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Abstract - RNA-binding proteins (RBPs) play diverse roles in 

eukaryotic RNA processing. Despite their pervasive functions 

in coding and non-coding RNA biogenesis and regulation, 

elucidating the specificities that define protein-RNA 

interactions remains a major challenge. Here, we describe a 

novel model-based approach — RNAMotifModeler to identify 

binding consensus of RBPs by integrating sequence features 

and RNA secondary structures. Using RNA sequences derived 

from Cross-linking immunoprecipitation (CLIP) followed by 

high-throughput sequencing for SRSF1 proteins, we identified 

a purine-rich octamer ‘AGAAGAAG’ in a highly single-

stranded RNA context, which is consistent with previous 

knowledge. The successful implementation on SRSF1 CLIP-

seq data demonstrates great potential to improve our 

understanding on the binding specificity of RNA binding 

proteins.  

Keywords: protein-RNA binding, RNA secondary structure, 

motif, SRSF1, particle swarm optimization  

 

1 Introduction 

  RNA-binding proteins (RBPs) are implicated in 

virtually every step of post-transcriptional gene expression 

including pre-mRNA splicing, RNA editing and 

polyadenylation [1]. These proteins possess a diverse array of 

structurally and functionally distinct RNA-binding domains 

such as RNA recognition motifs (RRM), KH domains, RGG 

boxes, zinc finger, double-stranded RNA-binding domain, etc 

[1]. Although the structures of many RNA binding domains 

have been solved at high resolution, establishing the sequence 

and RNA-structural determinants to binding specificity 

remains largely unexplored. 

Several methods for elucidating the specificity of protein-

RNA interactions enable rapid advances in our understanding 

of RBP functions. One recent innovation is the Cross-Linking 

ImmunoPrecipitation (CLIP). CLIP exploits photoreactive 

residues in RNA and polypeptides to generate covalently 

linked complexes. Because UV irradiation does not induce 

protein-protein cross-links CLIP is thought to be more 

specific than other IP based assays for protein-RNA 

interactions. CLIP was successfully applied to identify mRNA 

targets of the NOVA protein, a neural splicing factor 

associated with paraneoplastic opsoclonus myoclonus ataxia 

(POMA) [2-4]. Coupling CLIP with next-generation high-

throughput sequencing technology, known as CLIP-seq or 

HITS-CLIP, provides a cost-efficient method to increase the 

sensitivity of the assay by surveying the RNA landscape on a 

more global scale. Several groups have successfully 

implemented CLIP-seq analysis of NOVA, SRSF1, fox2 and 

PTB proteins in mammalian systems [2, 5-7]. Both MEME 

and Z-score statistics have been used to reveal consensus 

binding motifs that are overrepresented in CLIP-Seq data [2, 

6]. Although Z-score statistics may be able to find out the 

overrepresented sequence motifs, it does not consider the 

degenerated feature of the binding specificities of RBPs. 

MEME-based method is well known to be an excellent tool 

for cases only regarding sequence specificity [8]. Neither of 

these approaches can ascertain the roles of RNA secondary 

structure in establishing the context of the protein-RNA 

interaction. Hiller et al. extended MEME by adding a pre-

computing procedure to measure single-strandedness of RNA 

sequence as a priori information to guide the motif search. 

They demonstrated that their model, MEMERIS, is able to 

identify binding motifs located in single-stranded regions 

with applications to both artificial and biological data [9]. 

Recently, Kazan et al. proposed RNAcontext for learning both 

sequence and structural binding preferences of RNA-binding 

proteins [10]. 

Here we describe a model-based approach—

RNAMotifModeler to evaluate protein-RNA interactions 

using a retained binding affinity ratio, which is considered to 

be affected by two major factors—sequence degeneracy and 

RNA secondary structure deviation. RNAMotifModeler 

incorporates predicted unpaired probability of each nucleotide 

in the protein-RNA binding regions; such probability is 

derived from RNA secondary prediction algorithms (e.g. 

RNAfold [2]) based on the nucleotide compositions of the 

neighbouring flanking sequences. This strategy is different 



from RNAContext, which uses predicted RNA secondary 

structures as input such as ‘Paired’, ‘Hairpin Loop’, 

‘Unstructured’ or ‘Miscellaneous’. Unlike MEMERIS, 

RNAMotifModeler uses the base-pairing probability for each 

nucleotide rather than the entire sequence (PU or EF values) 

[3]. For each binding instance, RNAMotifModeler defines a 

score that evaluates the consensus binding site within an 

optimal structural context, and aims at searching for an 

optimal RNA sequence-structural consensus for an RNA 

binding protein. These features enhance our ability to 

calculate and estimate the sequences that yield the highest 

binding affinity for a specific RBP. 

We tested RNAMotifModeler on CLIP-seq data that 

profile the transcriptome-wide binding pattern of SRSF1, 

serine/arginine-rich splicing factor 1 [4]. The sequence 

features of the binding motifs is consistent with the 

experimentally defined cis-acting RNA elements recognized 

by SRSF1 [5]. Interestingly, the prediction suggests that the 

second and fifth bases of SRSF1 octamer motif have stronger 

sequence specificities, but lower p-values of unpaired 

probabilities, while the third, fourth, sixth and seventh bases 

are more significantly to be single-stranded, but have less 

sequence specificities. Therefore, we hypothesize that the 

sequence and structure specificities are both required and are 

playing complementary roles during binding site recognition 

of SRSF1. 

 

2 Results 

 SRSF1 is an essential splicing factor with multiple roles 

in post-transcriptional gene expression [6]. SRSF1 is also a 

potent proto-oncogene and implicated in maintaining 

genome stability [7]. Moreover, loss of SRSF1 binding sites 

by mutations linked to genetic diseases can induce aberrant 

patterns of pre-mRNA splicing [4]. Thus considerable effort 

has been focused on defining the binding specificity and 

RNA targets of SRSF1. Here we report a novel model-based 

approach intended to examine the contributions of structural 

and sequence elements in RNA fragments co-purified with 

SRSF1 by CLIP. 

2.1 Workflow of RNAMotifModeler 

The first step of RNAMotifModeler is to do data 

preparations. In the present study, 904 positive gold standard 

sequences were selected from commonly targeted regions 

across three out of four samples in our previous SRSF1 CLIP-

seq experiments [4]. The same number of negative sequences 

were randomly picked from non-SRSF1-targeted regions 

falling in the same genomic category (exonic, intronic, 

intergenic, etc) as their positive counterparts. Base pairing 

probabilities of each nucleotide to its neighbours were 

subsequently predicted by RNAfold [2] (ViennaRNA 

package, version 1.8.5) for both positive and negative gold 

standard sequences.  

Our next step, as shown in Fig. 1, is to identify sequence-

structural consensus using gold standard sequences and 

corresponding base pairing probabilities derived from 

RNAfold. We took an iterative approach that alternates 

between: 1) optimization of parameters specifying sequence 

degeneracy and structural context given a reference motif 

(the optimal binding sequence), and 2) searching for optimal 

reference motif given the estimated parameters by evaluation 

of each motif candidate’s contribution to binding affinities of 

positive gold standard sequences (more details in Methods). 

The above two steps will be repeated until a convergence 

when the starting motif candidate makes the most 

contribution to binding affinities. 

 
Fig. 1. Workflow of RNAMotifModeler 

Finally, RNAMotifModeler outputs the converged 

reference motif, optimal parameters, statistical evaluation 

such as the AUC scores. The AUC scores are measured by 

the area under the ROC (Receiver Operating Characteristic) 

curves derived from predictions of gold standard sequences 

being bound by SRSF1 proteins using the predicted 

parameters. In order to predict binding sites of SRSF1 

proteins, we pick the sequence binding affinity yielding the 

maximal prediction accuracy as a cutoff score. Based on the 

predicted reference motif and corresponding parameters, 

positive gold-standard sequences can be scanned to find all 

potential binding sites with binding affinities higher than the 

cutoff score. These binding sites can be further used to create 

a sequence consensus logo and transformed to positional 

weight matrix, which is much more widely used. 

2.2 Convergence of SRSF1 consensus motif 

searching 

We call the converging path from a starting motif 

candidate to the final consensus motif a motif searching 

pathway. This graph provides a visual demonstration on the 

pathways through which the reference motifs are determined. 

To have a global overview of the convergence, motif 

searching pathways for all motif candidates are organized 

together to form a motif searching graph. In the particular 

case of hexamer predictions for SRSF1, all 4096 motif 

candidates converge to a short list of candidates (Fig. 2). All 

motif candidates converge within three iterations, of which 

85.7% converge after the first iteration. AGAAGA, 

AAGAAG and GAAGAA are top three hexamers with the 

highest in-degrees, responsible for 99.7% of all motif 



candidates (Table 1). The other twelve reference motifs are 

closely related to these three motifs, only with one or two 

sequence alterations. It is also noted that nearly an equal 

number of motif candidates converge to each one of the top 

three reference motifs. More interestingly, these hexamers 

share a core of ‘AAGA’ indicating that they may be adjacent 

to each other in RNA fragments. 

 
Fig. 2. Motif searching graph. Source, intermediary and destination motifs are 

denoted by nodes colored in blue, purple and red, respectively. The size of node 

is proportional to its in-degree. Arrows between nodes indicate converging 

directions. This figure demonstrates the fast convergence of the vast majority of 

motif candidates using the Quantum Particle Swarm Optimization algorithm. 

 

Table 1. Converged motifs and corresponding numbers of source motifs 

Converged motif No. of source motifs 

AGAAGA 1484 

AAGAAG 1375 

GAAGAA 1225 

others 12 

 

RNAMotifModeler provides an option to predict 

sequence-structural consensus of different lengths. For short 

motifs, it is suggested to perform predictions starting from 

every potential motif candidate and generate a motif 

searching graph to inspect the global convergence. For longer 

motifs, however, generating such a graph will be 

computationally expensive. In this case, we conduct 

predictions starting from a sufficient number of motif 

candidates randomly picked from the motif space. The 

converged motif with the highest prediction power, measured 

by AUC, is selected as the optimal one. 

2.3 Predicted sequence and structural features 

of SRSF1 binding regions 

To better compare RNAMoifModeler predictions with 

the SRSF1 binding motif reported previously, here we focus 

on octamer predictions. Consistent with the sequence 

consensus predicted by MEME [4], the reference motif of 

SRSF1 identified using RNAMotifModeler is also 

‘AGAAGAAG’. The optimal parameters associated with the 

reference motif are displayed in Table 2. The first row listed 

the reference sequence motif identified while the following 

four rows include retained binding affinity ratios due to 

sequence alterations. The last row in Table 2, however, is 

constituted by unpaired probabilities for all nucleotides in the 

motif, indicating the optimal RNA secondary structure of 

SRSF1 binding regions. We note that every nucleotide of the 

predicted SRSF1 binding motif has a very high probability to 

be single-stranded, suggesting that SRSF1 proteins tend to 

bind on highly unpaired RNA regions. 

 
Table 2. Predicted sequence-structural consensus of SRSF1 

  A  G  A  A  G  A  A  G  

A 1.00 0.17 1.00 1.00 0.24 1.00 1.00 0.81 

G 0.79 1.00 0.65 0.90 1.00 0.84 1.00 1.00 

C 0.52 0.32 0.50 0.16 0.35 0.02 0.34 0.63 

U 0.75 0.15 0.39 0.63 0.09 0.06 0.73 0.55 

UP 0.99 0.96 0.99 0.99 0.98 0.99 0.92 0.83 

 

Based on the predicted optimal parameters, we obtained 

an AUC of 0.875 (Fig. 3 A) and an maximal accuracy of 

0.803 (Fig. 3 B), which are both higher than the MEME-

based prediction, of which the AUC is 0.86 and maximal 

accuracy is 0.78 [4]. 

 

Fig. 3. ROC curve and accuracy curve describing the prediction power of 

RNAMotifModeler for SRSF1 proteins 

To visualize the predicted SRSF1 sequence consensus 

more straightforwardly, positive gold standard sequence were 

scanned to search binding sites with binding affinities higher 

than the threshold 0.138, based on which a sequence logo 

(Fig. 4) was created by Weblogo [8]. This motif is consistent 

with the positional weight matrix (PWM) identified by 

MEME using the same gold standard sequences in our 

previous study [4], and is similar to the motifs found by other 

groups [9-11].  

 

Fig. 4. Sequence consensus logo for SRSF1 proteins 

2.4 SRSF1-RNA binding regions are 

significantly single-stranded 

To further test the hypothesis that RNA regions bound by 

SRSF1 proteins are significantly unpaired, we compared 



2904 binding sites predicted by RNAMotifModeler with a 

same number of controls binding sites, randomly selected in 

the same positive gold standard sequences. P-values were 

obtained from Wilcoxon rank sum tests on unpaired 

probabilities of nucleotides between predicted and randomly 

selected binding sites. All median unpaired probabilities of 

positive binding sites are significantly higher than controls 

(Fig. 5B). Wilcoxon tests were also performed on unpaired 

probabilities of nucleotides between predicted binding sites 

and random binding sites selected in negative gold standard 

sequences. For all the eight nucleotides, binding sites in 

positive gold standard sequences tend to be single-stranded 

(Fig. 5A).  

 

Fig. 5. P-values of nucleotides in the motif suggesting significant single-

strandedness. The p-values are derived from Wilcoxon tests, with the 

alternative hypothesis that (A) predicted binding sites in positive gold standard 

sequences are more single-stranded than their counterparts in negative gold 

standard sequences, and (B) binding sites predicted by RNAMotifModeler are 

more single-stranded than randomly selected binding sites in positive gold 

standard sequences. 

The two groups of Wilcoxon tests demonstrate that 

binding sites predicted by RNAMotifModeler are not only 

more single-stranded in positive gold standard sequences 

than negative controls, but also less structured than by chance 

within the same CLIP sequences. More interestingly, 

comparing Fig. 5 B with Fig. 4, we found that the second and 

fifth nucleotide of SRSF1 motif have much stronger sequence 

specificities but lower p-values of unpaired probabilities, 

while the third, fourth, sixth and seventh nucleotide are more 

significantly single-stranded but have less sequence 

specificities, suggesting that both the sequence and a lack of 

secondary structure may play complementary roles in SRSF1-

RNA binding.  

2.5 Predictions before and after incorporating 

RNA structure information 

RNAMotifModeler can also predict consensus motifs 

without using structural information. Using the same positive 

and negative gold-standard sequences, we identified the same 

reference motif ‘AGAAGAAG’ and very similar retained 

binding affinity ratios due to sequence alterations. However, 

we obtained an optimal AUC of 0.853 and the maximal 

accuracy of 0.789, suggesting a slightly reduced prediction 

power when discarding RNA secondary structure 

information.  

Using identified parameter matrix based on only 

sequences we predicted 2295 binding sites, of which 81% are 

commonly identified by incorporating RNA secondary 

structure information (Fig. 6 A). The unpaired probabilities 

of the other 437 binding sites are significantly lower than 

identified binding sites using both sequence and structural 

information (Fig. 6 B and 6 C). Except the third nucleotide of 

motif, all of the unpaired probabilities of these binding sites 

are even lower than background, indicating that binding sites 

predictions may result in a considerable number of false 

positives due to ignoring RNA secondary structures. Bringing 

in RNA secondary structure information, we found 1046 

more binding sites. These binding sites may have low 

sequence specificities, but could be of high structure 

specificities.  Although the AUC increases only by 0.023 after 

introducing RNA secondary structure information, false 

positive and false negative binding sites are both significantly 

reduced. 

 
Fig. 6. Comparisons between predicted binding sites before and after 

incorporating RNA secondary structure information. (A) The number of 

binding sites predicted by RNAMotifModeler using only sequence information 

(blue ellipse) and after incorporating structure information (red ellipse); (B) 

Boxplots of unpaired probabilities of 1858 binding sites both predicted by the 

two methods; (C) Boxplots of unpaired probabilities of 437 binding sites only 

predicted without RNA secondary structure information 

3 Discussions 

 In recent years, there is an increasing interest in using 

high-throughput sequencing technology to study protein-

RNA binding specificities, but almost all of currently 

available bioinformatic approaches used for this purpose do 

not take into account RNA secondary structures, which have 

been demonstrated to have critical impact on protein-RNA 

binding in previous biochemical experiments. Thus, the 

motivation of our proposed model—RNAMotifModeler is to 

predict both structural and sequence specificities of protein-

RNA binding regions.  

RNAMotifModeler incorporates RNA secondary 

structure using RNAfold derived probabilities of nucleotides 

being paired with its neighbours. The preference for base-

pairing probabilities over RNA secondary structures is due to 

a couple of concerns: a) It is very difficult to take into 

account RNA secondary structures directly in many real 

applications because of multiple RNA folding choices 

including optimal and sub-optimal structures; b) Unlike 



MEMERIS, RNAMotifModeler tries to identify the optimal 

structural feature that is expected to represent the base 

pairing probability for each nucleotide in motif. Therefore, 

we did not use PU or EF scores [3], which are the 

measurements of single-strandedness of protein-binding 

regions in MEMERIS. c) The base-pairing probabilities 

predicted by RNAfold program [2] account for all possible 

secondary structures. 

It is noted from our predictions that almost all unpaired 

probabilities of bases in the reference motif of SRSF1 

predicted by RNAMotifModeler are close to 1, suggesting a 

very strong preference of SRSF1 to single-stranded RNA 

context. The statistical significance was further proved by 

two groups of Wilcoxon tests. These findings are consistent 

with previous evidences of SRSF1 proteins. It is known that 

SRSF1 protein contains an arginine-serine rich region (RS 

domain) and two RNA recognition motifs (RRMs), through 

which SRSF1 recognizes specific RNA regions [12, 13]. 

Importantly, RRM is one of the single-stranded RNA-binding 

domains of proteins [14]. Comparing the sequence consensus 

and p-values derived from Wilcoxon tests between the 

unpaired probabilities of predicted binding sites and negative 

controls, we propose that sequence and structural specificity 

may be two complementary factors that both facilitate the 

binding site recognition of SRSF1.  

 
Fig. 7. 3D heatmaps illustrating the effects of the number of particles and 

the contraction-expansion coefficient in QPSO. (A) The prediction power 

measure by AUC, and (B) the time consumed are affected by the number of 

particles and the Contraction-Expansion coefficient, which are two critical 

parameters of QPSO. 

 

RNAMotifModeler also provides an option to predict 

only sequence consensus motifs. This can be potentially 

applied to other fields that only focus on sequence 

specificities such as prediction of protein-DNA binding 

motifs. In the specific application to SRSF1, we found that 

the prediction power in this case is still comparable with 

MEME-based approach, although the AUC and maximum 

accuracy were both slightly reduced when RNA secondary 

structure information was not incorporated. Moreover, only 

using sequence specificity to predict binding sites could result 

in many false positives and false negatives. 

Two parameters—the number of particles nP and the 

contraction-expansion coefficient β of the Quantum Particle 

Swarm Optimization greatly affect the predicting accuracy of 

RNAMotifModeler. To estimate and set up these parameters 

prior to the optimization procedure, we did a series of 

hexamer motif searching tests with nP enumerated from 10 to 

10000 and β ranging from 0 to 1 for SRSF1 CLIP-seq data. 

The AUC scores resulted from optimizations using different 

combinations of these two parameters are presented in 3D 

heatmaps (Fig. 7A). We observed a much more rapid 

decrease in prediction power as β becomes lower when nP is 

small. In contrast, when β is sufficiently high, the AUC score 

is not greatly affected by nP. Thus, the greater nP and β are, 

the higher prediction performance RNAMotifModeler can 

achieve. However, under the consideration of computational 

efficiency, we have to consider the time consumed in each 

test (Fig. 7B). The time consumed is exponential to the 

increment of the number of particles, and is not actually 

controlled by β. When nP is 100 and β equals 1.0, 

RNAMotifModeler achieved a high AUC score of 0.86 within 

three minutes. These two parameters are then selected for all 

other optimizations for the SRSF1 dataset used in this study. 

Convergence of optimization algorithms used in 

predicting protein-DNA or protein-RNA binding sites is a 

common concern due to a number of parameters needed to fit 

in model. In this report, we proposed a motif searching 

pathway and a motif searching graph to inspect whether or 

not the algorithm of RNAMotifModeler indeed has a good 

convergence regardless of the randomly initialized motif 

candidates. In the application to SRSF1 consensus motif, the 

convergence of randomly initialized motif candidates to final 

targets turned out to be very fast. Thus, for short motifs, we 

suggest generate such a motif searching graph in order to 

have a global overview of all possible converged motifs and 

their possible relationships. 

Despite our successful characterization of the binding 

features of SRSF1 proteins, our future work will be applying 

RNAMotifModeler to studying specificities of other RNA 

binding proteins such as fox2, NOVA and EWS, for which 

high-throughput sequences are already available. 
 

4 Methods 

4.1 Predicting RNA base-pairing probabilities 

One of the distinct features of RNAMotifModeler is that 

the information of secondary structures of the RNA regions 

bound by SRSF1 proteins is incorporated into the motif 

identification. For each nucleotide in the RNA fragment, we 

calculate the base pairing probability using the RNAfold 

function of the Vienna RNA package (version 1.8.5) [2]. The 

base pairing probability is used since it integrates likelihood 

of single-strandedness over multiple possible RNA secondary 

structures. For the CLIP-seq derived RNA fragments, these 

probabilities are generated based on the base pairing 

probability of base i being paired with base j, denoted as pi,j. 

The binding probability of base i with all other neighbouring 

bases, defined as Pi, is calculated by: 
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where ns is the length of sequence s. Similar strategies are 

also used elsewhere [15, 16]. 

4.2 Modelling protein-RNA binding affinities 

In RNAMotifModeler, the consensus of each binding 

motif is defined by the following components: 1) the 

reference motif, a k-base RNA sequence on which the protein 

preferably binds; 2) retained binding affinity despite of a one-

nucleotide deviation from reference motif to the sequence of 

one binding sites. For each k-base motif, there are 3k retained 

binding affinities that describe all the possible deviations 

from reference motif. For instance, if the i-th base of the 

reference motif and a specific binding site is mi and fi, 

respectively, the retained binding affinity is defined as 

ii
fmi ,,

 ; 3) a vector that denotes the optimal base pairing 

probability of k bases in the motif θ=(θi); and 4) the penalty 

for the deviation from the optimal base pairing probability α. 

All these parameters will be optimized iteratively. A 

matching score describing the similarity between an RNA 

fragment (F) and a reference motif (R) is defined: 
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where 
i

f
P  represents the pairing probability of the i-th 

nucleotide in the RNA fragment F, calculated in Eq. (1). 

This matching score integrates the loss of binding affinity 

caused by both nucleotide and structure deviances from 

reference motif. We denote the parameter associated to the 

reference motif R as λR = (μ, θ, α)R, where μ, θ and α 

represent the 3k retained binding affinities, optimal base 

pairing probability of k bases, and the penalty for the 

deviation from the optimal base pairing probability, 

respectively. 

4.3 Identify the optimal reference motif from 

CLIP-seq data 

We adopted an iterative approach to identify the optimal 

reference motif and its associated parameters, using a 

Quantum Particle Swarm Optimization algorithm (QPSO) 

[17]. The iterative strategy includes the selection of reference 

motif R, and optimization of the parameters associated to the 

reference motif λR. The overall procedure includes the 

following steps: 

1. Motif initiation. Randomly select a motif candidate Rinit 

from the motif searching space M={b1b2...bk: b1, b2, ..., 

bk∊{A, G, C, U}} as the reference motif.  

2. Parameter optimization. Optimize parameters associated 

with the reference motif by maximizing its ability for 

characterizing the CLIP-seq-derived RNA fragments. 

Step 2.1. Parameter initiation. We first create nP 

particles in the parameter space by randomly selecting 

numbers from U(0, 1).  

Step 2.2. Particle evaluation. For each particle 

(parameters), we evaluate its capability for distinguishing the 

CLIP-seq-derived RNA fragment from background 

sequences. We plot an ROC (Receiver Operating 

Characteristic) curve by adjusting the matching score 

threshold, calculated in Eq. (2).  The quality of the parameter 

will be evaluated based on the AUC (area under the curve) of 

the ROC plot. 

Step 2.3. Particle update. Let  λi
selfbest(t) and λ

globalbest(t)  

be the best individual particle i and the population of 

particles has met at the t-th iteration. As part of QPSO, each 

particle must converge to its local attractor λi
pbest [17]. 

Compute λi
pbest(t) and the mean of the best positions of all 

particles λi
mbest as follows: 
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where φ1 and φ2 are random variables following U(0, 1); 

QPSO employs Monte Carlo method to update 

parameters: 
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where β is called contraction-expansion coefficient 

controlling the convergence speed of QPSO;  u and q are 

random variables which also follow U(0, 1). 

Repeat Step 2 and Step 3 until 

 |)()1(| tt
globalbestglobalbest

λλ  repeatedly, in which ε is a 

tolerance used here as the stop criterion; 

3. Updating reference motifs. Based on the final parameter 

vector λ
globalbest, the maximal binding affinity of motif 

candidate K in positive gold standard sequence F is: 
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where ΩK,F denotes the set of all binding sites for motif K in 

sequence F; aK,F,σ is also computed by Eq. (3).   

In order to update the reference motif, from each 

positive fragment in the gold standard binding set, we 

selected the binding site that contributes to the positive 

selection (genomic loci with the highest binding affinity 

score).  This potential binding site can be either the same as 

the reference motif, or different due to degeneracy. The 

reference motif will be further updated to the binding site that 

can represent largest amount of positive fragments in the 

gold standard binding set. Let nF and nM be the number 

positive gold standard sequences and the number of motif 

candidates, respectively. Let 
FR

init

S
,

 be the maximal binding 

affinity computed using optimized parameters for the initial 

reference motif Rinit in sequence F. To evaluate contribution 



of each motif candidate, we define a motif contribution score 

matrix 
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and a motif contribution score vector 
M
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which: 
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We denote the motif associated with the maximum score in v 

as Rmax. If Rmax=Rinit, meaning the initialized reference motif 

accounts for the most contribution to the retained binding 

affinities, then we stop the iteration; otherwise, let Rmax be the 

next Rinit, and repeat step 2 and 3 until convergence. 

4.4 RBP binding motif logo 

RNAMotifModeler provides a parameter matrix 

consisting of retained binding affinity ratios due to sequence 

mutations and structure alterations at each base. For the ease 

of visualization, we provide a method to generate a Positional 

Weight Matrix (PWM). Once RNAMotifModeler reaches a 

convergence, a set of optimal parameters and reference motif 

will be acquired, as well as a cutoff score of binding affinity 

at the peak of the accuracy curve. We trace back subsequently 

to each positive gold standard sequence to identify binding 

sites with binding affinities higher than the cutoff score. 

Finally, using these positive binding sites, we calculate the 

PWM and create a corresponding logo based on the Weblogo 

tool [8].  
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