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Abstract—Metabolic networks summarize and represent an-
abolic and catabolic processes that are driven by the enzymes in
every organism. It has been shown that the metabolic networks
of the three domains of life (Archae, Bacteria, and Eukaryota)
have certain properties in common. However, we could previously
demonstrate that it is still possible to find domain-specific
attributes in the corresponding networks, that allow for a good
inter-domain classification performance. In this paper we aim at
finding domain dependent differences based on distances between
vertices in the networks. We apply three different distance-based
topological network descriptors using Shannon’s Entropy. Our
results show that a clear distinction between the three domains
of life fails when using the employed network descriptors. This
indicates that certain distance-related properties are common to
all organisms in this study. We expect this to be a sign of the
evolutionary optimization of the information spread within these
networks.
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I. BACKGROUND

Catabolic and anabolic processes can be represented by
metabolic networks, as they represent the interlinkage of
metabolic processes that make up the human metabolism
[Alberts et al., 2007]. By studying how these processes are
organized in pathways it is possible to derive knowledge
about the underlying functions. Jeong et al. systematically
investigated the organization and structure of metabolic
networks from 43 organisms that were representing the
three domains of life [Jeong et al., 2000]. One of their main
results was, that despite the evolutionary distance, properties
related to the network diameter were found to be highly
conserved [Jeong et al., 2000]. However, in recent work
we demonstrated that it is possible to still discriminate
between the three domains of life [Mueller et al., 2011]. The
main goal of this paper is to analyze path distance-based
properties in the networks by Jeong et al., in order to
detect domain-specific effects. We aim at detecting distance-
based effects, that may hint at evolutionary differences
between the domains of life. To tackle this problem
we utilize entropy-based topological network descriptors
[Dehmer and Mowshowitz, 2011]. The structure of a network
also reflects its function [Strogatz, 2001]. Thus, applying

topological network descriptors might be useful for the
analysis of complex networks, as they allow transforming
structural information about a graph into a numeric value
[Emmert-Streib and Dehmer, 2011].  Topological network

descriptors have been employed in chemoinformatics,
e.g. for predicting toxicity [Feng et al., 2003] or
mutagenicity [Votano et al., 2004]. Recently, they have

also been proven useful for analyzing biological networks
[Mueller et al., 2010], [Emmert-Streib and Dehmer, 2011].

Jeong et al. first described the relatedness of metabolic
networks, when they explored degree distributions and
average path lengths [Jeong et al., 2000]. Later, Wagner
and Fell found the metabolic network of E. coli to exhibit
the small-world property for a slightly different set-up
[Wagner and Fell, 2001]. Ma and Zeng analyzed the core
networks and clustering properties of different organisms
in their work [Ma and Zeng, 2003]. They also investigated
the average path lengths of the largest subnetwork and the
whole network for 65 organisms [Ma and Zeng, 2003]. A
set of topological network descriptors was employed by Zhu
and Qin to find differences in various single cell organisms
[Zhu and Qin, 2005]. They found the average clustering
coefficient and the average betweenness to differ between
six Bacteria and four Arachaea [Zhu and Qin, 2005]. In the
current paper we focus on topological network descriptors
that are based on inferring distances between vertices. We
hypothesize that the analysis of these distances might reveal
knowledge about the spread of information within these
networks.

This paper is structured as follows: After providing
background information in this Section, we describe the
employed data set and the methods in Section II. Thereafter,
we illustrate the results in Section III, which are discussed in
IV. This paper finishes with a final summary and conclusion
in section V.
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Fig. 1. The distribution of o (v) for the 43 organisms. Each of the three domains is depicted in a different color.

II. MATERIAL AND METHODS
Metabolic Networks

For the analysis of domain-specific effects we re-analyze

the metabolic networks that have originally been studied by
Jeong et al. [Jeong et al., 2000]. In their study they analyzed
43 organisms from the three domains of life (narchgea = 6,
NBacteria = 92, and NEykaryota = O). After we construct the
networks, we extract the largest connected component, which
represents the largest connected subgraph, for each organism.
This results in a network G for every organism, where V is
the set of labeled vertices and F is the set of directed edges.
Overall, we then have 43 labeled and directed networks for
the further analysis.
The eccentricity o(v) of a vertex v is an important feature
within a network [Hage and Harary, 1995]. It gives the
maximum of the distances from one vertex to all other
connected vertices. In biological networks, small distances
may indicate short communication processes, which allow for
an organism to rapidly react to disturbances. To illustrate the
distribution of o(v) for each of the 43 networks we plot it in
Fig. 1.

Network Descriptors using Distances

Topological network  descriptors  represent  the
complexity of a network by a numeric value
[Emmert-Streib and Dehmer, 2011].  Early  applications

of network descriptors date back to the work of Wiener
[Wiener, 1947]. He utilized the sum of the distance
matrix for predicting paraffin boiling points. Other well-
known indices are the Balaban J index [Balaban, 1982],
the Zagreb group indices [Diudea et al., 2001] or the
Randi¢ connectivity index [Li and Gutman, 2006]. Later,
methods for quantifying the information content of a
network were established [Bonchev and Rouvray, 2005],

[Mowshowitz, 1968], [Rashewsky, 1955], [Trucco, 1956].
Note, that many of these descriptors are correlated. Bonchev
and Trinajsti¢ introduced an information index that captures
molecular branching [Bonchev and Trinajstic, 1977]. Many
other real-world applications are also based on problems of
relational structures, e.g. transportation or communication
networks [Kolaczyk, 2009]. Networks and topological
descriptors have been extensively used in the social sciences
[Wasserman and Faust, 1994], e.g. for identifying opinion-
leaders or the spread of information in societies.

In the present work we put an emphasis on i) descriptors,
that can be used to evaluate the information spread in
a network. ii) Descriptors that calculate the information-
content of a network. We select entropy-based network
descriptors since they were shown in previous work to posses
good classification performance when capturing domain-
specific effects [Mueller et al., 2011]. For a comprehensive
overview on entropy-based network descriptors see e.g.
[Dehmer and Mowshowitz, 2011]. We focus on studying the
information-spread as we are interested in finding structural
differences that present themselves in the way information is
spread within the metabolic networks. Our hypothesis is, that
we might find structural differences that can be clearly linked
to a domain-specific origin.

It has been shown that it is possible to quantify the
information-content of a network by applying special function-
als to the vertices of the network and using Shannon’s Entropy
[Dehmer, 2008]. Dehmer presented a vertex functional that is
based on the j-spheres [Dehmer, 2008]:

YV (03) = c1|S1(vi, G)| + e2|Sa2 (v, G) |+
e Spa) (vi, G, €))
cr > 0,1 <k <p(G).



S;(v;i, G) is the set of vertices with distance j from vertex
v; € V. Note, that ¢ represents a weighting factor. In our
case, we modeled it to follow a exponential function. So ¢ =
p(G)e* for k =0,1,...,p(G) — 1. This allows emphasizing
on vertices that are close to v;. The structural information
content of a graph G' with respect to f¥ (v;) is then defined
by [Dehmer, 2008]:

[Vl v v

f (Ui) f (Ui)
I 1% G = 10 .
e E:: V) SV (o)

fV(v;) can be seen as a function that represents the spread of
information from v;, so I¢(G) is a model for the information
spread in G [Dehmer, 2008].

2

Bonchev et al. introduced a descriptor that is based on
the eccentricity o(v;) and the mean information content
[Bonchev et al., 1980]. The radial centric information index
is defined by [Bonchev et al., 1980]:

V]
e => 777 1082 7 3)
j=1

Here, n; gives the number of vertices with eccentricity
o(v;) = j. It is common to assume that small o(v;),v; € V
indicate the possibility to spread information rapidly within
G. So, I (G) should give an insight into how information is
spread in G. If our hypothesis holds, organisms from different
domains may exhibit systematic differences with respect to
IX(G).

It is possible to define information measures using local
features of graphs, e.g. by quantifying the entropy of single
vertices [Dehmer and Mowshowitz, 2011]. Konstantinova and
Paleev introduced a measure that represents the vertex com-
plexity by [Konstantinova and Paleev, 1990]:

V]
d(vi,vy) d(vi,v;)
Ip(v) =— S Vi | — g 4
o= 2 ou (S @
where d(v;) gives the sum of distances from vertex v; to

all other vertices in G. The entropy of G is then given as
[Konstantinova and Paleev, 1990]:

[V

Ip(G) =Y In(vy). 5)

Here, we use Ip(G) to model the heterogeneity of the vertices
of a graph G with respect to the distances between the vertices.
Based on our hypothesis we should see a domain-specific
effect in this heterogeneity.

Univariate Analysis

After we calculate the three topological network descriptors
for each of the 43 metabolic networks we proceed with the
succeeding data analysis. First, we test for the presence of a
domain-specific effect in at least one group by performing a

one way ANOVA [Chambers and Hastie, 1991].

Unsupervised Machine Learning

We use hierarchical clustering in order to explore the
groups that are formed by the employed distance measures.
Our clustering is based on the Euclidean distance between
features [Murtagh, 1985].

Supervised Machine Learning

For supervised machine learning we make use of support
vector machines [Vapnik and Lerner, 1963], with a radial
basis kernel. To optimize the outcome we set the cost
parameter to 100. We then calculate the accuracy and the
f-score for the classification of the domains of life based on
our set of topological network descriptors.

ITI. RESULTS
Distance-Based Network Descriptors

For each of the 43 species we calculate the three presented
descriptors with the programming language R (http://www.r-
project.org). The results are listed in Table I and illustrated as
boxplots in Fig. 2.

Univariate Analysis

The results for the ANOVA are listed in Table II. To adjust
for multiple testing we correct with the method by Bonfer-
roni. However, even before the multiple testing correction no
descriptor detects a significant effect in a single domain.

Unsupervised Machine Learning

The heatmap in Fig. 3 illustrates the results of the hier-
archical clustering. The rows contain the 43 organisms and
the columns represent the three employed topological network
descriptors. We mark each domain in a specific color. We
observe no meaningful clustering with respect to the three
domains of life.

Supervised Machine Learning

The classification accuracy is 63%. While we reach a
precision of 0.86 we only score a recall of 0.33. This leads
to an overall f-score of (0.48.

IV. DISCUSSION

In the present study our goal was to detect differences and
characteristics for the three domains of life by making use
of their metabolic networks. Therefore, we reused a set of
43 organisms that have originally been investigated by Jeong
et al. [Jeong et al., 2000]. Here, we focused on analyzing
potential differences in the distances between vertices in the
metabolic networks. We employed a broad range of different
approaches to this problem, which all failed to detect any
domain-specific effects.
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Fig. 2. For each of the 43 species we calculate three entropy-based network descriptors: (a) I FVs (b) I g ,(©) Ip.
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Fig. 3. We perform a hierarchical clustering for the 43 metabolic networks
(rows) and the three employed network descriptors (columns). The three
domains of live are depicted in three different colors.
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In the original work by Jeong et al. they discovered several
interesting aspects that were common to all networks.
All the degree distributions of the networks were found
to be scale-free and follow a power-law distribution
[Jeong et al., 2000]. Moreover, the network diameters p(G)
were found to be relatively constant across all three domains
of life [Jeong et al., 2000]. The similarity in the large-scale
organization of the metabolic networks is also discussed
in [Podani et al., 2001]. These observations indicate that

core properties of the metabolic processes are common to
all species and are to a certain degree not influenced by
evolutionary processes. However, in recent work we could
demonstrate that it is still possible to distinguish between
Archaea, Bacteria, and Eukaryota based on topological
properties of their metabolic networks [Mueller et al., 2011].
In that previous study we applied a set of supervised machine
learning algorithms to 33 network descriptors that were
calculated for the same data, and came up with a reasonable
classification performance (Accuracy: 88.4%, weighted
F-score: 0.88). Such a result has not been reached in the
present study. However, in contrast to this previous work
we now considered directed graphs for our analysis. This
hardens a direct comparison of the previous results with the
current ones. Interestingly, when we ignored the directional
information, two measures that are related to path length
and the spheres turned out to be significantly different in
at least one group [Mueller et al., 2011]. This is a striking
observation that will need to be verified and interpreted in
future studies.

Considering that Jeong et al. observed highly conserved
distance properties in their original study and that we focused
our analysis on these network invariants the observed results
come to no surprise. We conclude that this highlights the
fact that metabolic networks are likely to have evolved in a
way that allows spreading information efficiently, and that
this design is common to most organisms in the present set
of networks. Our results are to a certain degree coherent
with other, related observations. In a similar study, clear
differences between Bacteria and Archaea were found for the
average clustering coefficient and the average betweenness,
but not so much for the average path length and the diameter
[Zhu and Qin, 2005]. These latter two are mainly related to
distance between vertices, which was also the graph invariant



TABLE I
HERE, WE LIST THE RESULTS FOR THE 43 ORGANISMS AND THE THREE
EMPLOYED TOPOLOGICAL NETWORK DESCRIPTORS.

Organism | Iy I g Ip Domain
AP 9.665084 1.704296 | 10040.587666 | Archaea
AG 9.564147 1.662454 | 9225.599594 Archae
TH 9.888839 1.803817 | 12382.120096 | Archae
MJ 8.600314 1.63313 4206.884867 Archae
PF 9.025969 2.02442 6037.409112 Archae
PH 8.2133 1.74309 3060.56127 Archae
AA 10.658253 | 1.762958 | 23348.495827 | Bacteria
CQ 9.938537 1.675467 | 12776.953312 | Bacteria
CT 9.787773 1.887457 | 11276.072509 | Bacteria
CY 9.505232 1.715802 | 8762.273987 Bacteria
PG 9.435009 1.804038 | 8489.037187 Bacteria
MB 8.136314 2.191041 | 2940.192524 Bacteria
ML 8.362968 1.837814 | 3543.299666 Bacteria
MT 10.070713 | 1.717556 | 14174.900512 | Bacteria
BS 10.700696 | 1.678981 | 24103.108553 | Bacteria
EF 10.736119 | 1.553148 | 24075.776966 | Bacteria
CA 9.586382 1.701106 | 9517.179245 Bacteria
MG 9.416086 1.974329 | 8301.183302 Bacteria
MP 10.047548 | 1.615207 | 13779.564647 | Bacteria
PN 9.523945 1.673842 | 8863.919547 Bacteria
ST 9.580282 1.792999 | 9745.236084 Bacteria
CL 8.350742 1.993873 | 3805.079281 Bacteria
RC 9.669622 1.924546 | 10291.659579 | Bacteria
RP 9.615696 1.730073 | 9890.367254 Bacteria
NG 8.326707 1.783241 | 3343.943011 Bacteria
NM 10.142384 | 1.720369 | 15237.759713 | Bacteria
CJ 9.657014 1.650279 | 9902.713247 Bacteria
HP 9.556632 1.711279 | 9098.264346 Bacteria
EC 8.964342 2.070491 | 5795.615593 Bacteria
TY 10.491932 | 1.71284 20399.468024 | Bacteria
YP 9.154839 1.735033 | 6777.224163 Bacteria
AB 9.524078 1.806462 | 9364.071385 Bacteria
HI 9.174159 1.695162 | 6988.915709 Bacteria
PA 9.678677 1.709062 | 10192.080149 | Bacteria
TP 10.341138 | 1.751982 | 18038.2337 Bacteria
BB 8.446315 2.123614 | 3699.92756 Bacteria
™ 10.171566 | 1.705844 | 15249.575415 | Bacteria
DR 9.640121 1.647044 | 9901.92116 Bacteria
EN 9.724915 1.701616 | 10642.447537 | Eukaryota
SC 9.320128 1.732907 | 7586.420683 Eukaryota
CE 8.499299 1.825795 | 3867.729448 Eukaryota
OS 10.776499 | 1.60026 25122.661425 | Eukaryota
AT 10.059327 | 1.733995 | 14349.913609 | Eukaryota
TABLE II

THE RESULTS FOR THE ANOVA TESTING. pBon f IS THE P-VALUES AFTER
THE BONFERRONI CORRECTION.

Iy 17 Ip(vs)
» 0.384 | 0.638 | 0.342
PBong | 1000 | 1.000 | 1.000

of interest in our study. All three utilized topological network
descriptors were quantifying the information-content of the
networks. In recent work we were able to demonstrate that
this family of descriptors is powerful for detecting differences
related to the three domains of life when using this set of
data [Mueller et al., 2011]. In the present work, the low
power in finding domain-specific differences is caused by
the underlying graph invariant. We hypothesize that in order
to find domain-specific differences in the topology of the

networks in this set it is better to focus on other graph
invariants, e.g. vertex degrees or centralities.

V. SUMMARY AND CONCLUSION

Finding specific properties in groups of biological networks
is a major goal in network analysis. Here, we wanted to
detect topological properties responsible for the spread
of information within a network and specific for the three
domains of life (Archaea, Bacteria, and Eukaryota). Therefore,
we employed a set of three network descriptors that capture
properties related to distances within a graph. We calculated
each of these three descriptors on a set of 43 metabolic
networks from different organisms. To analyze the according
data we utilized univariate methods as well as supervised
and unsupervised machine learning procedures. However,
with none of the applied approaches could we detect any
meaningful discrimination or characterization of the three
domains of life. Since we could demonstrate in previous work
that is possible to discriminate between the three domains
of life based on the present data, we conclude that the
information-spread as captured by the employed measured
fails to capture domain-specific properties for this set of
directed networks. It will be part of future work to analyze
what groups of topological network descriptors are best fitted
to solve this undertaking. This could then give insights into
evolutionary differences between the domains.
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