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Abstract—Single nucleotide polymorphisms (SNPs) are 

genetic changes that can occur within a DNA sequence.  

Due to the high frequency of SNPs in the human genome, it 

is desirable to select a small set of SNPs (tagging SNPs) 

that can be used to represent the majority of SNPs. We 

propose a Gibbs sampling approach to find a small set of 

SNPs with minimum redundancy for tagging purposes. Pre-

clustering is added in the basic Gibbs sampling procedure 

to avoid the disturbance caused by local optima. We also 

propose two general purpose correlation measures that are 

able to accommodate SNPs with three or more alleles. Our 

experimental results show that Gibbs sampling process 

converges faster and finds better optimum if pre-clustering 

is conducted before the sampling process.  While our 

tagging process is not guided by any prediction algorithm, 

we are able to obtain comparable results as the SNP 

prediction guided algorithm SVM/STSA [1] while requiring 

much less time.  

Keywords: minimum redundancy, Chi-squared statistic, 
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1 Introduction 

Single nucleotide polymorphism (SNPs) are the most 

frequent variations in the human genome [2], and many 

SNPs show correlated genotypes because of their shared 

evolutionary history [3]. Many known polymorphic sites 

need not be genotyped when testing for genotype-phenotype 

associations because of this redundancy. There is 

considerable interest in finding an informative and minimal 

set of common polymorphisms (tagging SNPs) to detect 

genetic associations while controlling cost [1, 4-7]. 

Halldorsson et al. gave an in-depth review of these 

approaches [8]. 

Popular tagging SNP selection algorithms are typically 

based on block-based heuristics such as LD-Select [9], 

MultiPop-TagSelect [10]. The main drawback of block-

based approaches is that the definition of blocks is not 

always straightforward and there is no consensus on how 

blocks must be formed [11]. Several researchers have 

focused on looking for tagging SNPs using block-free 

methods [1, 8, 11-13]. Most of these methods are based on 

some greedy deterministic searching procedures that are 

susceptible to local optimum. Furthermore, most of these 

methods are using the r
2
 similarity/correlation measure 

between two SNPs. This measure is not able to handle three 

or more alleles. SNPs with three or more alleles are usually 

ignored for processing conveniences. To accommodate 

more alleles, we propose two correlation measures that are 

more general purpose for handling nominal data. The first 

one is mutual information and the second one is the Chi-

squared statistic.  

Finding a set of k tagging SNPs out of a total set of n 

SNPs requires evaluating ��
�� different combinations. It is 

computationally infeasible to exhaustively search the 

optimal solution when n is usually large. In this study, we 

describe a global search heuristic based on a randomized 

procedure (Gibbs sampling) that aims to find a set of 

tagging SNPs with minimum redundancy. Although the 

stochastic nature of Gibbs sampling is presumed to prevent 

it from becoming completely trapped in local optima, it still 

requires a better initial value due to strong disturbance from 

the local optima. We propose a pre-clustering approach to 

obtain a better initial SNP set. The effect of pre-clustering 

will be investigated.  

The paper is organized as follows. In Section 2, we 

explain our Gibbs sampling approach to obtain the 

minimum redundancy SNP set. The experiments and results 

will be discussed in Sections 3 & 4. We conclude our paper 

in Section 5. 

2 Methods 

2.1 Redundancy Measures 

Consider two biallelic loci, locus 1 with alleles a and A, 

locus 2 with alleles b and B. Suppose the frequencies for 

alleles � and � are �� and 1 − ��, the frequencies for alleles 

�  and �  are �  and 1 − � , and the the frequency of 

genotypes having allele � at locus 1 and allele � at locus 2 

is ��.  The commonly used linkage disequilibrium measure 

�� [14] is defined as 

 

�� = ��� − �����

���1 − �����1 − �� 

 

(1) 

The mutual dependency of two random variables can 

also be used as a redundancy measure. Here redundancy and 



correlation are used interchangeably. The mutual 

information between SNP X and SNP Y is defined as 

����, �� = � � ���, ����� ���, ��
�������� ∈"#∈$

 (2) 

where both X and Y are discrete variables, p(x,y) is the joint 

probability and p(x) and p(y) are marginal probabilities.  

Chi-squared test of independence is adopted here to 

measure the correlation between two SNPs. For SNP X and 

SNP Y, we first obtain a contingency table between the two 

SNPs. The Chi-squared statistic is defined as 

 

χ%
2��, �� = � � '()* − +)*,2

+)*

-

*=1

�

)=1
 (3) 

where r is the number of alleles for SNP �, and c is the 
number of alleles for SNP Y,  (./  is the observed joint 
frequency for i

th
 allele of SNP X and j

th
 allele of SNP Y,  and 

+./  is the expected frequency which is given by 
 

+./ = ∑ (.1 ∑ (1/21345134
6  (4) 

 

where N is the total number of samples. A higher value of
2

sχ indicates a stronger association between the two SNPs. 

For a set S consisting of k SNPs, the total pair-wise 

mutual information is defined as 

��78��7� = � � ���76�. , 76�/�
1

/3.94

1:4

.34
 (5) 

The total pair-wise Chi-squared statistics is defined as 

;<�78��7� = � � χ=
��76�. , 76�/�

1

/3.94

1:4

.34
 (6) 

The total pair-wise ��measure is give by 

 

>278��7� = � � ���76�. , 76�/�
1

/3.94

1:4

.34
 (7) 

2.2 Clustering of  SNP Data 

Due to the nominal nature of SNP data, the commonly 
used K-means clustering and its many variants are not 
suitable.  In this study, we first obtain a similarity matrix 
using a similarity measure that is applicable for nominal data 
such as Chi-square statistic or mutual information. The 
distance matrix is then obtained by subtracting each entry 
from the maximum of all the values. We then apply the 
agglomerative clustering procedure with complete linkage to 
obtain the desired number of clusters.  

2.3 Gibbs Sampling 

Gibbs sampling is a special case of the Metropolis–Hastings 

algorithm. It is a stochastic global search heuristic for 

optimization problems. However, it still requires a better 

starting set to avoid being trapped in local optima. A pre-

clustering is proposed to avoid the disturbance from local 

optima. To achieve this, we first cluster the SNPs into K 

groups, and randomly select an SNP from each group to 

form the initial SNP set. We then follow a Gibbs sampling 

procedure to find a set of K SNPs that minimize a goal 

function. The goal function can be one of the functions 

defined in equation 5-7.  The detail of our approach is 

summarized in Figure 1. 

 

 

Input: S is the total set of N SNPs,  ε is a predefined threshold value 

Output: C is the set of K chosen SNPs 

minRedundancySNP(S, C, ε) 

 Cluster the set 7 into K groups via customized hierarchical clustering 

 Form set G of K members where Gi is the i
th

 cluster 

 Form initial set C by randomly pick one SNP from each of the K clusters  

 while( a predefined maximum iteration is not reached) 

  Randomly pick a number n from 1 to K 

  Find a SNP x in Gn that minimizes MISUM/CHISUM/R2SUM 

  Replace Cn with x 

  Return C if the improvement of MISUM/CHISUM/R2SUM is less than ε 

 end 

              Return C  

 

Figure 1.  The pseudocode for finding the minimum redundancy SNP set via Gibbs sampling with pre-clustering. 

 

 



2.4 Prediction of Non-tagging SNPs with 

Tagging SNPs 

Once the tagging SNP set is found, they can be used to 
predict the genotype values of the non-tagging SNPs. Many 
machine learning and statistical models can be used for this 
goal, including logistic regression [15], neural networks, 
support vector machines (SVM) [16], and random forest 
[17]. In this study, we conduct our experiments using logistic 
regression and SVM. We choose a K-fold cross validation to 
evaluate the effectiveness of our method. Our K-fold cross 
validation procedure is similar to the leave-one-out cross 
validation procedure for SNP prediction described in [1] 
where K  is equal to the number of observations in the 
original sample. 

3 Experimental Data 
The following datasets are used to validated our method. 
IBD 5q31: This data set is from an inflammatory bowel 

disease study of father-mother-child trios [18].  The original 
data set contained 103 SNPs in 387 subjects.  Using the 
PHASE 2.0.2 software to derive haplotypes resulted in 103 
non-singletons from 774 phased chromosomes.  

TRPM8: The phased haplotype data was downloaded 
from Hapmap Data release 24.  It contains 101 SNPs from 
119 phased chromosomes. 

4 Results and Discussion 

4.1 Effect of Pre-clustering on the 

Convergence of the Gibbs Sampling 

Process 

In order to test how fast the Gibbs sampling process 

converges, we obtained the convergence curve using all 

three measures introduced in Section 2.1 (i.e., the linkage 

disequilibrium measure, mutual information, and Chi-

squared statistic). Figure 2 shows the convergence process 

while attempting to find 10 tagging SNPs. 

In each case, the Gibbs sampling process converged 

within 100 iterations regardless of whether or not pre-

clustering was applied. However, the resulting set of SNPs 

had smaller redundancy measures when pre-clustering was 

used. Without pre-clustering, there is still some disturbance 

from local optima that affect the global minimum search 

process through Gibbs sampling. 

4.2 Tagging Results 

We conducted our experiments on the three distance 
measures to find tagging SNPs using the randomized 
algorithm mentioned above. The tagging results for IBD data 

set using  ��, Chi-squared statistic and mutual information 
are shown in Table I, II, III respectively. The tagging results 
for TRPM8 data set using �� , Chi-squared statistic and 
mutual information are shown in Table IV, V, VI 
respectively. 

For IBD data, pre-clustering is able to improve prediction 
performance. With pre-clustering, our 10-fold cross 
validation results are comparable with published leave-one-
out cross validation results obtained by He et al. [1] and 
better than the results obtained by FSFS [11]  (Table II, III). 
SVM and logistic regression show similar performance. 
Although our method does not present significant advantages 
over He's method [1], our method is simpler and does not 
rely on specific machine learning model to guide the 
selection process which is susceptible to over-fitting. In 
addition, the prediction based selection method SVM/STSA 
[1] requires calling SVM model during each stepwise 
selection process. This can be expensive due to the overhead 
of the prediction algorithm. 

Among the three distance measures, both Chi-squared 
statistic and mutual information performed better than �� 
measure. This proves both of them can be used to study SNP 
association, and they are particularly useful for genotype 
data that sometimes involve more than two alleles.   

 

 

 

(a) (b) (c) 

  

 

Figure 2.  Convergence curve for the Gibbs sampling process based on three redundancy measures. (a) minimization process of CHISUM (b) minimization 

process of MISUM (c) minimization process of R2SUM.
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For TRPM8, our ten-fold cross validation prediction 
performance is better than SVM/STSA when mutual 
information is used as correlation measure (Table V). 
Similar performances are observed between ��  measure 
and Chi-squared statistic. The pre-clustering does not 
improve the prediction performance significantly. This 
indicates that the disturbance from local optima in this data 
set is not as strong as in IBD data set.  

TABLE I.  TEN-FOLD CROSS VALIDATION EXPERIMENT RESULTS 

ON IBD DATA SET (CORRELATION IS MEASURED WITH ��
 MEASURE, K IS 

THE NUMBER OF TAGGING SNPS). 

 

K 

With Pre-clustering Without Pre-clustering 

SVM 
Logistic  

Regression 
SVM 

Logistic  

Regression 

3 81.1% 80.7% 76.6% 76.6% 

5 81.5% 81.2% 78.8% 77.4% 

10 93.5% 91.7% 77.4% 77.4% 

20 98.2% 97.8% 85.7% 86.0% 

30 98.5% 98.3% 93.5% 93.5% 

 

TABLE II.  TEN-FOLD CROSS VALIDATION EXPERIMENT RESULTS 

ON IBD DATA SET (CORRELATION IS MEASURED WITH CHI-SQUARED 

STATISTIC, K IS THE NUMBER OF TAGGING SNPS). 

 

K 

With Pre-clustering Without Pre-clustering 

SVM 
Logistic  

Regression 
SVM 

Logistic  

Regression 

3 85.6% 85.5% 79.3% 79.3% 

5 86.0% 85.1% 81.5% 81.1% 

10 95.0% 93.3% 94.4% 93.5% 

20 98.2% 97.9% 98.1% 97.5% 

30 98.5% 98.5% 97.8% 97.4% 

  

TABLE III.  TEN-FOLD CROSS VALIDATION EXPERIMENT RESULTS 

ON IBD DATA SET (CORRELATION IS MEASURED WITH MUTUAL 

INFORMATION, K IS THE NUMBER OF TAGGING SNPS). 

 

K 

With Pre-clustering Without Pre-clustering 

SVM 
Logistic  

Regression 
SVM 

Logistic  

Regression 

3 86.6% 86.5% 80.0% 79.9% 

5 87.3% 86.1% 79.8% 79.8% 

10 96.0% 95.0% 77.4% 77.3% 

20 98.2% 97.8% 89.8% 88.4% 

30 98.5% 98.3% 97.3% 96.4% 

 

TABLE IV.  TEN-FOLD CROSS VALIDATION EXPERIMENT RESULTS 

ON TRPM8 DATA SET (CORRELATION IS MEASURED WITH ��
 MEASURE, 

K IS THE NUMBER OF TAGGING SNPS). 

 

K 

With Pre-clustering Without Pre-clustering 

SVM 
Logistic  

Regression 
SVM 

Logistic  

Regression 

3 89.1% 87.9% 87.6% 81.3% 

5 88.9% 86.2% 87.5% 92.3% 

10 91.7% 91.3% 91.3% 92.4% 

20 99.5% 99.7% 99.2% 99.2% 

30 99.7% 99.7% 99.3% 99.7% 

TABLE V.  TEN-FOLD CROSS VALIDATION EXPERIMENT RESULTS 

ON TRPM8 DATA SET (CORRELATION IS MEASURED WITH CHI-SQUARED 

STATISTIC, K IS THE NUMBER OF TAGGING SNPS). 

 

K 

With Pre-clustering Without Pre-clustering 

SVM 
Logistic  

Regression 
SVM 

Logistic  

Regression 

3 89.1% 87.9% 87.6% 81.3% 

5 88.9% 86.2% 87.5% 92.3% 

10 91.7% 91.3% 91.3% 92.4% 

20 99.5% 99.6% 99.2% 98.6% 

30 99.7% 99.7% 99.3% 99.7% 

 

TABLE VI.  TEN-FOLD CROSS VALIDATION EXPERIMENT RESULTS 

ON TRPM8 DATA SET (CORRELATION IS MEASURED WITH MUTUAL 

INFORMATION, K IS THE NUMBER OF TAGGING SNPS). 

 

K 

With Pre-clustering Without Pre-clustering 

SVM 
Logistic  

Regression 
SVM 

Logistic  

Regression 

3 96.7% 90.1% 89.3% 81.8% 

5 97.3% 92.1% 96.3% 92.3% 

10 97.3% 92.3% 96.0% 92.2% 

20 99.7% 99.7% 97.4% 98.5% 

30 99.7% 99.7% 98.1% 99.7% 

 

4.3 Running Time Results 

The running time required to select different number of 
tagging SNPs using our Gibbs sampling procedure is 
shown in Table VII. Our Gibbs sampling code is 
implemented with R statistical programming language.  

The running time increases as the number of tagging 
SNPs increases. The running time results are similar 
between the Chi-squared statistic and mutual information. 
The program often ran a little faster with �� as correlation 
measure. Comparing with prediction guided SNP selection 
SVM/STSA [1] which takes up to 1 day to find 10 tagging 
SNPs for IBD data set, and 23 hours to find 10 tagging 
SNPs for TRPM8 data. It even took several hours to find 1 
tagging SNPs[1], our Gibbs sampling procedure runs 
much faster and usually completes within 5 minutes for up 
to 30 tagging SNPs.  

TABLE VII.  RUNNING TIME REQUIRED (SECONDS) TO SELECT 

TAGGING SNPS USING DIFFERENT CORRELATION MEASURES (K IS THE 

NUMBER OF TAGGING SNPS, ALL EXPERIMENTS ARE PERFORMED ON A 

COMPUTER WITH AMD ATHLON II X4 620, 2.61 GHZ PROCESSOR AND 2 

GB OF RAM) 

Data set IBD TRPM8 

K 
Correlation measure Correlation measure 

�� χ
2 MI �� χ

2 MI 

3 11.57 11.75 11.28 9.11 10.52 9.25 

5 20.68 19.83 23.11 16.62 10.86 21.32 

10 53.44 63.20 53.00 25.56 27.30 34.15 

20 94.22 136.23 120.62 80.38 107.73 91.69 

30 196.94 195.83 191.46 121.27 157.03 157.81 

  



5 Conclusions 
We investigated a block-free stochastic global search 

heuristic to find a set of minimum redundancy tagging 
SNPs. It is a randomized search technique based on Gibbs 
sampling. We modified the basic Gibbs sampling 
procedure by adding a pre-clustering step to find a better 
starting set. In order to properly cluster the SNP data, we 
applied hierarchical clustering with a distance measure that 
is applicable for nominal data. The Gibbs sampling 
process typically converges faster and reaches lower 
minimum if a pre-clustering is used. Pre-clustering 
improves the tagging prediction accuracy if there is a 
disturbance from local optima. If there is little disturbance 
from local optima, pre-clustering at least does no harm.   

Although our tagging process is driven by a simple 
objective function that aims to minimize redundancy 
among a set of SNPs instead of being driven by a 
prediction method such as SVM, we are able to obtain 
comparable prediction results while running much faster 
than prediction based SNP selection method [1].  

We also proposed two correlation measures to study 
SNP association. They proved to be as effective as the 
commonly used �� measure. These two measures can be 
useful for genetic features (e.g. genotypes) that could have 
more than two alleles.  
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