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Abstract— Kidney transplantation has emerged as the treat-
ment for the most serious forms of kidney disease, but the
supply of kidneys from deceased donors cannot meet the fast-
growing demand. Recently, Kidney Paired Donation (KPD)
program, a modality which enables willing but incompatible
live donor-candidate pairs to swap donors, offers a promis-
ing solution for closing the gap between kidney supply and
demand. Most of current KPD programs focus mainly on
organ allocations strategies achieving the maximum number
of transplants or matches. However, patients’ quality of
life after transplants can be more important for kidney
candidates. In this paper, we propose a novel algorith-
mic platform to optimize cross-matches with the maximum
benefits for donor-candidate pairs. Utilizing the power of
integer programming, our platform implements a recently
proposed method that takes probabilistic-based utility as
the objective function, so that the overall expected utility,
instead of the number of matches, is maximized. Moreover,
involving altruistic donors in the allocations lead to a sig-
nificant improvement in successful transplants. Empirically,
we demonstrate the computerized platform for optimal organ
allocations in kidney exchanges through extensive simulation
experiments.
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gramming; Computerized platform

1. Introduction
Kidney transplantation has emerged as the treatment for

the most serious forms of kidney disease. However, there is
a considerable shortage of donor kidneys in the U.S.: more
than 80, 000 patients are on the waiting list for transplants
by the end of 2010 [9]. In the real world clinical appli-
cation, deceased donation and living donation are the two
resources of organs for kidney transplantation, and living-
donor transplant has a higher chance of success. Unfortu-
nately, about one-third of patients with willing live donors
will be excluded from kidney transplantation because of
ABO blood type mismatch or HLA incompatibility [8]. ABO
blood type mismatch infers to: type O people are universal
donors for any candidates; people who have type AB blood
can donate to only the same blood type patients; and a
type A or B donor can donate to the same type or a type
AB candidate. HLA incompatibility occurs when a recipient

candidate is sensitized to some of the Human Leukocyte
Antigens (HLA) of his/her willing donor. Therefore, KPD
program is established as a promising clinical solution to
overcome the shortage of donors. The essential idea of
such program is to exchange living kidney donors between
two willing but incompatible donor-candidate pairs. The
fundamental question in the KPD program is how to make
an optimal decision of kidney exchanges that benefit patients
the best.

An Integer Programming (IP) approach is widely used
to tackle the optimization problem of selecting the optimal
matches among incompatible donor-candidate pairs. Unfor-
tunately, most of all current methods focus on determin-
ing the optimal two-way and/or three-way cycle exchanges
through the means of graphic representation. Such constraint
on the length of cycles to be less than 3 is imposed due
to logistic consideration [1]. In this setting, many articles
have considered to maximize the total number of trans-
plants; see for examples, [11], [12], [14], [13], [1], [3].
In the real kidney exchanges, it is not only necessary to
consider how to increase the number of transplants, but
also needs to improve the quality of life for recipients
after their transplants so that the transplants can make them
live better. Therefore, we consider an expected-utility-based
algorithm proposed by [6], which takes account of the
medical-outcome-based utility (e.g., the life years gained
from real transplants (LYFT) [16]) as well as the probability
of successful actual transplants. In addition, most of the
KPD exchanges only consider the paired donor-candidates
to swap donors between them. Recently, these swaps also
include chains triggered by altruistic donors (ADs) because
chains offer more advantages [10], [4], [2]. On the one
hand, it relaxes the reciprocality requirement of KPD, so
pairs can find a donor from other pairs or ADs, rather
than matching both the donor and candidate of another pair.
More importantly, the simultaneity requirement of KPD is
relaxed, even if one donor of chain reneges, the candidate has
some opportunity to get transplants. Therefore, we integrate
ADs into the expected-utility-based algorithm to improve the
kidney exchanges. The idea is to define a virtual recipient
for an AD and carry out the similar optimization using the
algorithm of paired exchanges. A complete review of KPD
program is presented in [15].

In summary, we implement an innovative method that



takes account of utility and uncertainty into the optimization
of graph matching and further integrates ADs into the
traditional KPD program. Through simulation experiments,
we demonstrate the superiority of the expected-utility-based
approach in comparison to the existing allocation strategies.
Thus, our algorithmic platform brings more benefits for a
greater number of kidney patients. In addition, we develop
a general KPD graphic user interface (GUI) software that
allows to model, visualize, and monitor the real world kidney
exchanges. The remainder of the paper is organized as
follows. We first present the mathematical formulation, opti-
mization algorithm and theoretical work of kidney exchange
problem in details in Section 2. In Section 3, we provide
thorough computerized platform, experimental results and
GUI software. Finally, we give a conclusion and discuss
some future work in Section 4.

2. Optimization Algorithm
2.1 Graph-based Formulation

A kidney exchange problem can be represented as a
directed graph G = (V,E). Let |V | be the number of vertices
(nodes) and |E| be the number of edges in a KPD graph,
where |.| denotes cardinality. Figure 1 shows an example.
Each vertex in graph G represents an incompatible donor-
candidate pair (e.g., vertex 1) or an altruistic donor (e.g.,
vertex 7). Each edge from vertex i to vertex j indicates that
the donor kidney in vertex i is compatible with the candidate
in vertex j (e.g., 7 → 1). In this directed graph, each edge is
assigned a weight representing edge utility eij of the kidney
transplant from the donor in vertex i to the candidate in
vertex j (e.g., e71 = 9). In addition, an edge probability pij
is considered for each edge to reflect the chance of an actual
successful kidney transplant from i to j (e.g., p71 = 0.6).
All the directed edges are established for compatibility of
ABO blood types and HLA sensitization.

The goal of optimization for kidney exchange program is
to find a collection of mutually disjoint cycles or chains that
attain the maximum overall expected utility of graph G. This
task of optimizing matches on graph G can be realized by
the following setup of an integer programming [6]:

max
∑
c∈C

ycuc, (1)

s.t.
yc ∈ {0, 1}, ∀c ∈ C,∑

c∈C(i) yc ≤ 1, 1 ≤ i ≤ |V |.

where C is the exchange set of all cycles or chains with
length 2 and/or 3 in graph G. C(i) is the exchange set
of cycles or chains in C that contain vertex i and yc
is a vector of indicators representing if cycle or chain
exchange set c is to be executed for transplant (yc = 1)
or not (yc = 0). Notice that uc is the expected utility
of cycle or chain exchange set c, which has been fully
discussed in [6]. According to [6], where uc =

∑
UcPc.
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Fig. 1: A toy kidney exchange program including an altruistic
donor and six incompatible pairs. It contains 3 two-way cycles
({2,4}, {2,6}, {3,5}), 1 three-way cycle ({6,2,4}) and 3 chains
beginning with an altruistic donor ({7,1}, {7,5} {7,5,3}). The
optimal matches selected by IP are: {7,1}, {6,2,4}, and {3,5},
which represent the optimal exchanges 7 → 1, 6 → 2 → 4 → 6
and 3 → 5 → 3.

Uc is the maximum utility of the possible exchange sets
in c, while Pc =

∏
i,j∈c

eij∈Es

pij
∏

i,j∈c
eij∈(1−Es)

(1 − pij) for

the corresponding exchange sets c, where Es indicates a
set of edges eij leading to actual transplants. Therefore,
the calculation of expected utility is based on all possible
configurations in exchange set corresponding to each edge
either resulting in an actual successful transplant or not in the
real lab match run. And for each such configuration, we aim
to choose the available cycle that yields the highest expected
utility. In addition, the expected utility of a chain initiated by
an AD can be computed in a similar way except creating a
dummy cycle from the ending vertex of chain. For example,
add a dummy edge from vertex 1 to vertex 7 with edge utility
e17 = 0 and edge probability p17 = 1, which results in a
2-way cycle {7, 1}. In Figure 1, using the above formula,
we compute the expected utilities of cycles as u{2,4} = 2.4,
u{2,6} = 0.8, u{6,2,4} = 3.35, u{3,5} = 0.12. Also, the
expected utilities of chains are calculated as u{7,1} = 5.4,
u{7,5} = 0.1, u{7,5,3} = 0.156. Then, plugging the expected
utilities uc into Equation (1), we use IP to find the optimal
solution of the virtual matches: 7 → 1, 6 → 2 → 4 → 6
and 3 → 5 → 3. Finally, not all the optimal virtual matches
lead to actual operations. For instance, some higher order
cycles (e.g, three-way cycles) are less likely to be chosen
because such cycles tend to be more difficult to successful
carry out [1]. If lab match run suggests one transplant fails
(e.g., edge e62 is broken), then the entire three-way exchange
6 → 2 → 4 → 6 is labeled as a failure in the existing
methods. However, [6] suggests a method with fall-back
option; that is, we can choose the kidney exchange between
2 and 4 as a sub-cycle. As a result, the transplants now
include 7 → 1, 2 → 4 → 2, and 3 → 5 → 3.



2.2 Algorithm
The computerized platform for kidney exchanges is based

on a graphic optimization algorithm, described in detail as
the following steps:

1) Given incompatible donor-candidate pairs and ADs
at time t = 0, build a directed graph G = (V,E)
with each vertex representing a donor-candidate pair
or an AD and each edge from vertex i to j denoting
compatibility, so that there is a possibility match
between the donor in vertex i to the candidate in vertex
j.

2) Assign edge utility eij and edge probability pij to
each match pair of donor i and candidate j. eij is
derived from medical-outcome-based utility or some
existing KPD scoring systems [11], and pij is derived
from a statistical model for probability of successful
transplants.

3) Find chains beginning at vertices of ADs with length
size equal to 2 and/or 3.

4) Add dummy edges from the end vertices of chains to
ADs, on which assign the edge utility eij = 0 and the
edge probability pij = 1.

5) Find all cycles with length size 2 and/or 3 in graph G
using the depth-first search algorithm.

6) Compute the expected utility uc according to the
configuration of each cycle exchange set.

7) Solve Equation (1) to get indicators yc representing
the optimal virtual donor-candidate matches.

8) Determine the final optimal kidney transplants accord-
ing to Bernoulli trails with a certain success probability
in the real lab match run. If such a Bernoulli trial
is realized, the transplant will lead to an successful
operation; otherwise, it fails.

9) Compute the number of completed transplants and
associated utility of optimal kidney transplants.

10) Remove the vertices of donor-candidate pairs and ADs
that finish successful transplants from graph G, and
those end vertices of chains are “bridge donors" [10]
as new ADs.

11) At time t = t+ 1, form the new incompatible donor-
candidate pairs and ADs based on pair arrival rate λ
according to a Poisson process, then go to step 1).

2.3 Theoretical Analysis
In this section, we show that the decision version of

our algorithm for kidney exchange program is NP-complete
given in Equation (1).

Theorem 1: Given a graph G = (V,E) and an integer
n (n ≥ 3), the problem of deciding if G admits a perfect
cycle/chain cover containing cycles/chains of length at most
n is NP-complete.
Our proof of Theorem 1 follows that in [1]. First, it is easy
to demonstrate this problem is in NP. Second, we can prove

that it is NP-hard through a reduction from a 3D-Matching
problem. Due to the space limitation, we omit detail of the
proof.

3. Experiments
3.1 Computerized Platform and Evaluation
Measurement

We tested the algorithm on a computerized platform
by mimicking a general kidney exchange simulation sys-
tem proposed in [6], which appropriately reflects the real
world clinical application. In this computerized platform,
we hope to evaluate different kidney allocation strategies.
The flowchart for the computerized platform is illustrated
in Figure 2. First, we generated data of candidates and
donors separately. Candidates are sampled at random from
the University of Michigan kidney paired donation database,
which currently has 187 incompatible donor-candidate pairs.
This database provides us the important information of ABO
blood type and HLA useful to characterized each sampled
candidate. Donors, on the other hand, are generated by the
population distributions of ABO and HLA. In particular,
the distribution of ABO blood types for the US population
is: O(44%), A(42%), B(10%), and AB(4%), according
to Stanford Blood Center (2010) 1, and the distribution
of HLA is derived from HLA haplotypes frequencies of
the US population [7]. Through random sampling, we can
appoint ADs directly from the set of drawn donors or
construct an incompatible donor-candidate pair if either their
ABO blood types mismatch or HLA incompatibility. In this
way, simulated donors and candidates reflect real-world of
data. Second, KPD parameters needed for data generation,
including an initial pair number n and percentage of ADs,
are specified for the first match run. Third, a directed graph
G = (V,E) involving edge utilities and edge probabilities
is created by using characteristics of candidates and donors.
In this paper, for illustration, we assign values of edge
utilities and edge probabilities according to uniform random
distributions on interval denoted by [min,max] = [a, b],
such as U [10, 20] and P [0.1, 0.5], respectively. Fourth, for a
given KPD graph, we find all cycles and chains with length
size equal to 2 and/or 3 by the depth-first search algorithm.
Furthermore, using IP optimization algorithm discussed in
Section 2, we search for the optimal solution regarding
the maximum potential matches (transplants) under each
allocation strategy applying Gurobi optimization software
[5]. Fifth, the ready transplant matches are finalized as actual
successful transplants in the real lab match run according to
Bernoulli trails with a certain success probability. At the
end, the actual successful transplants are output from the
platform. Moreover, in an evolving KPD program, successful
donor-candidate matches will leave the database and some

1http://bloodcenter.stanford.edu/about_blood/blood_types.html



Table 1: Donor Data

ID Integer

Type String

Blood String

Gene String

Arriving Time Date

Optimization 
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Table 2: Patient Data

ID Integer

Type String

Blood String

Gene String

Arriving Time Date

User
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        (Gurobi)
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    Transplants

    Graphic 
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  Save 
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      and 
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      Graph
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 Real Lab 
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(6)

 Ready Matching 
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File Names:
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Input Parameters:
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(2) Arrival Rate
(3) Altruistic Donor Percentage

Input Parameters:
(1) Edge Utility Max, Min
(2) Edge Probability Max, Min

Input Parameters:
(1) Optimization Methods
(2) Optimization Run Period Index

Input Parameters:
(1) Lab Match Run Methods
(2) Match Run Period Index

Fig. 2: A flowchart of computerized platform for kidney exchanges.

new pairs will enter into the pool according to a Poisson
process with an arrival rate λ. Thus, a new match run will
be performed at another time (see the dot line in Figure 2).
In order to make a better comparison, we fixed the number
of match runs as k = 12, mimicking the reality that there is
one match run each month within a year. In the following
simulation experiments, we evaluated the kidney exchange
results based on two criteria: the accumulated number of
transplants and accumulated utility. The higher the number
of transplants or the utility is, the higher mutual benefits for
the kidney transplant patients. For each allocation strategy,
we conducted 100 test runs, and reported the averaged ac-
cumulated number of transplants and averaged accumulated
utility.

3.2 Results
We began by creating a KPD pool of by specifying three

input parameters: the initial number of pairs n = 200,
the arrival rate of pairs λ = 10 or λ = 20, and the
percentage of ADs 5%. Then we generated a directed graph
by assigning edge utility and edge probability as U [10, 10]
and P [0.1, 0.5], respectively. First, we aimed to compare
two allocation strategies in terms of accumulated number
of transplants, in the settings where the KPD only involved
donor-candidate pairs (namely no ADs). The two strategies
to be compared are (1) Cycle-Without-AD-Base: a traditional
method that does not consider the expected utility in the
optimization and fall-back option in the real lab match
run; (2) Cycle-Without-AD: a new method [6] that uses the
expected utility in the optimization and accounts for the
fall-back option in the real lab match run. The accumulated
number of transplants obtained by the two approaches with
different arrival rates λ are shown in Figure 3. Generally,
the accumulated number of transplants appears higher for

a larger number of arrival rate (e.g., λ = 20 in Figure
3(b) versus λ = 10 in Figure 3(a)). This implies that
the more pairs participate in the kidney exchange program,
the higher number of achieving matches in the KPD pool.
Moreover, the accumulated number of transplants gained by
the new approach (i.e., Cycle-Without-AD) is significantly
higher than the traditional method (i.e., Cycle-Without-AD-
Base) in the magnitude of 2−4 folds. These results indicate
that the new approach is clearly advantageous to increase
the number of transplants in kidney exchanges.

Next, we integrated the ADs into the new allocation
strategy and investigated the role of ADs in the kidney
exchanges. As discussed in Section 2, method Cycle-With-
AD is modified by simply adding dummy edges from each
donor-candidate vertex to the ADs with cycle-length size
2 and/or 3. Then we utilized the same optimization proce-
dure as that of the Cycle-Without-AD method to find the
optimal exchanges. Figures 4(a)-(c) display the accumulated
number of transplants obtained by two strategies: (1) Cycle-
Without-AD and (2) Cycle-With-AD, where the edge utility
is generated by U [10, 10], U [10, 20], and U [10, 30], and
the arrival rate is assigned by λ = 10. In these panels,
based on the accumulated number of transplants over 12
match runs, method Cycle-With-AD gives at least 10% more
matches than the method without using ADs. Moreover,
we plotted the results for the case of λ = 20 in Figures
4(d)-(f). Again, when more people enters, method with ADs
clearly performed better than the one without ADs. In the
meanwhile, we also compared accumulated utility of these
two methods when the edge utility distribution changes from
U [10, 10] to U [10, 30] in the cases of λ = 10 and λ = 20.
From Figures 5(a)-(c), we noticed that the accumulated
utility of the Cycle-With-AD method enjoys a gain between
15% to 30% over the Cycle-Without-AD method if λ = 10.
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Fig. 3: Comparison of accumulated number of transplants versus
month (number of match run) for Cycle-Without-AD-Base and
Cycle-Without-AD methods with different arrival rate of pairs: (a)
λ = 10, (b) λ = 20.

Likewise, Figures 5(d)-(f) report the accumulated utility of
the method using ADs is about at least 10% higher than
that of the method not using ADs if λ = 20. Therefore, it
is obvious that on average the method without using ADs is
consistently outperformed by the method using ADs over all
match runs in terms of accumulated number of transplants
and accumulated utility. As a result, using ADs in the kidney
exchanges would help clinicians to achieve more number and
better quality of transplants.

3.3 Software
In this paper, one of our new contributions is the de-

velopment of a graphic user interface (GUI) software to
visualize inputs and outputs in a kidney exchange program.
Our simulation experiments above were carried out by using
our GUI software developed by C++ language on a machine
with Quad 3GHz Intel Core2 processors and 4GB RAM. The
software offers a range of functions to create a user-friendly
interface and builds appropriate configurations to support
communications between inputs and outputs essential in
the kidney exchanges. It includes six types of functional
components associated with inputs and outputs, which are
displayed in the middle panel of Figure 2: (1) reader of
original data from internal and external files; (2) KPD data
simulator; (3) KPD graph generator; (4) Optimizer of KPD
kidney donation; (5) KPD lab match run; (6) output of graph

matching results. In addition, the input data or parameters
are showed in the upper panel of Figure 2, while the output
data or results are showed in the lower panel of Figure 2.

For instance, Figure 6 shows a slapshot of GUI software
of kidney exchanges for five match runs by the Cycle-With-
AD method. Revelent information is displayed in multiple-
windows. Recipient (right-top) and Donor (right-middle)
windows in Figure 6 show the randomly drawn kidney
experimental data when the initial number of pairs, arrival
rate and percentage of ADs are fixed as 50, 10 and 5%
respectively. The display of data includes period (i.e., num-
ber of match run), ID, type of vertex (i.e., pair or AD),
blood type or HLA type. If ID number is the same between
recipient candidate and donor, it indicates a pair of orig-
inally incompatible donor-candidate, otherwise it denotes
an AD. In the Graph Builder window (right-bottom), the
corresponding directed graph is created with the edge utility
and edge probability generated by U [10, 10] and P [0.1, 0.5],
respectively. After selecting an optimization method, such as
Cycle-Without-AD-Base, Cycle-Without-AD, or Cycle-With-
AD, the center window will report the optimal graph matches
between donors and recipients, including donor ID, donor
type, recipient ID, recipient type, number of transplants and
associated utility at each match run. Also, if desired, a
further match run can be performed, leading to an evolving
kidney exchange data exploration. In summary, the GUI
provides a very powerful tool to help clinicians, donors and
patients more easily analyze and assess the kidney exchange
program.

4. Conclusions and Future Work
In this paper, we investigated a new kidney allocation

strategy based on expected-utility to maximize the mutual
benefits for kidney exchanges. The problem is formulated
as to search for the maximum disjoint vertex sets in a
weighted directed graph. First, a depth-first search algorithm
is implemented to identify all cycles/chains with length
size 2 and/or 3. Then, an optimal solution of maximum
expected utility can be obtained by an IP. Finally, ADs
are added to increase the possibility of exchanges. Through
simulation studies that closely imitate the real application on
computerized platform, we demonstrated that the expected-
utility-based allocation strategy provides the higher quantity
and quality of life than the current practising methods in the
kidney exchanges. This will result in thousands of kidney
patients for life-saving each year in USA.

All algorithms discussed in this paper have been fully
integrated into a GUI software package, which will be
released publicly through the necessary Institutional Review
Board (IRB) regulations. In the future, we plan to conduct
practical studies to solicit feedbacks so that the software can
be improved with more user-friendly features for clinical
convenience. We also intend to incorporate interaction tools
for input data process, integration, and modeling, as well as
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Fig. 4: Comparison of accumulated number of transplants versus month (number of match run) for Cycle-Without-AD and Cycle-With-AD
methods with different arrival rate of pairs (λ) and different edge utility distributions (U ): (a) λ = 10 and U [10, 10], (b) λ = 10 and
U [10, 20],(c) λ = 10 and U [10, 30], (d) λ = 20 and U [10, 10],(e) λ = 20 and U [10, 20], (f) λ = 20 and U [10, 30].

output data graphical visualization into our existing system
for its maximum flexibility of clinical practice.
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Fig. 5: Comparison of accumulated utility versus month (number of match run) for Cycle-Without-AD and Cycle-With-AD methods with
different arrival rate of pairs (λ) and different edge distributions (U ): (a) λ = 10 and U [10, 10], (b) λ = 10 and U [10, 20],(c) λ = 10
and U [10, 30], (d) λ = 20 and U [10, 10],(e) λ = 20 and U [10, 20], (f) λ = 20 and U [10, 30].

Fig. 6: A GUI example for kidney exchanges


