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Abstract – High throughput biological experiments such as 
DNA Microarrays are very powerful tools to understand and 
characterize multiple illnesses. These types of experiments, 
however, have also been described as large, complex, 
expensive and hard to analyze. For these reasons, analyses 
with linear assumptions are frequently bypassed for more 
sophisticated procedures with higher complexity. In this work, 
a search procedure for potential biomarkers using data from 
microarray experiments is proposed under purely linear 
assumptions. The method shows a high discrimination rate 
and does not require the adjustment of parameters by the user, 
thus preserving analysis objectivity and repeatability. A case 
study in the identification of potential biomarkers for cervix 
cancer is presented to illustrate the application of the 
proposed procedure.  
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1 Introduction 
  The search for genes whose measured change in 
expression behavior is an indication of a tissue being in a 
particular state (e.g. in a state of cancer vs. a state of health) is 
an important research objective in biology and the medical 
sciences. These genes are known as biomarkers. Microarray 
experiments play an important role in the identification of this 
type of genes. In the successful identification of potential 
biomarker genes, lies an important characterization of the cell 
in the presence of cancer. This can lead to enhance disease 
diagnosis and prognosis capabilities.  

Based on our own experience with microarray data, the 
following challenges regarding microarray experiments can 
be identified: (1) the available data is highly dimensional in 
terms of the number of genes to be studied (~104) while 
showing a scarce number of replicates, (2) there is a rather 
large variation across replicates, (3) the data is not normally 
distributed and does not exhibit homogeneous variances, (4) 
there is a considerable number of missing observations in the 
majority of experiments, (5) the data is commonly found 
already being normalized or nonlinearly transformed. All of 
these complicate the detection of potential biomarkers.  

Furthermore, when it comes to data analyses, the following 
are also important challenges: (i) there is no standard way to 
compare results for gene selection or identification between 
studies, (ii) even with the same data (and sometimes with the 
same technique) different researchers end up with different 
screening of genes [Ein-dor, et al. 2005] thereby leading to a 
large number of potential biomarkers to be investigated, the 
research of which could prove lengthy and very expensive.  

Truly integrated work across disciplines is not frequent in 
most microarray analysis works. Biology and Medicine 
experts are usually left with the burden of using coded 
analysis tools with a series of parameters -of statistical, 
computational or mathematical nature/ that significantly 
affect the outcome of the software packages [Pan, 2002]. This 
leads to issues in results reproducibility and comparability 
between studies.  

These challenges motivate the search for microarray analysis 
techniques from which consistent results can be achieved 
across several experiments and users, particularly for the 
identification of potential biomarkers.  

The purpose of this work is to introduce an approach to 
identify potential biomarkers from the analysis of microarray 
experiments based solely on linear models and assumptions. 
Although an initial purpose on the design of the method was 
to establish a baseline of comparison for the many 
sophisticated methods with underlying nonlinear 
assumptions, it soon became apparent that a very effective 
strategy might be based on linearity.  

2 The Analysis Strategy 
 Figure 1 schematically shows the strategy proposed in 
this work. Each step is explained below.  

Step 1: Microarray Experiment.  The process begins with a 
microarray experiment with m1 tissues in state one (Healthy) 
and m2 tissues in state two (Cancer) characterized in n genes. 
In the intersection of each of the n genes with each of the 
m1+m2 tissues, the relative expression of that particular gene 
in the selected tissue is quantified.  



Step 2: Represent each gene with multiple performance 
measures. In this work, the use of a p_values is advocated to 
represent each gene. A p_value can be computed from the 
application of a statistical comparison test, like the Mann-
Whitney nonparametric test for difference of medians. A 
different p_value for the same gene can be obtained by 
removing a couple of tissues from the microarray experiment 
under analysis. In a comparison of medians, a low p_value 
indicates a high probability for the medians to be significantly 
different.  

Step 3: Apply Data Envelopment Analysis. Data 
Envelopment Analysis (DEA) finds the convex envelop of a 
particular data set consistently and without the need of 
varying parameters manually. If, for example, two p_values 
were used to represent each of the n genes in the experiment, 
then DEA can be used to find the envelope conformed by the 
dominating genes following the minimization direction of 
both p_values. Finding such envelope is done through the 
application of a linear programming formulation, which is the 
first instance where linearity becomes useful.  

Step 4: Select genes in a series of efficient frontiers. The 
envelopes found through DEA are formally known as 
efficient frontiers. When an efficient frontier is found, then 
the solutions lying on it can be removed (as a layer of an 
onion), to then find the efficient frontier right underneath it. 
Following this scheme, several layers can be chosen 
containing different numbers of genes. These genes, having 
been found through the minimization of their p_values, are 
the most likely candidates to be biomarkers. These will be 
referred to as efficient genes.  

Step 5: Create an experimental design to vary the efficient 
genes. An experimental design using as controllable variables 
the presence of the genes can be constructed. Each variable 
can take a value of 0 or 1 (0 for absence of the gene). This 
experimental design will prescribe a limited number of runs 
to measure a particular response of interest. In this case, one 
run corresponds to a combination of efficient genes.  

Step 6: At each experimental design point, measure 
classification performance through linear discriminant 
analysis. Using the experimental design from the previous 
step, at each combination of efficient genes it is possible to 
obtain a measure of classification performance using a linear 
classifier through linear discriminant analysis. A linear 
classifier of this kind will always converge to the same 
position, thus preserving consistent results. At this point, 
then, a complete experimental design relating the 
classification rate with the absence or presence of the 
potential biomarkers is available.  

Step 7: Fit a 1st order linear regression model. With the 
complete experimental design, it is possible to fit a 1st order 
linear regression model. This model will relate classification 
performance (response) to the absence or presence of the 
efficient genes (independent variables).  

Step 8: Apply integer linear programming to choose the 
potential biomarkers that maximize classification 
performance. An optimization problem can be set up in this 
stage. This problem entails finding the combination of 
efficient genes –recall that each gene is represented by a 
variable that can take values of 0 or 1 to indicate absence or 
presence of that gene-, that maximizes the classification 
performance, i.e. choose the genes that maximize the 
regression model from the previous step.  

This procedure, as it was explained, uses only linear models. 
Because of the techniques chosen in the strategy, the results 
are consistent. Furthermore, the selected genes do not depend 
upon the setting of any parameters by the user. This favors 
the repeatability and auditability of the analysis.  

 

Figure 1. Analysis Strategy based on Linear Models 
 

3 Case Study on Cervix Cancer 
 
 This case study helps to illustrate the application and the 
performance of the proposed procedure.  
 
Step 1. The microarray database under analysis is related to 
cervix cancer and was compiled by Wong et al [3]. The 
database consists of 8 healthy tissues and 25 cervix cancer 
tissues, all of them with expression level readings for 10,690 
genes. 
 
Step 2. The Mann-Whitney nonparametric two-sided test for 
comparison of medians was used to generate two different 
p_values per gene, following a leave-one-tissue-out strategy, 
which focuses on extracting a particular tissue associated with 
one state. By removing a vector, a replicate is deleted from the 
set, thereby forcing a p_value that is different to the original 
one. Thus, two different p_values are effectively created.  The 
selection of the tissue to be removed to create a distinct matrix 
is performed randomly as a first approach.  
 
Step 3. The Data Envelopment Analysis model used for this 
case study was the Banks-Charnes-Cooper (BCC) model [4]. 



This is a linear programming model with the following 
associated formulations: 
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The optimal values of the decision variables correspond to the 
interceptor and the partial first derivatives (with respect of 
each performance measure involved) of a supporting 
hyperplane lying on top of extreme points of the data set 
under analysis. At the end of the analysis, a piece-wise 
frontier is distinguishable as shown in Figure 3.  
 

 
 

Figure 3. Representation of genes characterized through two 
different p_values. Only the case with 2 p_values has a 
convenient graphical representation, but the analysis can be 
extended to as many dimensions as performance measures 
selected. 
 
Step 4. The first ten frontiers were kept for this analysis 
containing a total of 28 genes. It is important to note the 
discrimination rate shown by the method already at this point: 
a reduction of four orders of magnitude in the number of 
genes to analyze.  
 

Step 5. A composite experimental design involving 28 binary 
variables (one per gene in the shortlist from the previous step), 
was used.  Three different experimental designs form the 
composite with 123 runs. The first design is an orthogonal 
array consisting on 47 runs with between 10 to 18 genes each; 
the second design has 48 runs with between 1 to 26 genes 
generated randomly; and the third design consisted of 28 runs, 
each with only one gene. Figures 4, 5 and 6 show the resulting 
designs.   
 

 
Figure 5. Design of Experiment 1. Shaded in gray are the 

values of 1. 
 

 
Figure 6. Design of Experiment 2 (Runs 1-16: 20% of total 
number of genes, runs 16-32: 50% of total number of genes, 

runs 33-48: 80% of total number of genes). Shaded in gray are 
the values of 1. 

 

 
Figure 7. Design of Experiment 3. Shaded in gray are the 

values of 1. 
 
Step 6. A linear discriminant analysis was carried out using 
the combination of genes prescribed by each run of the 
composite design to record the classification performance of a 
linear classifier.  
 
Step 7. With the experimental design complete, a linear 
regression of the classification performance as a function of 



the presence or absence of the 28 genes is built as shown in 
Table 1.  
 

Variable Coefficient 
Symbol 

Regression 
Coefficient 

 b0 0.8868 
g1 b1 0.0152 
g2 b2 0.0027 
g3 b3 0.0097 
g4 b4 0.0146 
g5 b5 0.0030 
g6 b6 0.0083 
g7 b7 -0.0034 
g8 b8 0.0051 
g9 b9 0.0001 

g10 b10 0.0054 
g11 b11 0.0008 
g12 b12 -0.0020 
g13 b13 0.0120 
g14 b14 -0.0027 
g15 b15 0.0138 
g16 b16 0.0089 
g17 b17 0.0166 
g18 b18 0.0145 
g19 b19 0.0089 
g20 b20 0.0120 
g21 b21 0.0137 
g22 b22 0.0105 
g23 b23 -0.0068 
g24 b24 -0.0025 
g25 b25 0.0093 
g26 b26 0.0050 
g27 b27 0.0079 
g28 b28 0.0158 

Table 1. Linear Regression Model using 123 experimental 

designs. 

 
Step 8. Using the linear regression model from Table 1, the 
optimization model is to find the combination of genes 
(through the use of binary variables) to maximize the 
predicted classification performance. Such optimization 
resulted in the identification of 23 important genes, that is, 
potential cervix cancer biomarkers. These are shown in Table  
2.  
 

Currently, our group is working on the validation of these 
potential biomarkers, as well as on their representation in a 
hierarchical list or a relationship network.  
 
 

Index Frontier Accession 
Number 

Optimization 
Selection 

1 1 AA488645 X 
2 2 H22826 X 
3 3 AI553969 X 
4 3 T71316 X 
5 3 AA243749 X 
6 3 AA460827 X 
7 4 AA454831   
8 4 AA913408, 

AA913864 
X 

9 5 AA487237 X 
10 5 AA446565 X 
11 6 H23187 X 
12 7 AI221445   
13 7 R36086 X 

14 7 AA282537   

15 8 N93686 X 
16 8 R91078 X 
17 8 R44822 X 
18 9 AI334914 X 
19 9 R93394 X 
20 9 AA621155 x 
21 9 AA705112 x 
22 9 R52794 x 
23 10 AA424344   
24 10 H69876   
25 10 H55909 x 
26 10 W74657 x 
27 10 AI017398 x 
28 10 H99699 x 

 
Table 2. The procedure selected 23 potential biomarkers 
through the maximization of the expected classification 

performance. 
 

4 Conclusions 
 
 In this work, a strategy to detect potential biomarkers 
from the analysis of microarray experiments is proposed. The 



strategy is based solely on linear models and assumptions. Its 
consistent convergence and lack of parameter setting by the 
users, make this method a very competitive and attractive one 
for repeatability and auditability. This is especially important 
in high throughput experiments and in a highly 
interdisciplinary field like bioinformatics. A case study 
involving the analysis of a microarray database on cervix 
cancer was presented to demonstrate the capabilities of the 
strategy. Indeed, in this case study it was possible to 
discriminate among more than 10,000 genes to converge to 
23 potential cervix cancer biomarkers. These are currently 
under analysis for validation in our research group.  
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