
 
 

 

  

Abstract— Time-course gene expression profiles 
associated with periodic biological processes should 
appear periodic. However, because of inherit 
problems with the experimental protocols 
measured gene expression data are actually 
pseudo-periodic, not exactly periodic. Therefore, 
identifying pseudo-periodically expressed gene 
from their time-course data could help understand 
the molecular mechanism of periodic biological 
processes. This paper proposes a method for 
identifying pseudo-periodic gene expression 
profiles. In the proposed method, a pseudo-periodic 
gene expression profile is modeled by a linear 
combination of trigonometric and exponential 
functions in time plus a Gaussian noise term. A 
two-step parameter estimation method is employed 
for estimating parameters in the model. On the 
other hand, non-pseudo periodic gene expression 
profiles are model by a constant plus a Gaussian 
noise term. The statistic F-testing is used to make a 
decision if a gene is pseudo-periodically expressed 
or not. Three biological datasets were employed to 
evaluate the performance of the proposed method. 
The results show that the proposed method can 
effectively identify pseudo-periodically expressed 
genes.   
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I. INTRODUCTION 
DNA microarray experiments have been employed to 
produce gene expression profiles at a series of time 
points. Such time-course gene expression data provides 
a dynamic snapshot of most (if not all) of the genes 

related to the biological development process. The 
analysis of such time-course gene expression data is 
helpful in understanding the mechanism of their 
associated biological process. Many time-course gene 
expression datasets have been collected from periodic 
biological processes. For periodic biological process, 
Furthermore, identifying periodically expressed gene 
from their time-course expression data could help 
understand the molecular mechanism of those 
biological processes [1,2].  

In past decade, a number of methods have been 
proposed to identify periodically expressed genes. The 
discrete Fourier transform method is the earliest 
method for identifying periodically expressed genes [1, 
2]. However, microarray experiments typically 
generate short time-course data.  As pointed in [3], the 
frequency resolution by the discrete Fourier transform 
is often not adequate for resolving periodicities of 
interest. Recently periodic (trigonometric) functions 
are used to model periodic gene expression data.  

There are typically two ways to match the models 
with data. In one way, many models with known 
parameters are created, and searching datasets is 
performed to find the expression profiles which match 
well with some of created models.  For example, 
Authors in [4] proposed a method called CORRCOS 
which generates 101000 periodic synthetic models 
with different frequencies and phases. Each gene 
expression profile is compared to each of these 101000 
models. The cross-correlation is used to measure the 
similarity between the synthetic model and gene 
expression profiles. The frequency and phase of the 
model most similar to the expression profile is assigned 
to the corresponding gene. Although it can identify 
periodically expressed gene, CORRCOS is too time-
consuming and the cross-correlation is not real metric. 
Authors in [3] developed another algorithm named 
RAGE for detecting periodically expressed genes. Like 
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CORRCOS, RAGE is a synthetic model-based method. 
RAGE first estimates the frequency of expression 
profiles using autocorrelations of both the synthetic 
model and gene data. Then, RAGE generates a number 
of models with the estimated frequency over a variety 
of phases. The similarity between the synthetic model 
and gene expression profile is measured by a real 
metric called Hausdorff distance. Compared with 
CORRCOS, RAGE is less time-consuming [3]. 

These methods lack the statistical analysis. Wichert 
et al [5] proposed a statistical method to identify 
periodically expressed genes from their time-course 
gene expression profiles. The method models gene 
expression profiles also as sine functions. Instead of 
estimating nonlinear parameters (frequency) in the 
model, they used the Fisher g-test to find the best 
frequency. Based on Fisher g-test, several similar 
method were also developed for identifying [6,7,8]. 
However, a recent research [9] concludes that the 
Fisher g-test is poor if the time-course data is short 
and/or that data length is not an integer number of 
periods. In [9], the data length is said to be short if it is 
less than 40 data points. By this criterion, most gene 
expression profiles are too short to use Fisher g-test. In 
addition, it is hard in practice to obtain gene expression 
profiles with an integer number of periods as the period 
might be unknown before collecting the data. 

In another way, models with unknown parameters 
are employed and unknown parameters are estimated 
based on the data such that the models with estimated 
parameters match well with the data. However, it is 
challenging to estimate parameters which are nonlinear 
in a model such as trigonometric function. Recently we 
proposed a two-step parameter estimation method to 
estimate all parameters in trigonometric) function 
models from gene expression profiles [10, 11]   

     In principle, expression profiles associated with 
periodic processes should appear periodic. However, 
because of inherit problems with gene expression 
experimental protocols [1,12, 13], measured gene 
expression data are actually pseudo-periodic, not 
exactly periodic. In this paper, a method is proposed 
for identifying pseudo-periodic gene expression 
profiles. In the proposed method, a pseudo-periodic 
gene expression profile is modeled by a linear 
combination of trigonometric and exponential 
functions in time plus a Gaussian noise term. This 
model is more complex than the one in [10, 11]. A new 
two-step parameter estimation method is employed for 
estimating parameters in the model. On the other hand, 
non-pseudo periodic gene expression profiles are 
model by a constant plus a Gaussian noise term. The 
statistic F-testing is used to make a decision if a gene is 

pseudo-periodically expressed or not. Three biological 
datasets were employed to evaluate the performance of 
the proposed method. 

II. METHODS 

In this section, we first propose the model for pseudo-
periodic gene expression profiles and then describe a 
two-step parameter estimation method for the proposed 
model. Finally a hypothesis testing is described to 
make a decision whether a gene expression profile is 
pseudo-periodic or not.  

2.1 Model for pseudo periodic gene expression 
profiles  

Let )(tx  (t=1,2,…, m) be a time-course gene 
expression profile generated from a periodic biological 
process, where m is the number of time points at which 
gene expression is measured. In this study, we always 
shift the mean of gene expression profiles to 0. To 
model pseudo-periodic gene expression profile, we 
adopt the linear combination of trigonometric and 
exponential functions plus a Gaussian noise term as 
follows: 

)()]sin()cos([)( ttbtaetx t εωωα ++=                   (1) 
where a and b are the coefficients of sine and cosine 
function, respectively; α is the decrease (increase) rate; 
ω  is the frequency of periodic expression data; and 

)(tε  represent random errors. This study assumes that 
the errors have a normal distribution independent of 
time with the mean of 0 and the variance of 2σ . When 
α =0, model (1) becomes  
             )()sin()cos()( ttbtatx εωω ++=  
              or     )()sin()( ttAtx εω +Φ+=                   (2) 
which are widely used to generate the synthetic 
periodic gene expression profiles[1-9]. However, 
because of inherit problems with gene expression 
experimental protocols we believed that model (1) is 
more reasonable.  

Given a time-course gene expression profile )(tx  
(t=1, 2,…, m), estimating parameters a, b, α and ω in 
model (1) is a nonlinear estimation problem as α and ω 
is nonlinear in the model. Nonetheless, our observation 
is that noise-free model (1) 

  )]sin()cos([)( tbtaetx t ωωα +=          (3) 
can be viewed as the general solution of a following  
second order ordinary differential equation   

     0)()(2)( 2 =++ txtxtx γα&&&                 (4) 



 
 

 

where 222 αωγ +=  and equation (4) is independent of 
a and b. Note that α and γ2 are linear in equation (4) 
while a and b are linear in model (1). Therefore, we 
propose the following two-step parameter estimation 
methods to estimate parameters a, b, α and ω in model 
(1): 

Step1: Based on equation (4), use linear least 
squares method to estimate parameters α and γ2, thus α 
and ω. In detail, let  
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then by the least squares method, α and γ2  are 
estimated as  
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and thus ω is estimated  
 22 ˆˆˆ αγω −=                                (6) 

   As time-course gene expression data are discrete, the 
first and second derivatives )(tx&  and )(tx&& are estimated 
by the central finite difference formula, respectively,  
as follows 
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where Δ is time difference between two consecutive 
gene expression data points.  From equations (7) and 
(8), l=m-2. Note that equations (7) and (8) are for 
evenly spaced time-course data. For unevenly spaced 
time-course data, equation (7) and (8) should be 
replaced by a modified formula which can be found in 
any numerical method textbooks. If the value of  

22 ˆˆ αγ −  calculated by (5) for a gene is negative, this 
gene will be judged not to be periodically expressed. 

Step2: Substitute the estimated values of α and ω in 
Step 1 into equation (1). Apply the least squares 
method to model (1) to estimate parameters a and b.  In 
detail, let 
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by the linear least squares method,  a and b are 
estimated as 
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2.2 Hypothesis testing 

To determine if a gene is pseudo-periodically 
expressed, we test the null hypothesis of 

  H0:     )()( ttx ε=                                              (10) 
versus the alternative hypothesis of 

Ha:      )()]sin()cos([)( ttbtaetx t εωωα ++=         (1)  
In terms of the following F-statistic 
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where 2
0σ̂  is the estimated variance of white noise in 

model (10) and is calculated as   

       TXX
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and 2
1σ̂  is the estimated  variance of white noise in 

model (1) and is calculated as   
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     As noise terms in both model (1) and (10) are 
normal white noise, F-statistic (11) follows the F-
distribution with the degrees of freedom (2, m-2), 
according to statistics theory. When the value of F -
statistic is large enough (greater than a threshold), 
model (10) is rejected, i.e., the gene expression profile 
exhibits periodic behaviour, and otherwise the gene 
expression profile appears white noises. According to 
degrees of freedom (i.e., the length of time-course data 
m) and a significance level (typically, 0.01, 0.05, 0.1, 
0.2, or the like) specified by a user, the threshold value 
can be determined from F-distribution table or by using 
a standard MatLab function icdf(‘f’, 1-α, 2,m-2), where 
α is the significance level. If a significance level 
associated with a gene is smaller than the preset 
significant level, the genes are judged to be pseudo-
periodic, and otherwise it is not.  

III. EXPERIMENTAL RESULTS AND 
DISCUSSION 

This study employs the following three biological 
datasets to investigate the performance of the proposed 
method. 

Eluration-synchronized gene expression data of 
the yeast (ELU): Spellman et al. [1] studied the 
mitotic cell division cycle of yeast and monitored more 
than 6000 genes of yeast (Saccharomyces cerevisiae) 
at 14 equally-spacing time points in the eluration-
synchronized experiment. Genes with missing data 
were excluded in this study. The resultant dataset 
contains the expression profiles of 5766 genes. 



 
 

 

Alpha-synchronized gene expression data of the 
yeast (ALPHA): Spellman et al. [1] studied the mitotic 
cell division cycle of yeast and monitored more than 
6000 genes of yeast (Saccharomyces cerevisiae) at 18 
equally-spacing time points in the alpha-synchronized 
experiment Genes with missing data were excluded in 
this study. The resultant dataset contains 4489 
expression profile of 4489 genes. 

Bacterial cell cycle (BAC): This dataset contains 
gene expression measurements during the bacterial cell 
cycle division process for about 3000 predicted open 
reading frames, representing about 90% of all 
bacterium Caulobacter crescentus genes [2]. The 
measurements were taken at 11 equally-space time 
points over 150 minutes. Genes with missing data were 
excluded in this study. The resultant dataset contains 
the expression profile of 1593 genes.  
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Figure 1.  8 gene profiles identified to be pseudo-

periodically expressed in ELU dataset 
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Figure 2.  8 gene profiles identified to be pseudo-

periodically expressed in ALPHA dataset 
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Figure 3.  8 gene profiles identified to be pseudo-

periodically expressed in BAC dataset  
 

The proposed method is applied to these three datasets. 
Figures 1-3 show the 8 gene profiles identified to be 
pseudo-periodically expressed from these datasets, 
respectively. From these figures, we can see these gene 
expression profiles appear pseudo-periodic. Most of 
gene expression profiles look more periodic, in whose 
models the values of the decrease (increase) rate α is 
small. Others look less, in whose models the values of 
the decrease (increase) rate α is dominant.  

0 5 10 15
-2

0

2

0 5 10 15
-2

0

2

0 5 10 15
-2

0

2

0 5 10 15
-2

0

2

0 5 10 15
-2

0

2

0 5 10 15
-2

0

2

0 5 10 15
-5

0

5

0 5 10 15
-5

0

5

 
Figure 4. 8 gene profiles identified not to be 

periodically expressed in ELU dataset 
 
Figures 4-5 shows show the 8 gene profiles 

identified to be non-pseudo-periodically expressed 
from ELU and ALPHA datasets (Figure for BAC is 
omitted because of space limitation), respectively. 
These gene expression profiles really look random 
noises.  
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Figure 5. 8 gene profiles identified not to be 
periodically expressed in ALPHA dataset 

IV. CONCLUSION AND FUTURE WORK 
The linear combination of trigonometric and 

exponential functions has proposed to model pseudo-
periodic gene expression profiles. A two step linear 
least squares method is proposed to estimate all model 
parameters. In addition, the proposed method uses F-
test to determine if a gene expression profile appears 
pseudo-periodic or not. Computational experiments on 
three biological datasets have showed that the proposed 
method can effectively identify periodically expressed 
genes from their time-course expression profiles. 

In this paper, the performance of the propose 
method is evaluated by manually checking some of 
results, for example, showing the profiles identified to 
be pseudo-periodic or those identified not to be 
pseudo-periodic. In the future, more objective criteria 
should be used to evaluate from both bioinformatic and 
biological view of points. In addition, this paper does 
not evaluate the proposed method on gene expression 
profiles. Another direction of feature work is to 
perform cluster analysis of gene expression data based 
proposed models.   
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