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Abstract: Systems biology has developed considerably in the 

past decade combining the different disciplines of 

mathematical modelling, computational simulation and 

biological experimentation facilitating the quantitative 

analysis of biological systems. This is often severely 

hampered by the lack of time-resolved data which ultimately 

leads to problems in validating any models created. To 

address the inherent complexity in biological systems, a 

recent trend in systems biology is exploring multi-scale 

modelling and simulation methodologies. We consider the 

Bile Acid and Xenobiotic System (BAXS) as a typical 

example of a multi-scale system. In the absence of dynamic 

data from biological experimentation the models we have 

developed are based on artificial data which enables us to 

explore multi-scale modelling and validation techniques and 

the integration of individual models. The outcome of this 

study will direct further research into multi-scale modelling 

methodology and ultimately will produce a novel framework 

for validation in the absence of dynamic data. 

Keywords: Systems biology, multi-scale modelling, 

simulation, xenobiotics, bile acids. 

1. Introduction 

The main focus for this research is addressing the inherent 

complexity in biological systems by exploring multi-scale 

modelling and simulation methodologies. To facilitate this 

investigation we model the bile acid and xenobiotic system 

(BAXS), a typical example of a multi-scale biological system 

adopting a multi-scale modelling and simulation approach. 

The BAXS describes a genetic network that facilitates two 

distinct but intimately overlapping physiological processes; 

The enterohepatic circulation and maintenance of bile acid 

concentrations (Figure 1) and the detoxification and removal 

from the body of harmful xenobiotic (e.g. drugs, pesticides), 

and endobiotic compounds (e.g. steroid hormones) 
[1]

. The 

system involves the coordination of several levels of gene 

activity, including control of mRNA and protein expression 

and regulation of metabolising enzyme and transporter 

protein function in tissues such as liver, intestine/colon and 

kidney. Bile acids are necessary for the emulsification and 

absorption of dietary fats and are therefore valuable 

compounds, however as their build-up can cause harm, their 

concentrations need to be appropriately regulated and 

recycled. Similarly there is a requirement for a system that 

can ‘sense’ the accumulation of xenobiotic and endobiotic 

compounds and facilitate their detoxification and removal 

from the body. The BAXS accomplishes this and maintains 

enterohepatic circulation (the circulation of biliary acids 

from the liver, depicted Figure 1) through a complex network 

of sensors in the form of nuclear receptors that function as 

ligand-activated transcription factors. 

 

Figure 1. Schematic illustration of enterohepatic 

circulation. 

They serve to detect fluctuations in concentration of many 

compounds and initiate a physiological response by 

regulating the BAXS. Transcriptional regulation by nuclear 

receptors involves both activating and repressive effects 

upon specific ‘sets’ of genes. There is considerable overlap 

exhibited between nuclear receptors in the genes they target 

and also the ligands that bind to and activate them. It is these 

factors that contribute to the phenomenon of drug-drug 

interactions, e.g. between St. John’s Wort and 

Cyclosporine 
[2]

 or St. John’s Wort and Oral contraceptive 
[3]

. 

Positive feed-forward and negative feed-back loops can also 

occur, e.g. within the cholesterol metabolic pathway 
[4, 5]

. 

Multi-scale modelling of the BAXS will benefit biologists 

interested in exploring such phenomena. Multi-scale systems 

biology modelling efforts aim to explore such multi-scale 

systems quantitatively by means of simulations that integrate 

several (usually independently developed) single-scale 

models into a coherent multi-scale model 
[6]

.
 
Our aim is to 

capture and model separate BAXS processes individually 

and combine them using a multi-scale modelling approach. 

For example, in the BAXS the initial stimuli leading to a 

physiological response would be the binding of a ligand by a 



 

 

 

nuclear receptor. The process following the ligand-receptor 

binding event involves the bound nuclear receptor binding to 

response elements in the target genes and the cascading 

effects of increased gene expression that would ensue. 

Subsequent processes include conjugation and transporter 

functions 
[7]

. Each single process can be modelled separately 

regardless of the different scales the may operate in. They 

can be referred to as separate modalities of biology thus the 

approach taken is ‘multi-modal’. The ‘modularity’ or multi-

biology approach better reflects the way biologists would do 

experiments, investigating one constituent process at a time, 

each yielding a separate data set. Single-scale / single-

biology models can be built from these experiments and then 

these individual models can be integrated into a multi-

scale/multi-biology model. Each single scale model can then 

be reverse engineered separately and then integrated with a 

suitable coupling approach. Alternatively all single scale 

models can be reverse engineered in a single reverse 

engineering process however this approach must include the 

coupling within the reverse engineering phase. Through such 

experimentation the aim is to address the problems 

associated with multi-scale modelling and validation, 

specifically the coupling of processes operating on different 

scales.  

Developing dynamic models of biological process and 

systems requires dynamic (time-resolved) quantitative data. 

Such time-series data provides measurements being recorded 

at certain, pre-defined intervals over a period of time. For 

many biological systems or processes of interest, sufficient 

dynamic data required for modelling may not be 

available 
[8, 9, 10]

. For example, many experimental protocols 

in biology require the killing of their specimen. This 

approach precludes the collection of individual-based time 

series data. Systems biology is still a developing field and 

current biological experimentation is rapidly changing to 

produce quantitative data facilitating the development 

(including validation) of dynamic models. Currently 

however, for many biological systems of interest, there is 

insufficient data to develop and validate dynamic models. 

2. BAXS processes 

Nuclear receptors are a class of proteins found within the 

interior of cells that are responsible for sensing the presence 

of steroid and thyroid hormones and certain other molecules. 

In response, these receptors work in concert with other 

proteins to regulate the expression of specific genes, thereby 

controlling the development, homeostasis, and metabolism of 

the organism. Nuclear receptors have the ability to directly 

bind to DNA and regulate the expression of adjacent genes. 

Hence, these receptors are classified as transcription 

factors
1
. The regulation of gene expression by nuclear 

receptors occurs only when a ligand — a molecule that 

affects the receptor's behavior (i.e., activate or deactivate it) 

— is present. More specifically, ligand binding to a nuclear 

                                                 
1 Transcription factors activate or repress the transcription of a gene 

by controlling the time and rate of transcription of a gene’s DNA 

into RNA.  

receptor results in a conformational change of the receptor 

molecule complex, which in turn activates the receptor 

resulting in up-regulation of gene expression. A unique 

property of nuclear receptors that differentiates them from 

other types of receptors is their ability to directly interact 

with and control the expression of genomic DNA. As a 

consequence, nuclear receptors play a key role in both 

embryonic development and adult homeostasis.  

Our BAXS modelling efforts are directed first at the effects 

of ritonavir on the metabolism of hyperforin in the liver and 

the overlap of this process with FXR mediated primary and 

secondary bile acid metabolism. We refer to this as the Liver 

scenario which is depicted in the diagram of Figure 2. Its 

main constituent elements and processes are described 

below.  

 
 

Figure 2. Metabolism of hyperforin and bile acid in liver. 

PXR-mediated metabolism of hyperforin in the liver inhibited 

by ritonavir, FXR mediated bile acid metabolism and the 

transport process. 

Pregnane X receptor (PXR) is a nuclear receptor highly 

expressed in the liver encoded by the NR1I2 (nuclear 

receptor subfamily 1, group I, member 2) gene. Its primary 

function is to sense the presence of foreign toxic substances 

and in response up-regulate the expression of proteins 

involved in the detoxification and clearance of these 

substances from the body 
[11]

. 

Farnesoid X receptor (FXR), a nuclear receptor encoded by 

the NR1H4 (nuclear receptor subfamily 1, group H, member 

4) gene is also known as the bile acid receptor. It is highly 

expressed in the liver and its primary function is to sense the 

presence of bile acids and protect the body from elevated bile 

acid concentrations 
[12]

. 

Hyperforin is a herbal antidepressant found in St. John’s 

wort and is an activating ligand for PXR 
[13]

. Activated PXR 

up-regulates transcription of CYP3A4 (measured in hours) 

producing enzymes which metabolise Hyperforin (measured 

in seconds to minutes) 
[14]

. PXR also targets the gene 

encoding MDR1 
[15]

, a transporter protein which transports 

hyperforin from the cell (measured in seconds to minutes).  

Ritonavir is a protease inhibitor, often prescribed to HIV 

patients as part of antiretroviral therapy 
[16]

. HIV protease is 

an enzyme which cuts the raw material for HIV into specific 

pieces needed to build a new virus. Protease inhibitors block 

the protease enzyme preventing it from working, thus 



 

 

 

incomplete, defective copies of HIV are formed which 

cannot infect cells. Ritonavir is also an activating ligand for 

PXR 
[17]

, however without receptor binding it can repress 

metabolism and transporter activity induced from 

transcription of CYP3A4 and MDR1 through competitive 

inhibition (measured in seconds and minutes). This could 

lead to a possible build-up of hyperforin in the liver. 

The bile acid receptor (BAR), also known as farnesoid X 

receptor (FXR) is activated by primary and secondary bile 

acids, lithocholic acid (LCA) and chenodeoxycholic acid 

(CDCA). It up-regulates transcription of CYP3A4, MRP2 and 

BSEP, the latter two encoding transporter proteins which 

transport bile acids into the bile duct. The overlap of both 

processes occurs at the CYP3A4 gene and several scenarios 

can be explored. A patient taking hyperforin will have 

increased expression of CYP3A4 which may lead to a 

deficiency in bile acid concentration as this gene produces 

enzymes which metabolise bile acids. Similarly a patient 

with high bile acid concentrations may reduce the efficacy of 

hyperforin (if taken) as transcription of CYP3A4 is 

increased. If ritonavir is added to this example then bile acids 

and hyperforin could accumulate to toxic levels in the liver.  

A second scenario which will be considered in future work 

looks at the effects of ritonavir on the metabolism of 

hyperforin in the intestine and the overlap of this process 

with VDR-mediated vitamin D metabolism. 

3. Multi-scale modelling 

Starting with early studies beginning in 1990s 
[18]

 multi-scale 

modelling and simulation has now turned into a focal point 

of attention across many scientific and engineering 

disciplines. An increasing number of scientific papers are 

published, workshops are organized and some specialized 

journals exist. Communities (ranging from physics and 

biology to medicine, finance, and engineering) are 

confronted with the problem of understanding multi-scale 

systems that are central to their field of study. For instance, 

the Virtual Physiological Human project 
[19]

, funded by the 

EC, is a good example of a community concerned with 

multi-scale modelling and simulation of human physiology. 

The COAST project developed a multi-scale modelling 

methodology 
[20]

 whose basic building blocks comprise 

single-scale models and their mutual multi-scale couplings. 

Many, if not all, multi-scale models can be expressed in this 

general multi-scale modelling framework. In the COAST 

framework, a multi-scale model can be represented as a 

directed graph on a scale separation map (SSM), which is a 

plot that has the relevant range of scales on its axes (usually 

space and time, but other quantities are possible). The single-

scale models are positioned on the SSM according to their 

characteristic scales, and the coupling templates are 

represented as directed edges (Figure 3). While many 

approaches to systems biology involve single-scale models, 

there is a growing body of work that aims at modelling of 

life phenomena across several scales. Multi-scale systems 

biology is concerned with experiments and hypotheses that 

involve different scales of biological organization from 

intracellular molecular interactions to cellular behaviour and 

the behaviour of cell populations (Figure 3). Multi-scale 

systems biology modelling efforts aim to explore such multi-

scale systems quantitatively by means of simulations that 

incorporate several different simulation techniques because 

of the different temporal scales and spatial scales 

involved 
[6, 21, 22]

.  

 

Figure 3. The scale separation map.  

Decomposition of a multi-scale system: Left, a multi-scale 

model spanning many temporal and spatial scales. Right, the 

resulting decomposed model, consisting of four coupled 

single scale models. 

Qualitative diagrammatic multi-scale models are very 

common in biomedical research. Ultimately all biological 

properties on the level of tissues or organs are based on 

molecular interactions occurring within or on the surface of 

cells. Biologists frequently describe the hypothetical role a 

specific molecular mechanism may play in a tissue-level 

disease by means of a diagram with an arrow connecting 

molecular entities to a higher scale entities associated with 

the disease. However, if one wants to subject the proposed 

causal relationships to a stringent quantitative exploration 

one needs to transform the knowledge embodied in the 

arrow-based diagram into a formal description suitable as 

input for computer simulations. The SSM depicted in Figure 

4 represents the Liver BAXS scenario as described above.  

 
Legend:   

Ligand/Receptor binding: 

Enzyme activity on substrate 

(inhibited by ritonavir) 

A PXR binds hyperforin J CYP3A4 metabolises LCA 

B PXR binds ritonavir K CYP3A4 metabolises Hyperforin 

C FXR binds LCA Transport of substrate from cell  

D FXR binds CDCA (inhibited by ritonavir) 
Receptor activates gene: L MDR1 transports metabolised  

E PXR activates CYP3A4  hyperforin to exosol 

F PXR activates MDR1 M MRP2 transports CDCA to exosol 

G FXR activates CYP3A4 N BSEP transports metabolised LCA  

H FXR activates MRP2  to exosol 

I FXR activates BSEP O BSEP transports metabolised CDCA  

   to exosol 

Figure 4. SSM representing the Liver scenario. 



 

 

 

Each individual process in this scenario has been identified 

in terms of the spatial and temporal scales within which they 

occur. The first group of processes (labelled A to D in the 

diagram) operate within the cytosol and involve the binding 

of ligand to nuclear receptor which can be measured on a 

time scale of minutes. The next group of processes (labelled 

E to I) take place in the nucleus and result in an increased 

rate of gene expression. These processes operate on the scale 

of hours. Processes J and K take place in the cytosol, involve 

the metabolism of the ligand through increased enzyme 

activity and include the inhibitory effects of another substrate 

on the metabolic process through competitive inhibition. 

These processes are measured on a scale of micro-seconds to 

seconds.  

The processes labelled L to O are localized in and at the cell 

membrane and involve the transport of metabolized 

substrates across the membrane out of the cell by transporter 

proteins. These processes also include competitive inhibition 

of another substrate. These processes occur over a time scale 

of minutes. To simplify the modelling approach, the 

processes are grouped together such that process A 

represents the binding of ligand and nuclear receptor, process 

B represents gene expression, process C represents enzyme 

activity on a substrate, including competitive inhibition, and 

process D represents activity of transporter proteins as shown 

inFigure 6. Additionally, the initial models created represent 

the pathway resulting from PXR activation only. This will be 

further developed to include the FXR pathway once the 

modelling techniques have been established. 

The ligand receptor binding process is governed by mass 

action kinetic laws 
[23]

 which determine the rate at which the 

overall reaction occurs. The reaction equations below 

describe how this process occurs and how the kinetic laws 

are applied. 

LRRL onk
  Eq. 1 

RLLR offk
  Eq. 2 

Eq. 1 shows that ligand (L) plus nuclear receptor (R) bind to 

create the ligand/nuclear receptor complex (LR). The rate at 

which this occurs is determined by the kinetic constant kon 

which is the association rate for the ligand binding to the 

nuclear receptor. This reaction is reversible therefore Eq. 2 

shows the dissociation of the ligand/receptor complex into its 

constituent compounds and the rate is determined by the 

kinetic constant koff which is the dissociation rate of the 
bound nuclear receptor complex. The combination of both 

reactions determines the overall rate of complex formation.  

The transactivation process resulting in increased gene 

expression is triggered by the activated PXR complex 

resulting from process A (either bound to hyperforin or 

ritonavir) translocating to the cell nucleus and binding to 

DNA. Among the target genes are CYP3A4 which produces 

the enzyme cytochrome p450, and MDR1 which produces 

the transporter protein p-glycoprotein, an ATP binding 

cassette transporter (ABC-transporter). 

 

Figure 5. Simplified SSM representing the Liver scenario. 

Grouping all similar process types together for modelling 

purposes. 

The transcription process follows kinetic laws determined by 

the Hill function for transcriptional activation 
[24, 25]

. Eq. 3 

shows the equation determining the overall rate of mRNA 

production 

nn
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 Eq. 3 

where A denotes the activator (the concentration of the PXR 

compound), k1 the maximal transcription rate of the gene, km 

the activation co-efficient and n the Hill coefficient.  

As mRNA is produced it translocates to the cytosol and is 

translated into protein at the ribosome. Eq. 3 shows the 

equation determining the overall rate mRNA is translated 

into protein. The rate of this reaction follows the kinetic laws 

of mass action  

]mRNA[2k  Eq. 4 

where k2 is the translation rate which represents the number 

of protein molecules produced per mRNA molecule per unit 

of time.  

The ligand receptor binding model was implemented in 

COPASI 
[26]

, a software tool for simulation and analysis of 

biochemical networks and their dynamics. The final model 

forms a mathematical representation of the biological process 

under study upon which dynamic simulations can be run. 

Table 1 details the initial concentrations used in the model 

for ligand-receptor binding. Table 2 shows the reactions 

between species in the model and the parameter values used. 

Due to the absence of data from biological experimentation 

the values used in the model where estimated through a 

process of trial and error.  

Legend:   

A Ligand/Receptor binding. C Enzyme activity on substrate. 

B Receptor activates gene 

expression. 
D Transport of substrate from 

cell. 



 

 

 

Table 1. Initial concentrations for ligand receptor 

binding model. 

Species Initial concentration (µmol/l) 

Hyperforin 600 

Ritonavir 500 

PXR 10 

Table 2. Ligand receptor binding model reactions. 

Reaction Equation Rate  

Ass. of Hyp with PXR PXR + Hyp → PXR:Hyp 8e-06 l/(µmol*s) 

Diss. of Hyp and PXR PXR:Hyp → PXR + Hyp 6.5e-07 1/s 

Ass. of Rit with PXR PXR + Rit → PXR:Rit 9e-06 l/(µmol*s) 

Diss. of Rit and PXR PXR:Rit → PXR + Rit 7.5e-07 1/s 

Ass. = association; Diss. = dissociation; 

Hyp = hyperforin; Rit = ritonavir 

A simulation was run in COPASI with the duration set to 600 

seconds (10 minutes) and interval size at 2 seconds resulting 

in a dataset with 300 time-steps. Figure 6 shows the resulting 

graph of plotting the simulated data.  

 

Figure 6. Ligand receptor binding model: 

Species concentration (vertical axis) over time (horizontal 

axis). 

A second model was created in COPASI to simulate the 

reactions involved in process B, which result in activation of 

gene expression.  

Table 3 shows the initial concentrations used in the gene 

expression model and  Table 4 details the reactions rates and 

parameter values used. The duration for the simulation was 

set to 100 000 seconds (27.7 hours) with 2500 time steps of 

40 seconds each. Figure 7 shows the result of plotting the 

simulated data. Again, the initial values, rates and parameters 

have been estimated through a process of trial and error due 

to the lack of experimental data. 

Table 3. Initial concentrations for gene expression model. 

 Table 4. Gene expression model reactions. 

Reaction  Equation Rates / 

Parameters 
Diss. of PXR:Hyp 
complex 

PXR:Hyp → PXR + Hyp 0.00085 1/s 

Diss. of PXR:Rit 

complex 
PXR:Rit → PXR + Rit 0.00095 1/s 

Transc of CYP3A4 

by PXR:Hyp 
→ CYP3A4(m); PXR:Hyp 

k1 = 0.003, 

n = 1, km = 0.5 

Transc. of CYP3A4 
by PXR:Rit 

→ CYP3A4(m); PXR:Rit 
k1 = 0.006, 
n = 1, km = 0.5 

Transc. of MDR1 

by PXR:Hyp 
→ MDR1(m); PXR:Hyp 

k1 = 0.005, 

n = 1, km = 0.5 
Transc. of MDR1 

by PXR:Rit 
→ MDR1(m); PXR:Rit 

k1 = 0.007, 

n = 1, km = 0.5 

Transl. of CYP3A4 
mRNA 

CYP3A4(m) → CYP3A4 
k2 = 2.4e-05 1/s, 
d2 = 1e-05 1/s 

Transl. of MDR1 

mRNA 
MDR1(m) → MDR1 

k2 = 2.7e-05 1/s, 

d2 = 1e-05 1/s 

Diss. = dissociation; Transc. = transcription; 

Transl. = translation; Hyp = hyperforin; Rit = ritonavir  

 
Figure 7. Gene expression model: 

Species concentration (vertical axis) over time (horizontal 

axis). 

4. Results 

The ligand-receptor binding model indicates a steady 

increase in bound PXR correlated to a steady decrease in 

available (unbound) PXR. The initial concentrations of 

ritonavir and hyperforin decrease steadily (not shown) 

relative to the accumulation of bound PXR. The entire 

process is modelled over 600 seconds and reaches a steady 

state after approximately 500 seconds where the rate of 

formation of bound PXR begins to level out. The data 

indicates that after 600 seconds the concentration of PXR 

bound to ritonavir is 4.82 µmol/l and the concentration of 

PXR bound to hyperforin is 5.14 µmol/l. To initiate the 

transcription process only a minimum concentration of 

activated PXR is required. Process B can therefore start 

Species Initial concentration (µmol/l) 

PXR:Hyp 5.14 

PXR:Rit 4.82 



 

 

 

before process A has finished therefore the processes are not 

necessarily sequential in nature. 

An exchange of data from process A to B is required during 

the simulation of process A at predefined intervals. The gene 

expression model indicates a sharp increase in mRNA 

production peaking at approximately 5000 seconds 

(approximately 1.5 hours) after which there is a gradual 

decline. 

The translation of mRNA into protein is indicated as a 

gradual increase in MDR1 and CYP3A4 concentrations 

which approach steady state at approximately 100 000 

seconds (27.7 hours). 

The process of enzyme activity on a substrate (process C) is 

yet to be modelled, however it is dependent on the 

concentration of the enzymes produced in the gene 

expression process (process B). As with the integration of 

processes A and B the relationship between processes B and 

C is not necessarily sequential. A minimum concentration of 

enzyme is required to initiate the metabolic process, the rate 

of which increases as enzyme concentration increases. Each 

model has been determined as the trigger for the subsequent 

process, however the processes are not sequential, therefore 

the integration or ‘coupling’ of models needs to be studied in 

more detail. This forms one of the major research areas for 

this project. 

5. Model integration 

To investigate how separate individual processes operating 

on different scales interact with each other a stock and flow 

diagram was created in Stella
2
 for the processes under study 

(Figure 8). The stock and flow diagram treats the 

components of the model as stocks, e.g. ‘Le’ is a stock of 

ligand outside the cell. The flows represent the rate of change 

of the stock, either localization or change of state, e.g. ‘Le’ 

flows into the cell at a defined rate and accumulates as ‘L’ 

which represents the stock of ligand in the cell. The flow 

from the ligand stock (L) combines with the flow from 

receptor stock (R) to accumulate as bound ligand receptor 

stock (LR). This stock has a positive effect on the flows 

resulting in enzyme production (E1 and E2) represented by 

the arcs connecting the stock to the flows. Enzyme 1 stock 

(E1) has a positive effect on the flow of ligand (L) to its 

metabolised form (L\OH) and enzyme 2 (E2) has a positive 

effect on the flow of metabolised ligand (L\OH) out of the 

cell. Finally the stock of inhibitor (I) has a negative effect on 

the flow of ligand to metabolised ligand and the flow of 

metabolised ligand out of the cell. By studying the model in 

terms of stocks and flows it is easy to visualise the 

interactions in the model as an exchange of stocks. In terms 

of coupling multi-scale models the exchange of data must 

therefore represent a concentration of a component or 

components in the individual processes. For example the 

integration of processes A and B, ligand binding and gene 

expression, is an exchange of data representing the 

                                                 
2 STELLA is a general-purpose modelling and simulation tool of 

isee systems: www.iseesystems.com. 

concentration of activated PXR, the interaction of processes 

B and C, gene expression and enzyme activity, is an 

exchange of data representing enzyme concentrations. As the 

processes are not necessarily sequential, exchange of data 

has to occur at predefined time steps within the model 

operating on the smaller scale. 

 

Figure 8. Stock and flow diagram. 

Representing the metabolism of hyperforin inhibited by 

ritonavir in the liver. 

E.g. the duration of the ligand binding model is 600 seconds 

with interval sizes of 2 seconds whereas the duration of the 

gene expression model is 100 000 seconds with time 

intervals of 40 seconds. This would mean that for every 20 

time steps of process A an exchange of data can occur with 

process B. This forms the basis for developing methodology 

for coupling multi-scale processes and allows us to explore 

this problem further. The development of a ‘data generator’ 

using Java has begun which will be able to open two separate 

instances of Copasi and run two simulations together. It will 

also be able to interrupt the simulations at specific time 

intervals and facilitate the exchange of data in either 

direction as required. 

6. Discussion 

This study leads us to suggest the most suitable approach in 

multi-scale modelling and simulation is to deconstruct the 

entire system into individual processes and model each 

separately. The coupling of models can then be explored in 

more detail. We suggest the integration or coupling of 

separate models involves an exchange of data representing a 

stock or concentration of a component within the individual 

models. The development of a data generator in Java allows 

this integration of models to be further explored and 

developed to include other modelling methodologies. This 

research project has also raised several issues which require 

further investigation and prompt further research in the fields 



 

 

 

of biology and systems biology. The models created in 

Copasi use artificial data to quantify the kinetic rates of 

reactions within the processes under study. This project 

would benefit greatly if biological experimentation in this 

area could provide real data upon which to validate the 

models. Further models will be developed to capture the 

additional processes detailed in the SSM and the ‘data 

generator’ will be implemented to explore the coupling of 

these separate processes. Ultimately the ‘data generator’ will 

be developed to explore the integration of different spatial 

scales in biology, including the integration of models using 

different methodologies e.g. cellular automata, agent based 

modelling. Multi-scale modelling and simulation is more 

complex than single-scale modelling and simulation. On the 

biology side it involves different temporal and spatial scales 

as well as different types of biological process and entities. 

On the mathematical side, different methods may be used to 

model the different sub-models of a multi-scale model. 

Furthermore, specific methods may be used to couple the 

different sub-models. On the computational side many 

intricate issues arise.  

A new EC-funded project with University of Ulster 

participation aims to develop computational strategies, 

software and services for distributed multi-scale simulations 

across disciplines, exploiting existing and evolving European 

e-infrastructure 
[27]

. Our preliminary literature research on 

evaluation and validation of multi-scale modelling and 

simulation in biology shows that there is a lack of suitable 

detailed work in this area. This and the lack of suitable 

dynamic data for modelling of the BAXS has prompted us to 

pursue the development of a testing environment which 

would allow us (1) To generate unlimited dynamic data 

related to the BAXS, (2) develop and study multi-scale 

modelling and simulation approaches for the BAXS, and (3) 

study, apply and develop validation techniques for multi-

scale modelling and simulation in systems biology. The basic 

idea of this testing environment is based on the Turing-like 

test for biology 
[28]

. 
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