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Abstract—The characterization of chemical compounds based
on their molecular graphs is an important task for identifying
properties such as toxicity or mutagenicity. We used different
groups of topological descriptors using the AMES mutagenicity
data. Instead of optimizing the classification performance, the
aim of this study is to perform a structural analysis of the
underlying set of molecular graphs to gain better insights of the
data set.
The structural analysis identifies two groups of molecular
networks. One group contains graphs with linear patterns
(outliers), and the other group contains graphs that exhibit
patterns of regular graphs (remainders). We show that the set
of used topological descriptors chosen for this study cannot
capture enough group-specific structural information within
the remainders group to achieve the discrimination ability of
the outliers group. Finally, this leads us to the conclusion that
it is necessary to identify existing or develop new descriptors
that capturing specific structural information to achieve better
discrimination ability.
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I. BACKGROUND

The classification of drug-like compounds by using struc-
tural information of their underlying molecular graphs is an
important task to identify chemical properties (e.g. toxic-
ity or mutagenicity) [Feng et al., 2003], [Votano et al., 2004].
In general, graph classification is a challenging prob-
lem and has been tackled by using different meth-
ods [Cook and Holder, 2007], [Dehmer and Mehler, 2007],
[Deshpande et al., 2003]. Note that classical work relates to
applying methods from exact and inexact graph matching
[Cook and Holder, 2007], [Dehmer and Mehler, 2007]. In a
more biologically motivated work performed by Li et al.,
graph kernels to predict gene functions have been utilized
[Li et al., 2007]. Chuang et al. used subnetworks to train
a classifier for the detection of breast cancer metastasis
[Chuang et al., 2007].
For our investigation we use the Ames mutagenicity
data set, that is a benchmark set to classify graphs
[Hansen et al., 2009]. It consists of 6512 graphs, that rep-
resent compounds that are categorized as Ames posi-

tive (AMES+) or negative (AMES−) by the Ames test
[Ames et al., 1973]. Hansen et al. [Hansen et al., 2009] used
the commercial software tool Dragon [Todeschini et al., 2003]
to calculate a large set of molecular network descriptors to
classify the Ames mutagenicity data set.
Dehmer et al. [Dehmer et al., 2010] used entropy-based
descriptors [Dehmer and Mowshowitz, 2011] for weighted
chemical structures to classify the AMES data set. After re-
moving the isomorphic graphs, they showed that it is possible
to classify the remaining graphs with a reasonable classifica-
tion performance, by only using a set of seven descriptors.
For our analysis we modify this set of graphs, as we only
consider the structural skeletons of the molecules. We con-
struct a structural skeleton by using unlabeled nodes and
unweighted edges. The main contribution of this paper is
to identify discriminatory features of the AMES graphs
to classify the structures properly. For this, we calculate
the descriptors using the freely available R-package QuACN
[Mueller et al., 2010b] and selected groups of measures from
Dragon [Todeschini et al., 2003] on the resulting set of molec-
ular skeletons.
Note, the classification of Ames mutagenicity by only using
structural properties without labels is surely a critical under-
taking. The aim of this study is not to increase or optimize
the classification performance for this data set but rather to
investigate the structural information of molecular networks.

This paper is structured as follows: The Material and
Methods section describes the data set of molecular networks
that we analyze and gives a brief overview about the used
methods. The results section lists the results of the initial
classification that motivates the structural analysis. It also
contains the results of the structural analysis of the data. In
chapter IV we summarize and discuss the results. Section
V concludes the paper and provides an outlook on further
investigation steps.

II. MATERIAL AND METHODS

The modified AMES Mutagenicity Set for Molecular Networks

The initial data set of Ames mutagenicity
[Hansen et al., 2009] was designed to benchmark the



classification performance of different kind of graph
classification strategies. It contains 6512 molecular
compounds that were categorized positive or negative
by the Ames test [Ames et al., 1973] for mutagenicity.
Hansen et al. [Hansen et al., 2009] used six different public
available data sets and studies to create this benchmark
data set. This data set contains n+ = 3503 AMES positive
(AMES+) and n− = 3009 AMES negative (AMES−)
molecular networks. We used the data set of Dehmer et al.
[Dehmer et al., 2010] were isomorphic graphs were removed
and modified this set, as we only took the structural skeletons
of the molecules. This means that each atom is represented
by an unlabeled vertex. Moreover, we represent each kind of
bond with an undirected edge. This results in a data set of
n = 3947 skeletons of molecular networks with n+ = 2179
AMES positive and n− = 1768 AMES negative graphs. This
set of molecular networks was used for further analysis.

Topological Network Descriptors

After modifying the AMES data set we calculate
different groups of topological descriptors. Topological
network descriptors are numerical graph invariants
that quantitatively characterize the structure of the
underlying network [Emmert-Streib and Dehmer, 2011]
We calculated the entropy-based descriptors available
in QuACN [Mueller et al., 2010b] and six groups of
descriptors offered by the commercial software tool Dragon
[Todeschini et al., 2003]. Table I gives an overview about the
calculated descriptors.

Each descriptor in Table I results in a single value that
characterizes the structure of the underlying molecular net-
work in a certain way. The calculated descriptors can be
treated like features and then be used for machine learning
[Mueller et al., 2010a], [Mueller et al., 2011].

Also, we will not describe the descriptors in detail.
For a better understanding of the selected measures
see corresponding literature (e.g. [Bonchev, 1983],
[Dehmer et al., 2010], [Todeschini and Consonni, 2009],
[Mowshowitz, 1968]). Dehmer and Mowshowitz
[Dehmer et al., 2010] discuss entropy-based descriptors,
Todeschini et al. [Todeschini and Consonni, 2009] describes
the descriptors implemented in Dragon.

Supervised Machine Learning

To classify the molecular networks between AMES+

and AMES− we treat every topological descriptor
as feature. We use support vector machines (SVM)
[Vapnik and Lerner, 1963] with a radial basis function
kernel.

To compare the results of the support vector machines
we use Random Forest (RF) [Svetnik et al., 2003]. After
optimizing the parameters and the classification with the
mentioned algorithms we calculate the area under the ROC-
curve (AOC), the accuracy and the f-score of the results. For
each classification we perform a 10-fold cross validation.

To select the best set of topological network descrip-
tors we use the feature selection algorithm information gain
[Quinlan, 1993]. The best features of each group were com-
bined to a so called superindex that is defined as follows
[Bonchev et al., 1981], [Dehmer et al., 2010].

Definition 1. Let I1, . . . , Ij be topological network de-
scriptors. The superindex of these measures is defined as
SI := {I1, . . . , Ij}.

III. RESULTS

Supervised Machine Learning

The performance of the classification with support vector
machines is shown in Table II. The corresponding ROC curves
are shown in Fig. 1. It can be seen that the different groups
lead to divergent results. The group of vertex degree-based
topological descriptors (Dragon 3) achieves the best accuracy
with 73.04%. Four groups (Dragon 1, 2, 3, and 5) achieve
similar AUCs with about 72%. The groups Dragon 1 and
Dragon 3 achieve the best f-scores of about 67%, for details
see Table II. It can be summarized that the best classification
performances (accuracy, AOC and f-score) is achieved by
using the group Dragon 3, containing vertex degree-based
topological descriptors.

Fig. 1. This figure shows the ROC curves for each descriptor group for the
classification using support vector machines.

To evaluate the performance of the support vector machine
we use RF to classify the same groups again. Fig. 2 shows the
ROC curves for the different groups of descriptors. The results
in Table III show that the best performance is achieved by the
groups Dragon 1, 2 and 3. The group called Dragon 1 has
the highest AUC of 74.89%, Dragon 2 the highest accuracy of
71.55% and Dragon 3 achieved the highest f-score of 67.34%.

This result shows that the different groups of topological
network descriptors perform similar using SVM and RF.



TABLE I
OVERVIEW OF THE USED INFORMATION-THEORETIC TOPOLOGICAL DESCRIPTORS.

Group name Group Subgroup No. Descriptors
QuACN 1 Entropy based Partition based and parametric graph entropy 9
QuACN 2 Polynomial based – 50
Dragon 1 Walk and path counts – 46
Dragon 2 Connectivity indices – 37
Dragon 3 Topological indices Vertex degree-based 26
Dragon 4 Topological indices Distance-based indices 13
Dragon 5 Information indices Basic descriptors 17
Dragon 6 Information indices Indices of neighborhood symmetry 30

TABLE II
CLASSIFICATION PERFORMANCE FOR EACH GROUP USING SVM

Precision Recall Specificity Sensitivity Accuracy AUC F-Score
QuACN 1 0.4785 0.6395 0.6486 0.6395 0.6456 0.6625 0.5474
QuACN 2 0.5803 0.6854 0.6971 0.6854 0.6927 0.7120 0.6285
Dragon 1 0.6476 0.7152 0.7344 0.7152 0.7266 0.7216 0.6797
Dragon 2 0.6041 0.7427 0.7210 0.7427 0.7289 0.7220 0.6663
Dragon 3 0.6357 0.7280 0.7320 0.7280 0.7304 0.7223 0.6787
Dragon 4 0.4649 0.6089 0.6357 0.6089 0.6266 0.6265 0.5273
Dragon 5 0.5288 0.7203 0.6855 0.7203 0.6970 0.7243 0.6099
Dragon 6 0.5696 0.6638 0.6868 0.6638 0.6780 0.7088 0.6131

TABLE III
CLASSIFICATION PERFORMANCE FOR EACH GROUP USING RANDOM FOREST

Precision Recall Specificity Sensitivity Accuracy AUC F-Score
QuACN 1 0.5215 0.5895 0.6450 0.5895 0.6230 0.6281 0.5534
QuACN 2 0.5724 0.6216 0.6740 0.6216 0.6524 0.7102 0.5960
Dragon 1 0.6663 0.6747 0.7319 0.6747 0.7066 0.7489 0.6705
Dragon 2 0.6369 0.7007 0.7256 0.7007 0.7155 0.7406 0.6673
Dragon 3 0.6578 0.6898 0.7324 0.6898 0.7142 0.7363 0.6734
Dragon 4 0.6222 0.6599 0.7070 0.6599 0.6871 0.6022 0.6405
Dragon 5 0.6227 0.6613 0.7077 0.6613 0.6881 0.7223 0.6414
Dragon 6 0.5339 0.5885 0.6483 0.5885 0.6240 0.7166 0.5599

Moreover, the classification with RF achieves a slightly higher
performance. However, it can be seen that the groups Dragon
1-3 are qualified best to discriminate between AMES+ and
AMES− for this set of molecular networks.

To study the classification performance we perform a feature
selection with information gain for each group and selected the
best three descriptors of each group to create a superindex.
Classifying by applying the superindex leads to the results
shown in Table IV. The ROC curves are shown in Fig. 3.

The performance of SVM and RF are similar but RF
performs better with an accuracy of 74.21% and AUC of 76.62
and an f-score of 70.80%.

To evaluate the stability of the results we randomly se-
lect 1000 molecular networks and classify them using the
superindex and RF. We repeat this procedure 1000 times.
This results in a mean f-score of 64% with a standard
deviation of 2%. This small standard deviation indicates that
the classification performance is stable.

In order to analyze the classification performance we inves-
tigate the structural information of the set of the molecular
networks. Therefore, we calculate a set of distance-based de-
scriptors [Skorobogatov and Dobrynin, 1988] to explore basic
structural properties.

Exemplarily, we use the average path length to outline a
prototype of the structural analysis. Fig. 4 shows the average

path length (APL) for all molecular networks. One function
represents the graphs that are grouped as AMES+ the other
one shows the graphs that are AMES−. The vertical lines
represent the mean and the standard deviation (dashed) for
each group. Fig. 4 shows, in a descriptive way, that the
distribution of the average path length of the two groups
(AMES+ and AMES−) is largely overlapping. This can also
be observed for the other distance-based descriptors.

We hypothesize that the outliers are more discriminative
than the remaining graphs. We define outliers as at least one
standard deviation away from the mean of each group (see
Fig. 4. Using this criteria we split the molecular networks into
two groups (outliers and remainders) with noutliers = 1102
and nrest = 2623 graphs. We then classifying this two
group separately, using the superindex and random forest.
This results in an f-score for the outliers of 72.73%. The
performance of the classification for the remainders obtained
an f-score of 66.63%.

To identify structural information of the different groups
we look at single graphs in the two groups (AMES+ and
AMES−). Fig. 5 exemplary shows two graphs of each group.
Fig. 5(a) and 5(b) show two outliers, and Fig. 5(c) and 5(d)
represent two networks of the remainders. It can be seen that
the outliers possess linear patterns, in contrast the remainders
show regular patters. A regular graph is a graph where each



TABLE IV
CLASSIFICATION PERFORMANCE OF THE SUPERINDEX

Precision Recall Specificity Sensitivity Accuracy AUC F-Score
Support vector machine 0.6561 0.7374 0.7439 0.7374 0.7413 0.7367 0.6944

Random forest 0.6980 0.7183 0.7604 0.7183 0.7421 0.7662 0.7080

Fig. 2. This figure shows the ROC curves for each descriptor group for the
classification using RF.

vertex has the same degree. These characteristics can also be
observed for other graphs of the corresponding groups.

Repeating this kind of outlier analysis with different
distance-based descriptors (i.e. eccentricity or average dis-
tance) leads to similar results. In summary we see that the
outliers possess linear patterns. This is in contrast to graphs
that are close to the mean of the corresponding descriptor,
which exhibit rather regulatority.

IV. SUMMARY AND DISCUSSION

The AMES mutagenicity set of molecular networks is a
benchmark set to evaluate the performance of graph classi-
fication algorithms. By only using the underlying skeletons,
the classification of this AMES mutagenicity is a difficult and
complex endeavor. It becomes even harder, when removing
isomorphic graphs, the information of node labels and edge
properties. To classify the remaining network skeletons we
used different groups of topological network descriptors and
constructed a so called superindex by selecting the best
features of each group with the feature selection method in-
formation gain. We used support vector machines and random
forest to perform the classification.

The group of vertex degree-based indices achieved the best
results, what indicates that the degree has a hight discrimina-
tion ability within this set of molecular networks. Different
groups of topological network descriptors capture different

Fig. 3. This figure shows the ROC curves for the classification with SVM
and RF using the superindex.

structural information, what led to a higher discrimination
ability by combining them to a superindex.

Hansen et al. [Hansen et al., 2009] achieved an AUC of
86%. One can see that our classification performance is less
than 10% lower. Considering the fact, that Hansen et al. also
used groups of descriptors that take information about the
atoms (e.g.: atom type, atom weights) and different bind-
ing types into account, and we reduced the information in
the molecular network by reducing them to their structural
skeletons, we achieve fairly acceptable results. Moreover, the
removal of the isomorphic graphs can be a reason for the
lower discrimination ability. Imagine that if a graph is correctly
classified, all isomorphic graphs would also be correctly
classified, what would increase the overall performance of the
classification. By using molecular skeletons it can happen that
two molecules are reduced to the same skeleton and then can
be found in the AMES+ and in the AMES− group. That
can also be a possible reason for a lower classification power.

Comparing our results with Dehmer et al.
[Dehmer et al., 2010], they achieved 71.4% including label
information, shows that our best classification performance by
using the superindex and random forest, is only about 0.6%
lower. Compared to their results when using unlabeled graphs,
the difference is even smaller. Note, that the fact that the
results are fairly the same, strengthens our hypothesis that the
classification performance cannot be increased dramatically,



(a) (b)

(c) (d)

Fig. 5. This figure shows exemplary two graphs of the two groups, split by the value of the average path length. One group ((a) and (b)) represent outliers
that are at least one standard deviation away from the mean (see Fig. 4. (c) and (d) represent the groups of the remaining molecular networks.

by only using the this set of molecular descriptors.

In order to increase the classification performance in further
studies we analyzed the set of molecular networks structurally.
Therefore, we applied a set of distance-based descriptors to
them, and analyzed the structure of the outliers. An interesting
finding is that the outliers show linear patterns, compared to
the remaining graphs that show properties of regular graphs.
Moreover, as these regular graphs show more equal vertex
degrees than the linear ones, this assumption matches with
observation that the group of vertex degree-based descriptors
has the highest classification performance of all selected
groups of topological network descriptors. An other interesting
finding is that the remaining regular graphs contain ring-like
structures.

V. CONCLUSION AND OUTLOOK

This study deals with the structural analysis of the AMES
mutagenicity data set. It turned out that vertex degree-based
descriptors led to a good classification performance. Combin-
ing different groups of descriptors to a superindex is promising
as it increased the classification performance.

The major challenge of this study was to explore the se-
lected topological network descriptors. They failed to capture
enough structural information that would have been needed
for achieving a better discrimination ability. The structural
analysis showed that there is a set of graphs possessing linear
patterns and a set of graphs showing regular characteristics.
For future work it is necessary either to identify existing
descriptors or develop new descriptors that can better discrim-
inate between these graphs. Therefore, a thorough analysis of



Fig. 4. This figure shows the average path length for each group: AMES+

(green) and AMES− (blue). The vertical lines represent the mean and the
standard deviation (dashed) for each group.

the data set is needed.
Moreover, defining superindices to combine different de-

scriptors, which capture different kinds of structural properties
can be a promising strategy. The combination of different
superindices could lead to an approach that can capture group-
specific combinations of different structural information to
distinguish between AMES positive and AMES negative tested
chemical compounds.
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