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Abstract— DNA methylation is an important type of epige-
netic modification that plays an instrumental role in organo-
genesis, cellular differentiation, suppression of deleterious el-
ements, and carcinogenesis. In addition to the experiment-
based approaches, computational prediction provides guid-
ance in an effective, fast and cheap way to the genome-
wide DNA methylation profiling. In this paper, we describe
the development of support vector machine-based models for
the prediction of the CpG island methylation. The features
used for prediction include those that have been previously
demonstrated effective (e.g., CpG island specific attributes,
DNA sequence composition patterns, DNA structure patterns,
distribution patterns of functional and evolutionarily conserved
elements, and histone methylation status) as well as those
that have not been extensively explored but are likely to
contribute additional information from a biological point of
view (e.g., nucleosome positioning propensities, gene functions,
and histone acetylation status). Statistical tests were performed
to identify the features that are significantly correlated with
the methylation status of CpG islands, and principal component
analysis was subsequently performed to decorrelate the selected
features. The CpG island methylation profile data from the
Human Epigenetic Project were used to train, validate and test
our predictive models. Specifically, the models were trained
and validated by using the data of the CD4 lymphocyte, and
were then further tested for generalizability using the data of
the other 11 tissues and cell types. The experiments showed
that (1) an eight-dimensional feature space that was selected
via the principal component analysis and that combines all
categories of information was effective for predicting the CpG
island methylation status, (2) by incorporating the information
regarding the nucleosome positioning, gene functions, and
histone acetylation, the model could achieve a higher specificity
and accuracy than the existing model while maintaining a
comparable sensitivity, (3) the histone modification information
contributed significantly to the prediction, without which the
performance of the model deteriorated, especially in terms of
sensitivity, and, (4) the predictive models generalized well to
different tissues and cell types, no matter whether the histone
modification information was incorporated or not.

I. INTRODUCTION

Epigenetics refers to a somatically inheritable pattern of
gene expression that is determined by mechanisms other
than those encoded in DNA sequences. DNA methylation
is an important type of epigenetic modification, implicated
in critical cellular functions including genetic imprinting,
X-chromosome inactivation, suppression of retroviral ele-
ments, and carcinogenesis. DNA methylation involves the
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addition of a methyl group to DNA via DNA methyltrans-
ferase, and typically occurs at the cytosine residues in a
CpG dinucleotide context [1]. CpG dinucleotides in human
genome are relatively rare but are enriched in short DNA
segments known as CpG islands [2]. Most CpG dinucleotides
are methylated in human somatic cells [3], but the CpG
dinucleotides residing within CpG islands tend to remain
unmethylated.

DNA methylation can be determined experimentally via
biochemical assays or sequencing. On the other hand, com-
putational modeling can effectively complement the wet
chemistry approach in identifying critical factors or pathways
controlling DNA methylation patterns, as well as to provide
valuable information when methylation data are unavailable
for certain genome regions. Computational prediction of
DNA methylation has been conducted at two levels – CpG
dinucleotides and CpG islands, respectively. At the CpG
dinucleotide level, DNA fragments of fixed length with a
cytosine in the center were used for the prediction. Each nu-
cleotide was represented by a 5-bit binary sparse code, so that
each DNA fragment was represented by a series of codes and
the difference between DNA fragments could be quantified.
With the optimal DNA fragment length (39 nucleotides), a
∼75% of accuracy could be reached for predicting whether a
CpG dinucleotide is methylated or not [4]. At the other level,
computational models have been developed to distinguish
between methylated and unmethylated CpG islands (or DNA
fragments with high CpG density). For example, Feltus et
al. used DNA sequence patterns to distinguish methylation-
prone and methylation-resistant CpG islands under de novo
methylation, and reached an 82% accuracy [2]. Bock et al.
augmented the feature space by including DNA sequence
patterns, DNA repeats and predicted DNA structure. Their
experiments on the Human Epigenome Project (HEP) data
set showed a ∼90% accuracy for predicting the methylation
status of DNA fragments of high CpG density [5] [6].
The MethCGI used both the DNA sequence composition
and transcription factor binding site (TFBS) features to
characterize CpG islands and reached an 84% specificity
and 84% sensitivity on human brain data [7]. Fan et al.
augmented the feature space of the CpG island by including
histone methylation information, which is highly correlated
with DNA methylation, and reported a 94% sensitivity and
74% specificity on the HEP data [8].

In this study, we considered various attributes that are
possibly related to the CpG island methylation. These at-
tributes include those that have been previously investigated
(e.g., the CpG island specific attributes, DNA sequence



patterns, DNA structure patterns, distribution patterns of
functional and evolutionarily conserved elements, and the
histone methylation status) as well as those that have not
been extensively investigated (e.g., nucleosome positioning
propensities, gene functions, and histone acetylation status).
The contribution of each individual feature was evaluated
by statistical tests; and the correlation between features was
reduced by principal component analysis (PCA). These DNA
methylation-relevant yet non-intercorrelated features were
then used to build support vector machine-based classifiers
to predict the methylation status of CpG islands. The pre-
dictive models were evaluated by using the HEP data set.
Specifically, the CpG island methylation profiles in the CD4
lymphocyte were used to train and validate the models,
while the CpG island methylation profiles in the other 11
tissues/cell types were used to test the generalizability of
the models. Through these experiments, we assessed the
individual and combinational influence of the newly added
features (nucleosome positioning propensities, functions of
nearby genes, and the acetylation status of nearby histones)
and the impact of histone modification information.

II. DATA SETS

Methylation profiles were obtained from HEP. HEP aims
to provide the high-resolution data set regarding genome-
wide DNA methylation patterns in human tissues and cell
lines [9]. It currently covers chromosomes 6, 20 and 22,
and provides 1.9 million CpG methylation values of 2,524
amplicons derived from 12 different tissues and 43 different
samples using bisulfite DNA sequencing. The methylation
values of the analyzed CpGs range from 0 to 100 inclusive,
where 0 corresponds to the lowest and 100 to the highest
methylation intensity.

CpG islands can be defined in a number of ways, one of
which is based on the Gardiner-Garden criteria: (i) with at
least 200 base pairs (bp), (ii) with a GC content>50%, and
(iii) with an observed/expected CpG ratio>60% [10]. When
applying the Gardiner-Garden criteria on the human genome,
we also excluded the repetitive sequence fragments (such
as the Alu repeats, which are GC rich and with high CpG
observed-to-expected ratio). The methylation intensity of a
CpG island was considered as the average methylation inten-
sities of all CpG dinucleotides contained in the island. For
statistical reliability, we only considered those CpG islands
with more than 10% CpG dinucleotides being measured the
methylation intensity levels, and defined unmethylated CpG
islands as those whose average methylation intensities are
less than 10% while methylated CpG islands as those whose
average methylation intensities are larger than 50% [8].

III. METHODS

A. Feature Extraction

It has been shown that the CpG island methylation status is
correlated with the following features: CpG island specific
attributes (e.g. length, GC content, GC observed/expected
ratio) [11] [12] [7], patterns of DNA sequence composition
[2] [12] [5], patterns of predicted DNA structure [11] [5],

patterns of repetitive elements [11] [12] [7] [5], patterns of
TFBS, patterns of evolutionarily conserved elements [11],
as well as the methylation status of nearby histones [8].
Computational prediction of CpG island methylation status
based on the statistical properties of these features could
render fairly reasonable accuracy (e.g., ∼89% [2] [8]). In
this study we incorporated three more sets of attributes that
have not been extensively explored, including (i) the nucle-
osome positioning propensities of the CpG island, (ii) the
acetylation status of nearby histones, and (iii) the functional
roles of nearby genes. These attributes are promising to add
more dimensions of information, because an accumulating
body of evidence has shown that DNA methylation is in-
fluenced by nucleosome positioning [13], associated with
histone acetylation [14], and involved in biological processes
such as gene imprinting, X chromosome inactivation, and
tumor suppressor gene silencing [15] [16]. In the following
paragraphs of A.1 to A.6., we describe how these features
were extracted.

A.1. The CpG island specific attributes, including the
GC content, length and observed/expected CpG ratio, were
directly obtained from UCSC human genome browser.

A.2. We considered the DNA composition and structure of
each CpG island. For the DNA compositional features, we
focused on the frequencies of the tetramer oligonucleotides
and their z-scores; and, for the DNA structural features, we
focused on those basic characteristics capturing the DNA
3-D conformation as well as the nucleosome positioning
propensities.

The z-score of a tetramer oligonucleotide fragment,
N1N2N3N4, was calculated as:

Z(N1N2N3N4) =
O(N1N2N3N4)− E(N1N2N3N4)

σ(N1N2N3N4)
(1)

where O(·) represents the observed frequency, E(·) and
σ(·) represent the expected frequency and standard devia-
tion. E(N1N2N3N4) was estimated empirically based on a
maximal-order Markov model [17]:

E(N1N2N3N4) =
O(N1N2N3)O(N2N3N4)

O(N2N3)
(2)

and σ(N1N2N3N4) was approximated as:

σ(N1N2N3N4) = E(N1N2N3N4)∗
[O(N2N3)−O(N1N2N3)][O(N2N3)−O(N2N3N4)]

O2(N2N3)
(3)

The DNA conformation related attributes include twist,
tilt, roll, shift, slide and rise, which were estimated based
on a model of dinucleotide stiffness [18]. For each of these
six attributes, the average value over all dinucleotides of the
CpG island was used.

Nucleosome positioning propensities of the CpG islands
were estimated based on the genome-wide prediction of the
nucleosome organization map [19]. There were two types
of predictions, one at the nucleotide level, and the other
at the DNA fragment level. The nucleotide level prediction
regards the probability of each nucleotide being covered by



any nucleosome, based on which we calculated the mean
and standard deviation over the entire CpG island. The
fragment level prediction regards the nucleosome positioning
potential of each 147 bp (the typical length of a nucleosome)
DNA fragment, based on which we calculated the mean and
standard deviation over all fragments overlapping with the
CpG island.

A.3. We also considered the distribution patterns of the
functional or evolutionarily conserved elements in the chro-
mosomal region flanking the CpG island, where the func-
tional elements refer to the TFBS that are conserved in
human, mouse and rat genomes [20], and the evolutionarily
conserved elements are those that are conserved across
vertebrate, insect, worm and yeast genomes [21]. To account
for both the short- and long-range association between these
elements and CpG islands, we considered flanking regions
of various lengths, ranging from 100 bps to 2,000 bps
(with step size of 100 bps) upstream and downstream of
the CpG island. Each TFBS or evolutionarily conserved
element is characterized by a score quantifying its degree of
conservativeness across genomes. We counted the number
of these elements overlapping with the CpG island, and
calculated their average score.

A.4. We examined whether a CpG island’s nearby genes
are involved in any cancer-related biological processes. A
CpG island’s nearby genes refer to those whose promoter
region (from the 1,000 bps upstream to the 200 bps down-
stream of the transcription start site) overlaps with the CpG
island. 37 biological processes (30 oncogene related, 11
tumor suppressor related, and 4 common) were determined
through gene ontology enrichment analysis of the genes
retrieved from the Cancer Gene Census [22]. If the gene
ontology annotations of a gene include one or more of these
processes, the corresponding gene function feature is 1 and
0 otherwise.

A.5. We considered the methylation and acetylation sta-
tuses of each CpG island’s nearby histones. The histone
methylation information was obtained from Barkski et al’s
data set, which characterizes the genome wide distribution
of 20 histone methylations as well as histone variant H2A.Z,
RNA polymerase II, and the insulator binding protein CTCF
in CD4 lymphocytes [23]. The histone acetylation informa-
tion was obtained from Wang et al.’s data set [24], which
characterizes the genome-wide patterns of 18 histone acety-
lations in CD4 lymphocytes. In both data sets, a nucleotide
is tagged if its nearby histone undertakes a methylation
or acetylation modification; hence, the number of tags at
each nucleotide can be interpreted as being proportional
to the modification level of nearby histones. We used the
average and standard deviation of the number of tags over
all nucleotides of a CpG island to represent the methylation
(or acetylation) level of the CpG island’s nearby histones.

B. Feature Selection through Statistical Tests and Principal
Component Analysis

A total number of 841 features were extracted for each
CpG island, including three CpG island-specific attributes,

512 DNA compositional features and 10 DNA structural
features of the CpG island, 230 about the distribution of
TFBS and two about the distribution of the evolutionarily
conserved elements in the flanking chromosomal region, two
about the involvement of the neighboring genes in onco-
gene or tumor-suppressor related processes, and 82 about
the methylation and acetylation status of nearby histones.
The extraction of these features was biologically motivated.
However, from a statistical point of view, the correlations
of these features to the CpG island methylation status vary
from one feature to another. For instance, it was reported
that DNA sequence composition patterns, distribution of
repeat elements, and DNA structure properties are highly
or moderately correlated with the CpG island methylation
status; whereas the distribution of genes, single nucleotide
polymorphism, and CpG island distribution are only weakly
correlated with the CpG island methylation status [5]. To
screen out the features of predictive power, we performed
various statistical tests, including the Fisher’s exact test
[25], Chi-squared test [26], and Kolmogorov-Smirnov (KS)
test [27]. The Fisher’s exact test was used for functional
roles of nearby genes, for which the feature variable is
categorical and some expected values in the contingency
tables are extremely small (<5); the Chi-squared test with
Yates corrections [28] was used for the other categorical
features (i.e., the number of functional and evolutionarily
conserved elements in the flanking chromosomal region);
and, the KS test was used for those features whose values are
continuous, including CpG island specific attributes, tetramer
frequencies and z-scores, DNA structural features, scores of
functional and evolutionarily conserved elements, and scores
of histone methylation and acetylation. For each of these
statistical tests, a feature was considered to be statistically
significantly correlated with the methylation status of CpG
islands if its p-value was less than 0.05.

Besides their correlations with the CpG island methylation
status, these features might be inter-correlated. For example,
the histone methylation and acetylation status are likely to
be correlated, because some acetylation and methylation
(e.g. histone H3 at lysine 9) play opposite roles in gene
activity [29]; DNA sequence and structure properties are
likely to be correlated, because most DNA structures are
predicted based on DNA sequences; and, the distribution
of functional/evolutionarily conserved elements in a short
flanking neighborhood (e.g., +/- 200 bps) is likely to be
correlated with the distribution in a longer flanking neighbor-
hood (e.g., +/- 2000 bps). The correlation between features
makes the feature space unnecessarily high-dimensional. To
minimize the redundancy in the features, we performed the
PCA on those CpG island methylation-related features that
were selected via the above statistical tests.

C. Prediction Test

The features selected through statistical tests and PCA
were used to build support vector machine-based models to
predict the CpG island methylation status. To examine the
contribution of the newly added features as well as the impact



of the inhibitive-to-acquire histone modification information,
we established the following predictive models, (1) M1: a
model with all information being incorporated, (2) M2: a
model with all but the histone modification information being
incorporated, (3) M3–M9: seven models with individual or
combinations of the newly added features being excluded,
and (4) M10–M16: seven models with individual or combi-
nations of the newly added features as well as the histone
methylation information being excluded. We used the CD4
lymphocyte data for training and validating the models, while
the data of the other 11 tissues/cell types for generalizability
testing.

Training/Validation (based on the CD4 lymphocyte
data): All these models were trained and validated by
using a 10-fold cross validation scheme. That is, all CpG
islands were partitioned randomly into 10 approximately
equally-sized folds, each of which was used in turn for
validation while the remaining folds were used for training.
The performance of the classifiers was assessed by using
three metrics defined in Eqns. (4)–(6), namely, sensitivity
(SE), specificity (SP), and accuracy (ACC). This partition-
training-and-validation procedure was repeated for 20 times,
and the classifier performance was averaged over the 200
validation folds.

SP =
#correctly classified unmethylated CpG islands

#unmethylated CpG islands
(4)

SE =
#correctly classified methylated CpG islands

#methylated CpG islands
(5)

ACC =
#correctly classified CpG islands

#CpG islands
(6)

For fair comparisons with the existing method, a leave-
one-out cross-validation (LOOCV) scheme was also used.
That is, each CpG island was in turn used for validation
while the remaining CpG islands were used for training. The
performance of the model in the LOOCV scheme was also
assessed by the three metrics averaged over all validation
CpG islands.

Generalizability testing (based on data of other tis-
sue/cell types): Two predictive models built on the CD4
lymphocyte data were tested for generalizability using the
data of the other 11 tissues and cell types: one (M1) relying
on all information, while the other (M2) relying on all
but the histone modification information. For the former
model, because the genome-wide histone methylation and
acetylation profiles are not available for these 11 tissues and
cell types, we used the genome-wide histone modification
profiles in the CD4 lymphocytes, assuming that histone
modifications in various cell types are moderately or even
highly correlated [41].

IV. RESULTS AND DISCUSSIONS

A. Statistical Tests and PCA

Out of a total number of 841 features, 342 features were
retained whose p-values in the statistical tests were less

than 0.05. These features include two of the CpG island
specific attributes, 217 DNA compositional and eight DNA
structural features, 35 functional element features and two
evolutionarily conserved element features, two features re-
garding the functional roles of the neighboring genes, and 76
features related to the modification status of nearby histones.
Particularly, among the newly added features, two out of the
four nucleosome positioning features, all of the 36 histone
acetylation features, and both of the features regarding the
functional roles of the neighboring genes were retained after
statistical tests.

PCA was performed to decorrelate these 342 selected
features. Table I summarizes the number of principal com-
ponents that must be retained to keep a certain percentage of
the variance of the original feature space. Observe that the
first eight principal components together can account for the
∼99.90% of the variance in the original feature space and
were therefore used to build the predictive models. Fig. 1
depicts the contribution of each of the 342 original feature
dimensions to the eight principal components. Observe from
Fig. 1 that each of the following eight categories of features,
(i) the CpG island specific attributes, (ii) DNA sequence pat-
terns, (iii) DNA structure patterns, (iv) distribution of TFBS,
(v) distribution of the evolutionarily conserved elements, (vi)
gene functions, (vii) histone methylation and (viii) histone
acetylation status, makes substantial contributions to one or
more principal components, suggesting that these categories
of information, though correlated, are complementary to a
certain extent for predicting the CpG island methylation.

TABLE I
NUMBER OF PRINCIPAL COMPONENTS (PCS) REQUIRED TO RETAIN A

CERTAIN PERCENTAGE (PCNT) OF THE TOTAL VARIANCE.

Pcnt 100% 99.99% 99.90% 99.00%
PCs 342 10 8 6

Pcnt 95.00% 90.00 75.0% 50.00%
PCs 5 4 3 2

B. Performance of the Predictive Models Based on the CD4
Lymphocyte Data

The specificity, sensitivity, and accuracy measures of our
predictive model M1 that incorporates all information are
summarized in Table II. Observe that both cross-validation
schemes rendered similar results, indicating that these mea-
sures can reliably characterize our model. The performance
of our classifier was compared to that of Fan et al.’s [8]
method. Note that both models incorporated the histone
modification information. Observe that our model showed
an improved specificity and accuracy than Fan et al.’s model
while maintaining a comparable sensitivity. Furthermore, it
was reported in [8] that when evaluated on the human brain
data, Fan et. al.’s method could outperform Epigraph [6].

We could argue that the improvement of our model M1

over the existing model was partly due to the incorporation
of the three new types of features – nucleosome positioning
propensities, gene functions, and histone acetylation status.
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Fig. 1. Contribution of the 342 features to the eight principal components. Each column corresponds to a principal component, and each row corresponds
to an original feature dimension.

The performance of our models M3 through M9, each with
an individual or a combination of the new types of features
being excluded, are summarized in Table III. Observe that the
performance of the predictive model deteriorated to different
extents when individual or combinations of the newly added
features were excluded. Specifically, the models without
histone acetylation information (M3, M6, M7, and M9)
deteriorated more than those models with histone acetylation
information but without the other two types of newly added
features (M4, M5, and M8). Therefore, histone acetylation
appears to be the most influential feature to the performance
of the predictive model among the newly added features.

We suspected that the information carried by the histone
methylation features was too dominant to fairly assess the
influence of these newly added features; and therefore ex-
cluded the histone methylation features and repeated the
above experiments excluding individual or combinations of
the newly added features. The resultant models were M10

through M16, and their performance was summarized in
Table III. Similarly, the models without an individual or a
combination of the newly added features deteriorated. It is
noteworthy that (1) the histone methylation and acetylation
information greatly affected the sensitivity of the models, and
(2) the loss of histone methylation information could largely
be made up by including the histone acetylation information.
This is not surprising, given that these two forms of histone
modifications are closely related as repeatedly observed in
various tissues and cell types [29].

C. Classifier Generalizability

The two predictive models, one with the histone modifica-
tion information (M1) and the other without (M2), that were
both built on the human CD4 lymphocyte data were tested
on the data of the other 11 tissue and cell types for their

TABLE II
PERFORMANCE OF OUR CLASSIFIERS M1 ON CD4 LYMPHOCYTES WITH

COMPARISON TO THE EXISTING METHOD.

Method SP SE ACC
M1 (10-fold) 0.9405 0.9257 0.9313
M1 (LOOCV) 0.9429 0.9307 0.9403
Fan et al.’s [8] 0.7400 0.9428 0.8994

generalizability. The sensitivity, specificity, and accuracy of
M1 and M2 during these testing experiments are summarized
in Tables IV and V.

When the histone modification information was incorpo-
rated, the classifier model built on the CD4 lymphocyte data
can be applied to most of the other tissues and cell types
(except for sperm) with little or no performance deterioration.
When the histone modification information was not used,
the performance of the predictive model on the data of
the other tissues and cell types deteriorated substantially,
especially in terms of the sensitivity. However, if compared
to the validation results where the histone modification
information was not used, the performance on the testing data
was not unexpected. Therefore, with or without the histone
modification information, the predictive model established on
the CD4 lymphocyte data can well generalize to the other
tissue or cell type data.

Considering that DNA methylation is heavily involved in
cellular differentiation, our results in Tables IV and V look
suspicious. We therefore calculated the correlations of the
CpG island methylation levels between different tissue and
cell types, as depicted in Fig. 2. Observe that the correlation
coefficients between the somatic/placenta cells are very high
(mean: 0.9455, standard deviation: 0.0229), where the cor-
relation coefficients between the somatic/placenta and sperm



TABLE III
PERFORMANCE OF THE PREDICTIVE MODELS (M3 THROUGH M16), EACH WITH AN INDIVIDUAL OR A COMBINATION OF THE NEWLY ADDED

CATEGORIES OF FEATURES BEING EXCLUDED.

Features SP SE ACC
LOOCV 10-fold LOOCV 10-fold LOOCV 10-fold

Histone Methylation Retained

All retained 0.9429 0.9405 0.9307 0.9257 0.9403 0.9313
Acetylation (M3) 0.9048 0.9012 0.9010 0.8965 0.9175 0.9046

Functional roles (M4) 0.9319 0.9302 0.9315 0.9265 0.9362 0.9210
Nucleosome (M5) 0.9285 0.9270 0.9276 0.9250 0.9205 0.9205

Acetylation + Functional roles (M6) 0.8876 0.8791 0.8912 0.8903 0.8915 0.8897
Acetylation + Nucleosome (M7) 0.8805 0.8698 0.8815 0.8835 0.8902 0.8826

Functional roles + Nucleosome (M8) 0.9208 0.9186 0.9107 0.9116 0.9202 0.9186
All three (M9) 0.8775 0.8685 0.8810 0.8822 0.8806 0.8786

Histone Methylation Excluded

All but histone methylation 0.9321 0.9318 0.5941 0.5932 0.8593 0.8575
Acetylation (M10) 0.9701 0.9670 0.2277 0.2247 0.8102 0.8001

Functional roles (M11) 0.9109 0.9092 0.5720 0.5670 0.8369 0.8312
Nucleosome (M12) 0.9088 0.9078 0.5682 0.5660 0.8298 0.8296

Acetylation + Functional roles (M13) 0.9402 0.9320 0.2289 0.2279 0.7885 0.7862
Acetylation + Nucleosome (M14) 0.9381 0.9266 0.2302 0.2304 0.7752 0.7641

Functional roles + Nucleosome (M15) 0.9012 0.8990 0.5520 0.5519 0.8252 0.8232
All three (M16) 0.9098 0.8972 0.2341 0.2338 0.7406 0.7352

Fig. 2. Correlation coefficients of the CpG island methylation levels across
different tissues and cell types.

cells are only moderate (mean: 0.6706, standard deviation:
0.0225). This suggests that the methylation status of CpG
islands are highly correlated in various somatic/placenta
cells, and therefore do not represent tissue-specific differ-
entially methylated regions. Our observations are consistent
with recent studies [30] [31] that there are few variance
in methylation levels of autosomal CpG island promotersa,
and there is only a relatively small fraction of CpG islands
with tissue-specific methylation. The difference between the
somatic/placenta and sperm cells, as reflected by their mod-
erate cross-correlations and the performance deteriorations of
our prediction models being applied to the sperm cell data,
suggests that gametes are epigenetically more deviated from
somatic cells than somatic cells themselves. This difference
is likely related to the meiotic process, the special conditions
and gene expression required for gamete production [32].

V. CONCLUSIONS AND FUTURE WORKS

The establishment of DNA methylation pattern is a crucial
part of cell differentiation and organ development, suppres-

TABLE IV
PERFORMANCES OF THE CLASSIFIER MODEL BUILT ON THE DATA OF 11
DIFFERENT TISSUES AND CELL TYPES: WITH HISTONE MODIFICATION.

Procedure Tissue/Cell Type SP SE ACC

Validation CD4 (10-fold) 0.9405 0.9257 0.9313
CD4 (LOOCV) 0.9429 0.9307 0.9403

Testing

CD8 0.9608 0.8932 0.9448
liver 0.9680 0.8762 0.9465
heart muscle 0.9462 0.9479 0.9466
skeletal muscle 0.9542 0.9451 0.9524
embryonic skeletal 0.9395 0.9367 0.9389
embryonic liver 0.9259 0.9342 0.9277
placenta 0.9695 0.9130 0.9571
dermal melanocytes 0.9663 0.8785 0.9446
dermal fibroblasts 0.9525 0.9239 0.9467
dermal keratinocytes 0.9385 0.9341 0.9376
sperm 0.8459 0.9778 0.8617

TABLE V
PERFORMANCES OF THE CLASSIFIER MODEL ON THE DATA OF 11

DIFFERENT TISSUES AND CELL TYPES: WITHOUT HISTONE

MODIFICATION.

Procedure Tissue/Cell Type SP SE ACC

Validation CD4 (10-fold) 0.9670 0.2247 0.8001
CD4 (LOOCV) 0.9701 0.2277 0.8102

Testing

CD8 0.9722 0.2108 0.8104
liver 0.9678 0.2143 0.8122
heart muscle 0.9562 0.2386 0.8186
skeletal muscle 0.9594 0.2364 0.8306
embryonic skeletal 0.9425 0.2298 0.8100
embryonic liver 0.9389 0.2306 0.8054
placenta 0.9655 0.2184 0.8276
dermal melanocytes 0.9700 0.2186 0.8156
dermal fibroblasts 0.9605 0.2200 0.8237
dermal keratinocytes 0.9425 0.2204 0.8095
sperm 0.8524 0.2365 0.7625

sion of viral genes and deleterious elements, and carcinogen-
esis. Computational prediction of DNA methylation levels
provides an effective, fast and cheap alternative approach
for studying the DNA methylation patterns. In this study, we
performed the computational prediction of the CpG island
methylation by incorporating additional features and effec-



tively selecting and decorrelating the features. We incorpo-
rated the information regarding the nucleosome positioning
propensity, acetylation status of nearby histones, and the
functional roles of nearby genes. These features were first
screened through statistical tests and PCA. The most DNA
methylation-relevant yet non-intercorrelated features were
subsequently used to build computational models to predict
the methylation status of CpG islands. Our experiments on
the HEP data set demonstrated that (1) an eight-dimensional
feature space, which combines all the eight categories of in-
formation, was effective in predicting the methylation status
of CpG islands; (2) by incorporating the information regard-
ing the nucleosome positioning propensities, gene functions,
and histone acetylation, our predictive model achieved a
higher specificity and accuracy than the existing model
while maintaining a comparable sensitivity; (3) the histone
modification attributes carry a weight of information for the
prediction, without which the performance of the predictive
model deteriorated substantially in terms of sensitivity; (4)
with or without the histone modification information the
performance of the predictive models are consistent on the
validation and testing data. This computational model, with
its evidently high specificity and sensitivity, provides an
effective tool for identification of new methylation targets
and therefore lays foundation for our future endeavors in the
regulation mechanisms of DNA methylation.
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