
Optimizing a Cost Matrix to Solve Rare-Class Biological Problems

Mark J. Lawson1, Lenwood S. Heath2, Hai Zhao3, and Liqing Zhang2
1Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA

2Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
3Department of Computer Science, Shanghai Jiaotong University, Shanghai, China

Abstract— In a binary dataset, a rare-class problem occurs
when one class of data (typically the class of interest) is
far outweighed by the other. Such a problem is typically
difficult to learn and classify and is quite common, especially
among biological problems such as the identification of gene
conversions. A multitude of solutions for this problem exist
with varying levels of success. In this paper we present our
solution, which involves using the MetaCost algorithm, a
cost-sensitive “meta-classifier” that requires a cost matrix
to adjust the learning of an underlying classifier. Our method
finds this cost matrix for a given dataset and classification
algorithm, creating a final classification model. Through a
detailed description, a basic evaluation, and the application
to the problem of identifying gene conversions, we show
the effectiveness of this approach. Our novel approach to
generating a cost matrix has proven to be quite effective in
the identification of gene conversions and represents a robust
way to tackle the rare-class data problem.

Keywords: Rare class, cost matrix, gene conversion

1. Introduction
Gene conversion, an important biological process, refers

to the exchange of DNA sequence information between
two genes [1]. Caused through DNA strand breaks, one
gene (the donor) donates part or all of its sequence to
another gene (the acceptor). This can lead to two types
of evolutionary processes: gene conservation and genetic
diversity. By having two genes repeatedly “convert” each
other for the entire sequence, they can remain identical or
highly similar in sequences, despite the fact that they were
duplicated a long time ago. This has been observed in genes
such as ribosomal RNA genes and genes on the human X-
Chromosome [2]. On the other hand, if two genes exchange
only part of their sequences, it can lead to the creation of
new sequences, creating the potential for genetic diversity.
This has been observed in gene families where diversity is
important, such as immunoglobulin genes [3] and human
major histocompatiblity complex genes [4].

The identification of gene conversions is important for
understanding the evolution of duplicated genes and the
cause of certain genetic diseases. However, current gene
conversion identification software has poor performance [2],
with high false negative rates due to the fact that prediction
of gene conversion is a rare-class problem.

Rare-class prediction (also referred to as “imbalanced”
data prediction) is a common problem in classification [5].
In this type of problem, one class of data is far outweighed
by other classes, thus making it difficult for a classification
algorithm to accurately predict this class after learning. This
is typically confronted in a binary class problem, in which
there are two classes, often referred to as the minority
and majority classes. Typically the minority class is the
class of interest but the created classifier performs poorly in
identifying those data members. A typical result is that the
classifier classifies all data members as being majority class
members, due in part to the concept of Occam’s razor [6],
in which the simplest hypothesis is used to create the
classifier. These classification algorithms are also designed
to maximize predictive accuracy, which favors the majority
class.

Many approaches exist for solving the rare-class problem.
These are typically one of two types: data-level approaches
and algorithm-level approaches. Data-level approaches con-
sist of two main ideas: oversampling, in which minority class
members are increased through re-use, and undersampling,
in which majority class members are filtered out. Both strive
to attain a balanced dataset, thus allowing the classifier
the ability to better differentiate between the two classes.
However they both suffer from shortcomings: oversampling
can easily lead to overfitting and undersampling is likely to
remove relevant data objects from the training set. Recent
approaches have attempted to rectify these shortcomings:
SMOTE (Synthetic Minority Oversampling TEchnique) cre-
ates synthetic minority class data members based on existing
ones [7] and a recent undersampling approach uses cluster-
ing to filter out irrelevant majority class data members [8].

The other methods consist of algorithm-level approaches.
The most common is cost-sensitive learning in which the
learning of an underlying classifier is adjusted based on pre-
determined misclassification costs. One of these approaches
is MetaCost [9]. MetaCost takes in training data and a
classification algorithm and adjusts the learning by taking
into account a given cost matrix that assigns punishments
for misclassifications and rewards for correct classifications.
The advantage of MetaCost is that it has a “black box”
approach, any classification algorithm can be used and there
are no limits on types of training data. However, the cost
matrix must be known in advance [10], which is usually
impossible.



Currently there is no systematic way to determine an ideal
cost matrix for a given dataset and classification algorithm.
We propose a greedy-based approach for determining a cost
matrix. Based on the given training data and the given
classification algorithm, our approach incrementally searches
for a cost matrix, returning the best one it finds to the user.
At worst, the returned cost matrix and classification model
perform as well as an unaltered classification algorithm,
but our evaluations show general improvement in rare-class
datasets. In this paper, we will present a formal, detailed
description of this approach and illustrate why it is effective.
In addition we will show its power through the classification
of a basic, example dataset and how it performs in the
prediction of gene conversions.

2. Methods
2.1 MetaCost

The classification problem is to take a classification al-
gorithm L and train it on a set of training data S, thereby
creating a model M . M is then used to predict the classes
of additional data, based on a learned hypothesis. A training
set S consists of a set of samples, each having a vector of
attributes and an assigned label. An optimal model would
sufficiently learn S so that it can correctly identify every x
in the test data T . However, an optimal model is typically
not possible, so we seek to create an approximation that
achieves the best results.

An attempt that is focused on approximating this optimal
model, especially in regards to rare-class problems, is Meta-
Cost [9]. The basic idea of MetaCost is to take a normal,
unaltered classifier and adjust the learning with a cost matrix.
This is done through a series of steps. The first step is to
take the training data and create multiple bootstrap samples
of the data. These bootstrap samples are then used for
training to create an ensemble of classifiers. The ensemble
of classifiers are then combined through a majority vote to
determine the probability of each data object x belonging
to each class label. Next, each data object in the training
data is relabeled based on the evaluation of a conditional
risk function, and a final classifier is then produced after
applying the classification algorithm to the relabeled training
data.

The key aspect in the MetaCost learning process is to
minimize conditional risk,

R(i|x) =
∑
j

P (j|x)Ci,j . (1)

R(i|x) defines the cost of predicting that data object x
belongs to class label i instead of class label j, P (j|x) is
the probability that data object x belongs to class label j,
and Ci,j is the cost for making such a classification. Ci,j

corresponds to entries in the cost matrix, essentially a variant
of the confusion matrix (Table 1) where i ∈ {0, 1} and

j ∈ {0, 1}. The cost matrix allows one to punish misclas-
sifications and reward correct classifications, for example,
by negative and positive values, respectively. Clearly, the
success of the evaluation of the conditional risk function and
thereby the performance of the MetaCost prediction rests on
the cost matrix. Imaginably a bad cost matrix can distort
the learning and produce a bad classifier. Therefore, it is
imperative to identify a high quality cost matrix.

Table 1: Confusion Matrix
TP FP

True Positive False Positive
FN TN

False Negative True Negative

C =

[
C0,0 C0,1

C1,0 C1,1

]
(2)

2.2 Cost Matrix Optimization
The MetaCost algorithm has input values m, n, and p that

are essentially tweaks or givens of the algorithm once the
type of classifier is determined. To simplify the function call,
we can fix some default values for them, thus, the call to the
MetaCost algorithm becomes a function of S, L, and C and
returns a classification model M . Let us define an evaluation
function Eval(M,T ) that takes as input a generated model
M based on a cost matrix C and produces an evaluation
of its performance on test set T . This evaluation function
can be based on any of the metrics for rare-class predictions
such as F-measures, ROC curves, and G-mean. Assuming
that we have access to the set of all possible cost matrices
(Ci, i ∈ N∗), we can then search for the cost matrix that
achieves the highest evaluation value,

Cbest = argmax
C

Eval(MCi
, T ), (3)

and denote Cbest as the optimal cost matrix for the given
data and classification algorithm.

So the problem is how to find the optimal cost matrix
computationally. While an exhaustive search of all possible
cost matrices can guarantee that we find the optimal cost
matrices, it is not possible. Here we propose a greedy
approach to heuristically find a matrix that produces a high
evaluation value.

Shown in Algorithm 1, the basic idea of the search is to
start with an initial cost matrix and to increment its costs to
find a cost matrix that achieves a better evaluation value. An
initial cost matrix is typically a cost matrix that will create a
model that is the same as the model created by an unaltered
classifier. Our positive class is the minority class.

Starting with this initial cost matrix, the method creates
seven new ones (A0, A1, A2, A3, A4, A5, A6). Each of these
cost matrices represents a different combination of incre-
menting/decrementing the costs (correct classifications are



Algorithm 1 Greedy-Based Search
Input:
S is the training set
T is the test set
L is a classification algorithm

5: n is the number of iterations to run the algorithm

{0,1} is the set of classes
Let Eval(M,T ) return an evaluation value on how Model M per-
formed on test set T

10: Function GreedyCost(S, T, L, n)

Let I be the initial cost matrix where all punishments/rewards are 0
Let C be the current best cost matrix, initialized to I
Let MC be the current best model, initialized to MetaCost(S,L,C)

15: Let O be the overall best cost matrix, initialized to I
Let MO be the overall best model, initialized to MC

for i = 1 to n do
Let A be a set of cost matrices

20: where
A0 ← C +

[
0 1
0 0

]
A1 ← C +

[
0 0
1 0

]
A2 ← C +

[
−1 0
0 0

]
A3 ← C +

[
0 1
1 0

]
25: A4 ← C +

[
−1 1
0 0

]
A5 ← C +

[
−1 0
1 0

]
A6 ← C +

[
−1 1
1 0

]
Set C and MC to null

30: for j = 0 to 6 do
M = MetaCost(S,L,Aj )
if Eval(M,T ) > Eval(MC , T ) then

C = Aj and MC = M
end if

35: end for

if Eval(MC , T ) > Eval(MO, T ) then
O = C and MO = MC

end if
40: end for

return O, MO

decremented by one and misclassifications are incremented
by one). Of note here is that the cost for correct classifica-
tions of the majority class (negative class) is not adjusted and
left at zero. This is due to the fact that typically a poor clas-
sifier will order most (if not all) data members as belonging
to the majority class. Therefore, there is no need to reward
such behavior and our method has fewer cost matrices to
test. After creating these seven new cost matrices, each one
is used to create a new model through MetaCost, using the
given training data S and classification algorithm L. After
these models have been created, they are evaluated on the
given test set T using the evaluation function Eval(M,T ).
The model that has the highest evaluation value is kept and

its cost matrix is used to initialize the next iteration of cost
matrix creation.

As can be seen in the algorithm, the method keeps
track of two cost matrices, a “current best” cost matrix
and an “overall best” cost matrix. This was done in order
to overcome one of the common problems with greedy
searches, that of finding a local maximum that is lower
than the global maximum. So when a potential poor local
maximum is reached, it can be stored as the overall best
and the method can essentially “look ahead” to see if a
better cost matrix can be found. If a better one is found, the
overall best cost matrix is updated. So conceivably, we can
continue to generate new cost matrices while still keeping
track of a good one. While this does not guarantee that a
global maximum will be found, it does allow for a more
comprehensive search than a typical greedy search.

The parameter n is passed into the function to give a count
of how many times the creation of new cost matrices occurs.
A simple check of whether the overall best matrix is the
same as the current best cost matrix serves as an indication
of whether a maximum (local or global) has been reached.
If not, the number of iterations can be increased. A possible
modification to this algorithm would be to have a set number
of iterations to run after a maximum has been reached.

The search for the best cost matrix can only improve upon
a base classifier. At worst, the method will work as well as
an unaltered classifier. This is due to the fact that a model
that is built by the MetaCost algorithm with the initial cost
matrix is identical to a model that was built using only the
base classification algorithm. So if no better cost matrix is
found, the initial cost matrix will be returned as the best.

One final note is in regards to the use of training and test
data. While it is ideal if they are different, it is not necessary
and training data can be used for both the creation of the
model and evaluation of the cost matrix. Having a separate
set of test data gives the learning process more breadth as
using only one set of training data does bias the classification
model towards this training data. So for evaluation purposes
of the final generated classification model, one must have
an additional set of test data to use that was not part of the
learning process and cost matrix search.

3. Experiment
3.1 Gene Conversion Data and Classification
Programs

Because actual gene conversion data is difficult to obtain,
we created simulated gene conversion data similar to an ap-
proach developed by Marais [11]. Essentially we simulated
the creation of a gene family from a root sequence (through
mutation along a simulated phylogenetic tree) and inserted a
gene conversion event between two of the genes. This way
we could create recent gene conversion events (by having
mutations take place mostly before the gene conversion



event) and more ancient gene conversion events (by having
more mutations occur after the event). We then created
two sets of data: SET1 which consisted of multiple recent
gene conversions and SET2 which consisted of multiple
ancient gene conversions. Each of these datasets consisted
of multiple gene families (consisting of six genes each) and
one (or no) gene conversion event. For each of these datasets,
we created a large set of training data, a set of evaluation
test data to be used in the greedy-based search, and a set of
final test data to evaluate the final generated classifiers. The
results shown in the next section are of how the classifiers
performed on this final test data, data that was not used in
the learning process.

For our experiments, we used two gene conversion pre-
diction programs, GENECONV [12] and Partimatrix [13].
GENECONV is a program designed for the identification of
gene conversions that gives a prediction of what sequence
fragments have the highest, unique similarity between two
sequences, ranking these predictions by p-value. Partimatrix
uses bipartitions to determine if DNA sequences show evi-
dence of anomalous phylogenetic history, giving support and
conflict scores for each prediction.

For classification, we represented each pair of genes
within a gene family through a feature vector. In this
representation, we can see that gene conversion is a rare-
class data problem. A set of six genes represents 15 gene
pair combinations and at most one of these gene pairs will
have a gene conversion event. Each of these feature vectors
consists of the following attributes: average GC content,
overall sequence similarity, GENECONV prediction global
and pairwise p-values, and Partimatrix conflict and support
scores.

Classification was done through the greedy-based search
for a cost matrix that we detailed in the methods section.
We used the following classification algorithms as the un-
derlying classifiers: NaiveBayes (as implemented by John
and Langley [14]), J4.8 (an implementation of the C4.5
decision tree learner [15]), PART (a combination of rule-
based learning and C4.5 [16]), and JRip (a rule-based learner
based on RIPPER [17]). All classification algorithms were
implemented in weka [18], a collection of machine learning
algorithms.

3.2 Results
In Table 2 we can see the classification results. For our

purposes the positive class is when a gene pair has a gene
conversion and the negative class is when it does not. For
the learning of each set, we created separate training and
test data and then evaluated the final model on a second set
of unique test data.

In SET1, one can see that GENECONV performs quite
well. “GENECONV Strict” has a high accuracy, even higher
than the “Just Say No approach”. However, through our
method we are able to increase the amount of true positives,

Table 2: Simulation Results
SET1

Classifier TP FP Accuracy F-measure
Perfect 139 0 1 1
Just Say No 0 0 0.937 UNDEF
GENECONV Strict 102 4 0.975 0.840
GENECONV LP 123 57 0.955 0.776
Partimatrix 9 137 0.833 0.064
G-or-P 128 191 0.874 0.561
NaiveBayes 122 58 0.954 0.770
PART 107 5 0.978 0.859
J4.8 109 11 0.975 8 0.848
JRip 111 9 0.978 0.864

SET2
Classifier TP FP Accuracy F-measure
Perfect 150 0 1 1
Just Say No 0 0 0.933 UNDEF
GENECONV Strict 1 8 0.930 0.014
GENECONV LP 5 68 0.905 0.045
Partimatrix 15 135 0.880 0.100
G-or-P 19 197 0.854 0.104
NaiveBayes 8 75 0.904 0.069
PART 35 214 0.854 0.175
J4.8 23 160 0.872 0.138
JRip 40 265 0.833 0.176

This table represents the performance of the various classification methods
on datasets SET1 and SET2. The upper half represents the basic classifiers
that do not use the greedy-based approach. Perfect represents a theoretical
optimal classifier and is included for comparison. Just Say No represents
a classifier that classifies all data elements as majority class. GENECONV
Strict uses only global p-values for predictions, whereas GENECONV LP
uses local pairwise p-values (with 0.05 being used as the threshold for
positive classification). Partimatrix represents a prediction based on the
lowest conflict score between a gene pair within a gene family. G-or-P
is a basic unification of GENECONV LP and Partimatrix predictions. The
lower half represents the classification algorithms predictions after using
the greedy-based search for a cost matrix.

increase the accuracy, and most importantly, increase the F-
measure. The best performers are JRip and PART, which
is not surprising as they are rule-based classifiers and rule-
based classifiers are known to perform well on rare-class
data [19]. Both have a higher F-measure than “GENECONV
Strict”, a higher accuracy, and both identify more true pos-
itives. J4.8 does well too and identifies more true positives
than PART, but more false positives as well. Of all the
cost matrix classifiers, NaiveBayes identifies the most true
positives, but is hindered by the number of false positives it
identifies.

In SET2, one can see that ancient gene conversions are
far more difficult to accurately detect, as the mutations
after the conversion makes some difficult to differentiate.
GENECONV performs quite poorly, both in Strict and
LP. Partimatrix identifies more gene conversions and G-or-
P has the best F-measure of these basic classifiers. This
set also shows the shortcoming of using accuracy as a
metric as the “Just Say No” approach would appear to be
the best classifier. Among the cost matrix classifiers, the
NaiveBayes classifier performs quite poorly. It has an F-
measure lower than G-or-P, so it shows no improvement over
a basic classifier (it does not identify more gene conversions



correctly either). But the rule-based classifiers again perform
quite well, with both identifying more gene conversions and
having higher F-measures than any of the basic classifiers.
In fact, aside from NaiveBayes, all classifiers exhibit both a
higher recall and a higher precision than the basic classifiers,
showing a definite improvement.

Table 3: Final Generated Cost Matrices
SET1 SET2

NaiveBayes -3 2 -2 2
2 0 1 0

PART -4 3 -3 1
5 0 19 0

J4.8 -2 3 0 1
4 0 4 0

JRip -4 1 0 1
6 0 7 0

In Table 3, we can see the cost matrices that were
determined for each classifier by the greedy-based approach
and subsequently used to make gene conversion predictions.
From this table it is quite clear that a cost matrix is highly
dependent on both the classifier and the data being used.
No classifier has the same cost matrix across both datasets
and no dataset has a cost matrix that is best for more than
one classifier. In fact, all cost matrices that were determined
by our approach are unique. All final classification models
were generated after 25 iterations of the greedy-based search
method.

3.3 Additional Analysis
In order to further analyze the improvement our greedy

search method has over an “unaltered classifier,” i.e. a
classifier whose learning has not been altered by a cost
matrix, we generated 10 samples for each gene conversion
dataset and compared the performance of each classifica-
tion algorithm. These samples were created by taking each
dataset, SET1 and SET2, and splitting up the data as 1/2
training, 1/4 evaluation test data (for the evaluation in the
greedy algorithm), and 1/4 for the final test data, which
was not involved in the learning process. For the unaltered
classification the evaluation test data was added back to
training data, so 3/4 of the data was used for training and 1/4
for testing. Since we are dealing with datasets in which the
amount of positive examples is few and the ratio between
positive and negative examples is important, the creation
of these samples was not entirely random. First the dataset
was ordered into positive and negative examples. Then 1/2
of the positive samples were put into the training data, 1/4
in the evaluation test data, and 1/4 into the final test data.
The same is then done with the negative data. This ensures
that each set contains positive data members and that the
ratio is conserved. After running the simulations, we used a

Wilcoxon signed rank test [20] to determine the significance
of improvement.

In Tables 4 and 5, we see the resulting F-Measures,
summarized as average, maximum, and minimum. In the
SET1 simulation results, we can see improvement for each
classification algorithm except NaiveBayes. The others see
improvement in their average, maximum, and minimum F-
Measures (however JRip has a lower maximum). Unfortu-
nately, only PART shows significant improvement by using
the greedy method, generating a p-value of 0.024.

In the SET2 simulation (Table 5), we see F-Measure
improvements for all classification algorithms. However,
the improvement for JRip is misleading. In its unaltered
form, the generated classifiers made no positive predictions,
hence the F-Measure of 0. The classifiers generated with the
greedy method made ONLY positive predictions, generating
an F-Measure of 0.125 each time. Clearly, this is not a
“better” classifier. The other three classification algorithms
showed significant improvement, each generating a p-value
of 0.0027.

Table 4: SET1 Simulation
F-Measure

Classifier Average Max Min
Unaltered

NaiveBayes 0.770 0.796 0.744
JRip 0.874 0.904 0.846

PART 0.858 0.880 0.823
J4.8 0.861 0.883 0.839

Greedy
NaiveBayes 0.766 0.793 0.738

JRip 0.876 0.892 0.857
PART 0.875 0.885 0.862

J4.8 0.873 0.900 0.848

Table 5: SET2 Simulations
F-Measure

Classifier Average Max Min
Unaltered

NaiveBayes 0.105 0.119 0.089
JRip 0.000 0.000 0.000

PART 0.014 0.031 0.000
J4.8 0.000 0.000 0.000

Greedy
NaiveBayes 0.135 0.174 0.125

JRip 0.125 0.125 0.125
PART 0.176 0.185 0.161

J4.8 0.151 0.169 0.140

3.4 Real-World Data
In order to see how the generated classification models

perform on real world data, we used the “Transcription
Elongation Factor A” gene family on the X-Chromosome
that has been shown to exhibit gene conversions [2]. The
three gene family members are located in a large syntenic
region that is conserved between primates and rodents,
indicating that these genes were generated/duplicated before



PT_TCEAL5

100

100

100

HS_TCEAL3

RM_TCEAL3

99

PT_TCEAL6

HS_TCEAL6

89

100

MM_Tceal5

RN_TCEAL5

100

RN_TCEAL3

98

MM_Tceal3

MM_Tceal6

HS_TCEAL5
0.

Fig. 1: Transcription Elongation Factor A phylogenetic tree
HS = Homo sapien, PT = Pan troglodytes, RM = Rhesus Monkey

(Macaca mulatta)
MM = Mus musculus, RN = Rattus norvegicus

the split of primates and rodents. Thus, the phylogenetic
tree (Figure 1) provides strong evidence for gene conversions
within biological orders (primates and rodents). Interestingly,
gene conversion seems to occur independently in both pri-
mates and rodents after their split but before the further splits
within primates and within rodents.

We used the classification models from SET1 that were
generated with the PART, J4.8, and JRip classification al-
gorithms (NaiveBayes was left out due to its poor per-
formance). Both PART and J4.8 made the same 3 pre-
dicted gene conversions: MM_Tceal3 and MM_Tceal5,
MM_Tceal6 and MM_Tceal5, and RN_TCEAL3 and
RN_TCEAL5. JRip made the same predictions, with the
addition of a gene conversion between HS_TCEAL5 and
PT_TCEAL6 that is a false positive due to the fact that
gene conversion only occurs between genes from the same
species. These predictions are consistent with the phyloge-
netic evidence.

Using the threshold of a p-value of 0.05 as sufficient
evidence that two genes have undergone gene conversion
GENECONV Strict gives evidence for 13 gene conversions
and GENECONV LP for 44. While some gene conversions
do correspond with what is seen in the graph, others do not,
for instance gene conversions between primates and rodents.

Partimatrix does not provide guidelines for a threshold to be
used for predicting gene conversions. However those with
the highest support scores also involve conversions between
primates and rodents.

Unlike the simulated cases where we can use the F-
measure to compare the performance of gene conversion
prediction programs with our ensemble method, it is difficult
to perform this analysis on real data because we do not know
the exact numbers of true or false positives and negatives.
The challenge of the difficulty in performance evaluation on
real world data can be addressed in future work by manual
compilation of a carefully monitored set of genes for which
exact numbers of true or false positives and negatives can
be accurately inferred.

4. Discussion
Due to the complexity and uniqueness of datasets, as well

as the differing performance of classification algorithms,
the best performance can be achieved with a cost-sensitive
classification method when a best cost matrix is found for
both the given data and the given classification algorithm.
Theoretical research on the rare-class problem has shown
that aspects of data that are difficult to quantify (such as the
“complexity of concept”) play a role in classification [10]
and our own results have shown that a cost matrix that
achieves good performance is dependent on both the given
training data and the given classification algorithm. Thus
a cost matrix must be found taking these two entities into
consideration.

A greedy search is efficient but not optimal. While it
cannot be proven that the eventual “overall best” cost matrix
is one that achieves optimal classification results, we have
shown that it will improve upon an unaltered classifier. At
worst, the resulting classification model will perform as well
as a classifier that was generated without MetaCost. This is
more than can be said about other methods for dealing with
rare-class data that can cause overfitting and/or eliminate
relevant data and achieve even poorer results.

One thing we were able to recreate with this method, was
the “black box” approach that MetaCost used. Of importance
was the fact that the details are hidden from the end-user,
with inputs being passed in and a final model being returned,
with little user interaction. Our approach requires only the
same inputs with the simple addition of a value being given
for the number of iterations. At the end of these iterations,
the best model and cost matrix found will be returned to
the user. In addition, our method only requires a “meta-
classifier” that takes in a cost matrix and adjusts the learning
of a classification algorithm according to it. While MetaCost
is a great method for accomplishing this, it can easily be
replaced with a method that might be better suited for a
specific problem domain.

Our future work will focus on improving the search for
a best cost matrix. Simulated annealing [21] and genetic



algorithms [22] will be experimented with to see if they
achieve better performance in terms of classification. While
these methods can achieve better results than greedy search,
they do require more time as they generate many more
possible solutions. Therefore, we will investigate whether
there is a trade-off between performance gain and increased
searching time when compared to the greedy-based solution.
In addition, we will also look into any improvements to
the MetaCost algorithm that may increase performance (for
instance, using boosting instead of bagging to determine
probabilities as suggested in [23]). Finally, although our
current analysis shows that MetaCost with the greedy search
of a cost-matrix made some improvement in predicting gene
conversion over GENECONV and Partimatrix, it is based on
simulated data and rather limited real data. Future work will
involve the curation and application of more real data on
gene conversion to train and test models in order to further
improve the performance of the prediction programs.

5. Acknowledgments
We thank Naren Ramakrishnan for helpful suggestions.

The work was supported by NSF grant IIS-0710945 to L.Z.

References
[1] J.-M. Chen, D. N. Cooper, N. Chuzhanova, C. Ferec, and G. P. Patri-

nos, “Gene conversion: Mechanisms, evolution and human disease,”
vol. 8, pp. 762–775, 2007, nature Reviews Genetics.

[2] M. J. Lawson and L. Zhang, “Sexy gene conversions: Locating
gene conversions on the X-chromosome,” Nucl. Acids Res.,
vol. 37, no. 14, pp. 4570–4579, 2009. [Online]. Available:
http://nar.oxfordjournals.org/cgi/content/abstract/37/14/4570

[3] N. Maizels, “Immunoglobulin gene diversification,” Annual Review of
Genetics, vol. 39, pp. 23–46, 2005.

[4] N. Takahata and Y. Satta, “Selection convergence, and intragenic
recombination in HLA diversity,” Genetica, vol. 103, pp. 157–169,
1998.

[5] N. V. Chawla, N. Japkowicz, and A. Kolcz, “Editorial: Special issue
on learning from imbalanced data sets,” SIGKDD Explorations, vol. 6,
no. 1, pp. 1–6, 2004.

[6] P. Murphy and M. Pazzani, “Exploring the decision forest: An
empirical investigation of Occam’s razor in decision tree induction,”
Journal of Artificial Intelligence Research, pp. 171–187, 1994.

[7] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” Journal of Artificial
Intelligence Research, vol. 16, pp. 321–357, 2002.

[8] K. Yoon and S. Kwek, “A data reduction approach for resolving the
imbalanced data issue in functional genomics,” Neural Computing &
Applications, vol. 16, pp. 295–306, 2007.

[9] P. Domingos, “MetaCost: A general method for making classifiers
cost-sensitive,” Advances in Neural Networks, International Journal
of Pattern Recognition and Artificial Intelligence, pp. 155–164, 1999.

[10] N. Japkowicz and S. Stephen, “The class imbalance problem: A
systematic study,” Intelligent Data Analysis, vol. 6, no. 5, pp. 429–
450, 2002.

[11] G. Marais, “Biased gene conversion: Implications for genome and sex
evolution.” Trends Genet, vol. 19, no. 6, pp. 330–8, 2003.

[12] S. Sawyer, “Statistical tests for detecting gene conversion,” Molecular
Biology and Evolution, vol. 6, no. 5, pp. 526–538, 1989.

[13] I. B. Jakobsen, S. R. Wilson, and S. Easteal, “The partition matrix:
Exploring variable phylogenetic signals along nucleotide sequence
alignments,” Molecular Biology and Evolution, vol. 14, no. 5, pp.
474–484, 1997.

[14] G. H. John and P. Langley, “Estimating continuous distributions
in bayesian classifiers,” in Eleventh Conference on Uncertainty in
Artificial Intelligence. San Mateo: Morgan Kaufmann, 1995, pp.
338–345.

[15] R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann Publishers, 1993.

[16] E. Frank and I. H. Witten, “Generating accurate rules sets without
global optimization,” Fifteenth International Conference on Machine
Learning, pp. 144–151, 1998.

[17] W. W. Cohen, “Fast effective rule induction,” Machine Learning:
Proceedings of the Twelfth International Conference (ML95), 1995.

[18] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. Elsevier, 2005.

[19] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction To Data Mining.
Addison-Wesley, 2006.

[20] F. Wilcoxon, “Individual comparisons by ranking methods,” Biomet-
rics, vol. 1, pp. 80–83, 1945.

[21] B. Suman and P. Kumar, “A survey of simulated annealing as a tool
for single and multiobjective optimization,” Journal of the Operational
Research Society, vol. 57, no. 10, pp. 1143–1160, 2006.

[22] C. R. Reeves and J. E. Rowe, Genetic Algorithms — Principles and
Perspectives. Kluwer Academic Publishers, 2003.

[23] K. M. Ting, “An Empirical Study of MetaCost using Boosting
Algorithms,” In: Proceedings of the Eleventh European Conference
on Machine Learning, pp. 413–425, 2000.


