
Robust SVD Method for Missing Value Estimation of DNA
Microarrays

Fen Qin, Joseph Collins, and Jeonghwa Lee
Department of Computer Science, Shippensburg University, Shippensburg, PA, U.S.A.

Abstract— A majority of DNA microarray datasets contain
missing or corrupt values and it is critical to estimate
these values accurately. These missing values are most often
attributed to insufficient experimental resolution or the pres-
ence of foreign objects on the experimental slide’s surface.
To improve existing missing value estimation algorithms, this
paper introduces and investigates the scalable singular value
decomposition (SSVD) solver, which is an improvement upon
the Jacobi singular value decomposition (SVD) approach.
Experiments were conducted on a study comparing SSVD to
the Jacobi and QR SVD methods against several legitimate
microarray datasets. The robustness of SSVD is verified
by subjecting it to several test cases containing 1–20% of
missing values. For nearly all of the test cases across all
configurations of missing value percentages, SSVD provides
more accurate recovery results than Jacobi and SQ SVD.
These numerical results strongly suggest SSVD is a robust
and scalable solver.
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1. Introduction
Deoxyribonucleic acid (DNA) microarray analysis is the

study of large scale gene expression experiments, which
grants researchers insight into solving many pertinent bio-
logical questions [12] including cancer classification, identi-
fying the effects of specific gene therapies and exploring the
unknown gene function [11]. The microarray data generated
by gene expression experiments is presented as one large
matrix consisting of genes ordered by rows and experimental
conditions by columns [3]. Even though DNA microarray
analysis is an emerging and powerful tool for researchers
to utilize, the data produced by microarray experiments is
typically not complete. Missing or corrupt data is most com-
monly attributed to insufficient resolution, image corruption
or foreign objects such as dust or scratches on the surface
of the experimental slide [8]. Incomplete microarray data
is undesirable because complete datasets are a prerequisite
for existing gene expression data analysis algorithms. If a
microarray dataset contains missing values, then researchers
are unable to properly draw conclusions about the gene
expression experiments.

There are several gene expression data analysis algo-
rithms available for missing value recovery, including the

singular value decomposition imputation (SVDimpute) [7],
weighted k-nearest neighbors imputation (KNNimpute) [10],
least squares imputation (LSimpute) [2], local least squares
imputation (LLSimpute) [9] and dynamic local least squares
imputation (DLLSimpute) [6]. Among these methods, LL-
Simpute has been suggested to be an efficient recovery
method for microarray datasets. The solving force behind
LLSimpute is the orthogonal-triangular decomposition algo-
rithm powered by QR factorization, denoted the QR singular
value decomposition (SVD) method. When the SVD routine
of the aforementioned algorithms is changed, the overall
accuracy of missing value estimation may improve.

Based on its ease of implementation, QR SVD is typically
the solution of choice for software written in MATLAB.
Within the MATLAB package, there exists a number of
approaches that these gene expression data analysis algo-
rithms commonly utilize to calculate the inverse of a matrix.
The approaches for which we are concerned, referred to as
the standard MATLAB solvers, are inv(A) and pinv(A),
which form the explicit inverse and the Moore-Penrose
pseudoinverse of a square matrix, respectively. Algorithms
from articles [4], [5], denoted the Jacobi SVD method,
propose an improved SVD algorithm driven by an advanced
matrix inverse approach.

This paper introduces a new SVD algorithm, referred
to as the scalable singular value decomposition (SSVD)
solver, which is a further improvement upon the Jacobi
SVD implementation, designed to improve the accuracy of
missing value estimation methods. In order to compare these
solvers in a fair and unbiased manner, each solver was tested
with four complete microarray datasets. Completing these
microarray datasets was achieved by recovering the missing
values in each dataset using LLSimpute with the SSVD
solver. Test cases were then created by randomly inducing
missing values of various percentages into these artificially
completed datasets. The experimental results for each test
case were achieved by swapping out the SVD solver within
LLSimpute.

This paper is organized as follows: Section 2 gives a
concise introduction to the implementation of LLSimpute,
the implementation of an SVD solver and the improvements
introduced by SSVD. In Section 3, numerical experiments of
SSVD versus Jacobi and QR SVD are presented to highlight
the improved accuracy and scalability of SSVD. Concluding
remarks are made in Section 4.



2. Local Least Squares Imputation
2.1 Selecting the Target Gene
G ∈ Rm×n denotes a gene expression data matrix with

m genes and associated n experiments. Assume m >> n.
In the matrix G, a row gi

T ∈ R1×n represents the i-th gene
of n experiments as

G =

 gT1
...
gTm

 (1)

and each missing value location at the i-th gene and j-th
experiment will be represented as

G(i, j) = gi(j) =


g1,1 · · · g1,j · · · g1,n

...
...

...
gi,1 · · · gi,j · · · gi,n

...
...

...
gm,1 · · · gm,j · · · gm,n

 ,

where i ∈ (1, 2, · · · ,m) and j ∈ (1, 2, · · · , n). For con-
sistency, we assume that all missing value estimation al-
gorithms discussed throughout this paper consider the first
position of the first gene to be a missing value, i.e.

G(1, 1) = g1(1) = β,

where this first gene is selected as the target gene.

2.2 Missing Value Recovery Using SVD
The k-nearest neighbor genes of the target gene are

selected where 1 < k < m and k > n. The matrix
A ∈ Rk×(n−1) and vector b ∈ Rk×1 are formed from
these k-nearest neighbor genes. The vector w ∈ R1×(n−1)

is formed from the target gene. Local least squares methods
solve the following equation:

min
x

∥∥ATx− w∥∥
2
, (2)

where solving Eq. (2) is equivalent to solving

min
x

∥∥ATx− w∥∥2
2
. (3)

By the definition of the inner product, we have

min
x

∥∥ATx− w∥∥2
2

= min
x

(ATx− w)T (ATx− w). (4)

Eq. (4) is equivalent to

∂

∂xj

n−1∑
i=1

(ATx− w)2i = 2

n−1∑
j=1

(ATx− w)Tj A
T
j = 0,

j = 1, 2, · · · , k, (5)

where (ATx− w)i is the i-th component of the column vec-
tor. Eq. (5) comes down to the critical point of

∥∥ATx− w∥∥2
2
,

where

n−1∑
j=1

Aj(A
Tx− w)j = 0, j = 1, 2, · · · , k, (6)

and a vector form
A1(ATx− w)1
A2(ATx− w)2

· · ·
An−1(ATx− w)n−1

 = A(ATx− w) = 0. (7)

The right hand side of Eq. (7) transforms into
gT1
gTs1

...
gTsk

 =


β w1 w2 · · · wn−1
b1 A1,1 A1,2 · · · A1,n−1
...

...
... · · ·

...
bk Ak,1 Ak,2 · · · Ak,n−1

 ,

gTsi =
(
bi Ai,1 Ai,2 · · · Ai,n−1

)
,

where

gT1 =
(
β w1 w2 · · · wn−1

)
,

 b1
...
bk

 =

 gs1(1)
...

gsk(1)

 ,

A =

 A1,1 A1,2 · · · A1,n−1
...

... · · ·
...

Ak,1 Ak,2 · · · Ak,n−1

 ,

and gT1 is a gene with a missing value (depicted as β in
the first location of gT1 ) and gTsi , i = 1, 2, · · · , k, are the k-
nearest neighbor gene vectors for gT1 . Solutions of Eq. (7)
involve the generalized inverse. If matrix A is invertible, we
have

AATx = Aw (8)

and the solution

x = (AAT )
−1
Aw = (AT )

†
w, (9)

where (AT )
†

= (AAT )
−1
A, and (AT )† is the pseudoinverse

of AT . The missing value (β) can then be solved as follows:

β =

n−1∑
i=1

xibi = bT (AT )
†
w. (10)



Table 1: Error comparison of the standard MATLAB solvers vs. Jacobi SVD
Test Case α ||AA†A−A||∞ ||A†AA† −A†||∞ ||(AA†)T −AA†||∞ ||(A†A)

T −A†A||∞ ||Ax− b||∞
inv(A) n/a 5.8272E+00 4.1592E+20 1.2275E+02 3.1764E+13 5.9128E+04
pinv(A) n/a 7.1710E-06 7.5940E+08 4.7020E-04 9.3850E-04 1.6750E-04

Jacobi SVD 1.00 1.1430E-05 3.7480E+07 1.4290E-04 1.0210E-03 2.3480E-04

Table 2: Error comparison of Jacobi SVD vs. SSVD
Test Case α ||AA†A−A||∞ ||A†AA† −A†||∞ ||(AA†)T −AA†||∞ ||(A†A)

T −A†A||∞ ||Ax− b||∞
0.55 3.6440E-10 2.8770E-02 1.9820E-08 1.5680E-08 9.6300E-05
0.60 6.5320E-10 2.6639E+00 1.1930E-07 6.9380E-08 4.0300E-05

Jacobi SVD 0.65 6.6790E-09 2.7378E+02 4.5570E-07 5.0710E-07 1.4780E-05
0.70 2.3680E-08 1.7679E+03 2.1580E-06 3.4820E-06 5.8480E-06
0.75 4.1550E-07 1.6235E+04 3.1180E-05 2.6530E-05 1.0030E-05
0.55 2.9390E-10 1.9540E-02 3.4340E-09 2.3480E-08 9.6300E-05
0.60 1.3730E-09 3.9960E-01 4.9080E-09 3.9740E-08 4.0310E-05

SSVD 0.65 9.6320E-09 1.6243E+01 2.0710E-07 6.5240E-08 1.4770E-05
0.70 2.7090E-08 6.9364E+02 1.0470E-06 1.0320E-06 5.9650E-06
0.75 1.4630E-07 1.5730E+04 2.2050E-06 1.1560E-05 5.0670E-06

2.3 Improvement of the SVD Solver
The result obtained by the previous method to calculate

the pseudoinverse of the matrix A ∈ Rm×n,

A† = V

[
Σ−1rA 0

0 0

]
UT = VrAΣ−1rAU

T
rA , (11)

does not satisfy the 4 Moore-Penrose equations [1]:

AA†A = A,
A†AA† = A†,

(AA†)
T

= (AA†),

(A†A)
T

= (A†A).

As a result, if the size of the matrix is increased, the number
of computational errors is also increased—that is, the SVD
results become less accurate. There are five different ways
to test the accuracy of the pseudoinverse:

||AA†A−A||∞,
||A†AA† −A†||∞,
||(AA†)T −AA†||∞,
||(A†A)

T −A†A||∞,
||Ax− b||∞.

In this paper, the Hilbert matrix,

A = H200∗200 = (
1

i+ j + 1
)
200∗200

, (12)

is used to benchmark a solver’s robustness, scalability and
accuracy. As shown in Table 1, pinv(A) does not satisfy
A†AA† = A† and inv(A) does not satisfy any of the
4 Moore-Penrose equations, because—in both cases—their
respective errors are too large.

The Jacobi SVD method is an improvement upon the
commonly implemented QR SVD solver. The procedure for
the Jacobi SVD solver is as follows:

A = Q

[
Rm×n

0(m−n)×n

]
, (13)

where Rm×n is the upper triangular matrix. If rA < n,
RTm×n is further decomposed by QR SVD to get

RTm×n = P

[
R̃rA×rA

0

]
,

A = Q

[
R̃rA×rA 0

0 0

]
PT . (14)

Jacobi SVD is then used to solve Rm×n or R̃rA×rA . From
Eq. (13)-(14) we have

Rm×n = URΣrAV
T
R , A = QrAURΣrAV

T
R,rA

, (15)

or

R̃m×n = UR̃ΣrAV
T
R̃
, A = QrAUR̃ΣrAV

T
R̃,rA

PTrA ,

(16)
and the pseudoinverse (A†) is

A† = VRΣ−1rAU
T
RQ

T
rA or A† = PVR̃Σ−1rAU

T
R̃
QTrA .

(17)
As seen in Table 1, the error associated with the Jacobi SVD
solver for A†AA† = A† is smaller than the results produced
by the standard MATLAB solutions, yet this value is still
too large to be acceptable.

SSVD is a further improvement upon the Jacobi SVD
solver, aiming to reduce the overall size of these errors. Since
U and V from Eq. (11) are orthogonal matrices, they do not
lead to an error, which means the computational errors are



Fig. 1. NRMSE result for the YO microarray dataset Fig. 2. NRMSE result for the CU microarray dataset

Fig. 3. NRMSE result for the RO microarray dataset Fig. 4. NRMSE result for the SP microarray dataset

Table 3: NRMSE comparison of QR SVD, Jacobi SVD and SSVD
Test Case SVD Solver 1% 2% 5% 10% 20%

YO.Calcineurin/Crzlp
QR SVD 0.3292 0.3149 0.3174 0.3248 0.3610

Jacobi SVD 0.3282 0.3139 0.3167 0.3242 0.3696
SSVD 0.3254 0.3097 0.3145 0.3235 0.3624

CU.Growth-regulator
QR SVD 0.4349 0.4591 0.5526 0.5531 0.5938

Jacobi SVD 0.4214 0.4351 0.5318 0.5393 0.5779
SSVD 0.4134 0.4209 0.5208 0.5334 0.5727

RO.Cellline
QR SVD 0.0988 0.1907 0.3390 0.5021 0.7467

Jacobi SVD 0.0991 0.1901 0.3391 0.5017 0.7463
SSVD 0.0988 0.1882 0.3391 0.5010 0.7457

SP.Alpha
QR SVD 0.3186 0.4557 0.5481 0.6064 0.6753

Jacobi SVD 0.3183 0.4556 0.5398 0.6010 0.6702
SSVD 0.3175 0.4454 0.5387 0.5974 0.6657

produced by Σ−1rA . It is important to note that matrix ΣrA
is dependent on the accuracy of the system executing its
implementation; if the singular values σi < eps (eps is the
error bound), the system will set it to zero, then Eq. (11)
will contain computational errors.

Suppose the singular values of matrix A are σ1 ≥ σ2 ≥
· · · ≥ σrA , then

Σ−1rA = diag(
1

σ1
,

1

σ2
, · · · , 1

σrA
, 0, · · · , 0). (18)

Since the cumulative error is εi, i = 1, 2, · · · , rA, the singu-



lar values of matrix A will become σi+εi, i = 1, 2, · · · , rA.
Therefore,

Σ−1rA = diag(
1

σ1 + ε1
,

1

σ2 + ε2
, · · · , 1

σrA + εrA
, 0, · · · , 0),

(19)
where the maximum computing error is

ε
(
Σ−1rA

)
= diag

( |ε1|
σ1|σ1+ε1| ,

|ε1|
σ2|σ2+ε2| ,

· · · , |ε1|
σrA
|σrA

+εrA |
, 0, · · · , 0

)
. (20)

If σi+εi is close to zero, the error is significantly magnified,
hence it should be set to zero. Eq. (19) becomes as follows:

Σ−1rA (α) = diag(
1

σ1 + ε1
,

1

σ2 + ε2
, · · · , 1

σk + εk
, 0, · · · , 0),

σi + εi ≤ epsα, i = k + 1, · · · , rA. (21)

Experimental results using Eq. (21) are shown in Table 2.
When α = 0.75, the errors associated with SSVD are much
smaller than those presented in Table 1. When α = 0.55,
the pseudoinverse of Hilbert matrix (A = H200∗200) does
satisfy the 4 Moore-Penrose equations, yet the solution of
||Ax− b||∞ for α = 0.55 is worse than α = 0.75, which is
due to the removal of more singular values that are close to
zero. Therefore, α cannot be too small, and the empirically
chosen value of α = 0.75 is used in this research.

3. Numerical Results
The normalized root mean squared error (NRMSE) was

used to measure the accuracy of the results from the test
cases.

NRMSE =

√
mean[(γestimated − γknown)]

2

std[γknown]
, (22)

where γestimated are the estimations for missing values, and
γknown are the known values. The mean and the standard
deviation are calculated over missing values in the whole
dataset.

The NRMSE test results of Eq. (22) for various percent-
ages (1%, 2%, 5%, 10% and 20%) of missing values for QR
SVD, Jacobi SVD and SSVD are presented in Table 3. For
an overwhelming majority of test cases, the SSVD method
generates more accurate recovery results than QR SVD, and,
for all test cases, SSVD consistently performed better than
Jacobi SVD. Only in the YO.Calcineurin/Crzlp test case for
20% of missing values and the RO.Cellline test case for 5%
of missing values did QR SVD outperform our proposed
SSVD solver; however, the difference in performance for
the latter test case is so insignificant that it may be regarded
as an equal level of performance between the two solvers.

The graphical representations of the results from Table 3
are located in Fig. 1 through Fig. 4. Note that Jacobi SVD
is referred to as J SVD within the legend of a figure. Each
figure is oriented with the experimental NRMSE results in

the y-axis and the various percentages of missing values
in the x-axis. A data trend favoring the lower end of the
NRMSE scale is favorable because this represents a series
of experimental results with smaller levels of erroneous
estimations. The scale of each figure is not consistent, thus
is insufficient to gauge the performance between datasets
based solely on the distance of the separation between their
respective data trend lines. These figures further illustrate the
improvement in accuracy associated with the SSVD solver
when tested with the YO.Calcineurin/Crzlp, CU.Growth-
regulator, RO.Cellline and SP.Alpha microarray datasets,
respectively.

Fig. 2 depicts the most exciting results of the four mi-
croarray datasets. The difference in accuracy between these
solvers for these specific test cases is quite substantial,
granting significant increases in the accuracy of missing
value estimation. Fig 1. and Fig 4. show SSVD’s typical
outcome, which is a marginal increase in accuracy with
respect to Jacobi and QR SVD. Fig. 3 illustrates the worst-
case scenario for SSVD—the level of accuracy is nearly
equal, yet slightly better, to that of the QR SVD solver.

4. Conclusion
We have successfully developed a scalable solver for

estimating the missing values of DNA microarray datasets.
For nearly all the test cases across all configurations of
missing value percentages, SSVD provides more accurate
recovery results than Jacobi and QR SVD. The numerical
results presented in this paper strongly suggests that SSVD
is a robust, scalable and accurate solver. One would be safe
to assume that the benefits from SSVD may be realized in
many other disciplines and not those limited to missing value
estimation.
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