more realistic. When an ontology is used in practice,
the terms commonly used often come from a relatively
small subset of the entire set of terms. As an example,
refer to Figure 4, which shows that in the database UniPro-
tKB/Swiss_Prot, 40% of the gene products are annotated
by at most two GO terms, and less than 10% of gene
products receive annotation from more than 5 terms. On
average, there are five terms used to annotate each gene
product. Thus, in our updated model, we let r (the number
of terms annotating a gene product) vary among the gene
products. Based on Figure 4, we assume the number of terms
follows a geometric distribution with parameter p, which
is the probability that a randomly selected gene product is
annotated by a single term. (So a smaller value of p results
in a longer tail.) Figure 4 suggests a value of p between 0.35
and 0.50.

Ten sets of annotations were generated on each configura-
tion of n = 100, γ = 0.3 and p, whose values ranged from
0.1 to 0.9, on a complete binary tree of depth 7. In Figure 5,
we show the average value of τ that resulted from running
our experiments for variable values of p. The figure suggests
that larger values of p tend to increase the correlation for all
measures, except for Cosine (which decreases) and Resnik’s
(which is the most stable of all). The correlation of Jiang’s
increases dramatically with p.

Fig. 4: Percentage of gene products annotated in GO versus
number of terms used to annotate them.

The second variation we made over the experiments of
Section 4.1 is in the distribution ω0. Our results in Sec-
tion 4.1 used a uniform distribution for initial distribution
ω0. We now examine the effect of nonuniformity of the ω0

on the τ correlation coefficient for each similarity measure
using skewed ω0, where nonuniformity is measured by the



Fig. 5: Average value of τ based on variable number of
annotations r geometrically distributed with parameter p
(n = 100, γ = 0.3).

normalized entropy H0:

H0(ω0) =
H(ω0)

Hmax
=

−
m∑
i=1

P (ci) log2 P (ci)

log2m

.

Two hundred sets of annotations were generated from
the configuration n = 200, γ = 0.6 and r = 2. In each
set, we chose m values at random from [0, 1] according
to an exponential distribution with parameter λ ∈ [0.5, 10]
and then normalized them to get ω0. Figure 6 shows the
impact of ω0’s normalized entropy on τ . We can see that
increasing H0 (making ω0 more uniform) generally increases
the correlation of all five measures, though Resnik’s and
Lin’s are fairly stable. In particular, Cosine and Jiang’s
increase dramatically with increasing H0.

Fig. 6: Average value of τ versus the normalized entropy H0

of the starting distribution ω0 (n = 200, γ = 0.6, r = 5).

From these results we can see that Cosine and Jiang’s are
not well suited for skewed data (with a low-entropy ω0),
and Cosine is not well suited for data with a short tail (high
p value). Also, unlike Cosine and Jiang’s, the correlation
values of Resnik’s, Lin’s and Rel (especially Resnik’s) are
more stable across many parameter values.

4.3 Real Data: Partial Ontology
We empirically compared Rel, Cosine, Resnik’s, Lin’s,

and Jiang’s similarity measures using annotations from
UniProtKB [16] with a corresponding sub-ontology from

Table 1: Comparison of τ on “GO:0005275”
Measure UniProtKB/Prot UniProtKB

Cos 0.424 0.319
Resnik 0.596 0.576

Lin 0.621 0.602
Rel 0.618 0.630

Jiang 0.441 0.480

Terms 17 25
Genes 895 25105

Annotations 907 25593

GO. We used a subset of 25593 annotations along with
the subtree from GO, rooted at the term “GO:0005275:
amine transmembrane transporter activity.” This annotation
set consists of 25105 identified genes and contains 25
unique terms. UniProtKB is comprised of two sections,
UniProtKB/Swiss_Prot and UniProtKB/TrEMBL. UniPro-
tKB/Swiss_Prot contains curated annotations while UniPro-
tKB/TrEMBL contains entries with computationally ana-
lyzed annotations generated by automatic procedures. These
are not reviewed and curated by an author. Thus, UniPro-
tKB/Swiss_Prot may have data of higher quality than
UniProtKB/TrEMBL. Note that 98% of the records are
electronically annotated. We first computed correlations us-
ing only UniProtKB/Swiss_Prot, then using the entire set
(UniProtKB).

The electronic annotations in UniProtKB/TrEMBL have
many gene products that are each annotated by a sin-
gle term. Further, the annotation in UniProtKB/TrEMBL
contains only a subset of GO terms and is significantly
larger than UniProtKB/Swiss_Prot. Thus, in Table 1 we see
that Cosine’s correlation decreased dramatically while only
Rel and Jiang’s have slightly improved correlation when
switching from UniProtKB/Swiss_Prot to UniProtKB. Since
Resnik’s, Lin’s and Jiang’s are almost immune to changes in
parameter values (according to Section 4.2), we can use their
correlations from our tests on synthetic data as a baseline
for our experiments here. The τ ≈ 0.6 for these three
measures from Table 1 is very close to the baseline suggested
by Figures 1–3. This leads us to believe that this partial
ontology correlates well to its usage.

4.4 Real Data: Full Ontology
Our experiment on the full ontology was performed on a

copy of GO annotations dated April 2010, which consisted
of 32651844 annotations of 6729320 gene products using
terms from three ontologies (see Table 2). There are 43645
is_a relations defined over the 26664 terms. From the table
we see that the three ontologies differ in size. The Biological
Process ontology is much larger than the other two. Also,
the table shows that more than one third of the terms are
defined but have never been used. For Biological Process,
almost half are unused.

We studied each of GO’s three ontologies by computing



Table 2: Number of terms and relations for each GO on-
tology. Numbers exclude obsolete terms. “Active” refers to
terms that have been used at least once. “Relations” refers
to is_a relations.

Ontology Terms RelationsTotal Active
Cellular Component 2626 1653 3992
Molecular Function 8659 5885 10132
Biological Process 18005 9497 29521

the Kendall τ rank correlation coefficient for every pair
of measures in Section 2.2 as well as the ontology DAG
distance D. In order to compute τ for m terms, we would
need to compute the sorted similarity measure list on all

(
m
2

)
term pairs. Thus the algorithm for computing the Kendall τ
rank correlation coefficient in our case has a complexity of
Θ(m4 log(m)) [17]. Given that the number of terms ranges
from 1653 to 9497 (Table 2), it is infeasible to evaluate
τ directly. Instead, we estimate τ by uniformly randomly
sampling term pairs from the list. In order to do so, each
time we sample 1000 term pairs from the list and compute τi,
and then repeat this sampling process 50 times. We estimate
τ as the mean of τ1, . . . , τ50. Since the standard deviation of
τ1, . . . , τ50 between each measure was < 0.01, we consider
the mean to be a good estimate.

Tables 3–5 present the τ values for each pair of similarity
measures for each of the three ontologies. The first column
of each table shows the correlations between DAG distance
and the five measures. Res, Lin, Rel and Jiang each correlate
with DAG at about the same values, while Cosine only
shows a weak correlation. Also, we noticed that the first
four are highly correlated with each other, especially Jiang
vs. Lin and Res vs. Rel, which correlate near 0.99. This is
unsurprising given the relationships among the definitions of
these measures.

Table 3: Estimated τ between similarity measures on Cellu-
lar Component.

DAG Cos Jiang Rel Lin
Res 0.44 0.25 0.85 0.99 0.83
Lin 0.40 0.45 0.98 0.83
Rel 0.44 0.25 0.84

Jiang 0.40 0.43
Cos 0.23

Table 4: Estimated τ between similarity measures on Molec-
ular Function.

DAG Cos Jiang Rel Lin
Res 0.40 0.20 0.90 0.99 0.89
Lin 0.37 0.33 0.99 0.89
Rel 0.40 0.20 0.90

Jiang 0.38 0.32
Cos 0.19

Table 5: Estimated τ between similarity measures on Bio-
logical Process.

DAG Cos Jiang Rel Lin
Res 0.37 0.25 0.96 0.99 0.96
Lin 0.37 0.29 0.99 0.95
Rel 0.37 0.25 0.96

Jiang 0.37 0.29
Cos 0.24

From Section 4.1, we understand how values for n, r, γ,
p, and H0(ω0) for an ontology and its annotations affect
correlation values for the similarity measures we use. The
values of n, r, and p are directly estimated from the data.
However, it is not obvious how to directly estimate γ and
H0(ω0) from the data. But if we look at H0(ω) (the nor-
malized entropy of the final distribution over the terms), we
find that it is generally low. From this we estimate that both
H0(ω0) (the normalized entropy of the initial distribution)
and γ are generally low in the real data. Specifically, we use
H0(ω) as an upper bound of H0(ω0). Table 6 shows values
of the relevant parameters in GO; γ is omitted and instead is
qualitatively estimated as “low”, since Table 6 gives H0(ω)
as relatively low, ranging from 0.44 to 0.58.

Table 6: Corresponding parameters for each ontology.
Ontology n r p H0(ω)

Molecular Function 5860336 2.85 0.35 0.58
Cellular Component 3217382 2.13 0.47 0.44
Biological Process 5127003 1.94 0.52 0.55

Since increasing n beyond a sufficient number (170 in
synthetic data) brings only minimal changes in correlation,
we expect n will have little effect on correlation values even
though it is four orders of magnitude higher than the values
used in our synthetic data. The τ ≈ 0.2 for Cosine in GO
lies in the interval [0.1, 0.4] that is suggested by Figures 3
and 5 for synthetic data of similar characteristics.

Table 6 gives low H0(ω) from 0.44 to 0.58, which
suggests that both γ and H0(ω0) are low. The τ ≈ 0.39
for Jiang’s is low compared to either 0.8 given by low γ in
Figure 2, 0.45 given by p ≈ 0.25 in Figure 5 or 0.6 given
by H0(ω0) around 0.4 in Figure 6.

In addition, the average τ ∈ [0.37, 0.44] for Resnik’s,
Lin’s and Rel are low compared with those from the syn-
thetic data and GO:0005275, where similar configurations
show that correlations around 0.6 are possible (and very
stable in the case of Resnik’s). All these results suggest
that GO’s use correlates less with its defintion compared
to GO:0005275, though more experimentation should be
performed to confirm this.

5. Conclusion
The Gene Ontology (GO) terms are widely used to

annotate gene products. However, it is unknown whether



the terms defined in GO are used to label gene products in a
manner consistent with their definition. Since there are many
ways to measure semantic similarity, we first used various
synthetic data models to study several similarity measures
to characterize their sensitivity to various properties of the
data. We found that Cosine is only suitable for annotation
sets that have with long tails (low p values) and in which
each term is annotated by many moderately concentrated
terms in the ontology. Jiang’s measure is not well suited
for skewed data (with a low-entropy ω0) and in which each
gene product is annotated by very few closely related terms
in the ontology. Also, we found that Resnik’s, Lin’s and Rel
are almost independent of the these parameters, especially
Resnik’s.

Then we investigated a small sub-ontology and its annota-
tions of data from UniProtKB and found that Rel, Resnik’s
and Jiang’s measures indicate correlations between the DAG
and its application relative to what seems to be the best
possible based on tests on synthetic data. Thus we conclude
that this partial ontology’s definition relates well to its usage.

Finally, from our preliminary result on the full GO ontolo-
gies, we found that correlation results using the more stable
measures (especially Resnik’s) seem to indicate that the cor-
relation between GO’s use and its defintion is low, especially
when compared to the correlation between GO:0005275 and
UniProtKB. More experimentation should be performed to
confirm this.

In addition to a more detailed analysis, future work
includes examining other measures that evaluate semantic
similarity, and characterizing them based on synthetic data
parameters as we did with those of this paper. This might
reveal measures that are even less sensitive to the parameter
values and might in turn be even more useful for studying
real data.

Our synthetic data model was based on complete binary
trees that were not similar to the DAGs in GO. Thus it is
possible that the trends observed in our synthetic data results
might not reflect what we would see in a full ontology.
Therefore, in our ongoing work, we randomly selected 100
terms from GO, each with around 100 child terms, yielding
100 subDAGs, each of size approximately 100. We then
measured the sensitivity of each similarity measure’s τ value
to the five parameters by repeating the tests of Section 4.1
on each of the 100 subDAGs. Our preliminary results show
that Resnik’s measure remained almost invariant to changes
in parameter values when the subDAG remains unchanged.
However, Resnik’s τ value was sensitive to the topology
of the subDAG. In our continued research, we will fur-
ther investigate this, attempting to correlate the similarity
measures’ τ values to properties of the subDAGs, such as
branching factor, depth, diameter, and skewness.
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