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Abstract - Molecular predictor is a new tool for disease 
diagnosis, which uses gene expression to classify the 
diagnostic category of a patient. The statistical challenge 
for constructing such a predictor is that there are 
thousands of genes to predict disease category, but only a 
small number of samples are available. We explored a 
correlation-sharing based method to integrate ‘essential’ 
correlation structure among genes into the predictor in 
order that the cluster structure of genes, which is related 
to diagnostic classes we look for, can have potential 
biological interpretation. We evaluated performance of the 
method with other methods using three real examples. Our 
results show that the approach has the advantage of 
computational simplicity and efficiency with lower 
classification error rates than the compared methods. 
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1 Introduction 
 
With the development of microarrays technology, more 
and more statistical methods have been applied to the 
disease classification using microarray gene expression 
data. Microarray data sets often have a large number of 
features (genes), but only a very limited number of samples 
are available, which presents unique challenges to feature 
selection and predictive modeling. In general, these 
statistical methods can be divided into two categories: one 
is the supervised classification methods. For example, 
Golub et al. developed a “weighted voting method” to 
classify two types of human acute leukemias [1]. 
Radmacher et al. constructed a ‘compound covariate 
prediction’ to predict the BRCA1 and BRCA2 mutation 
status of breast cancer [2]. Studies have shown that given 
the same set of selected features, different classification 
methods often perform quite similarly and simple methods 
like diagonal linear discriminant analysis (DLDA) and k 
nearest neighbor (kNN) normally work remarkably well 
[3]. Thus, finding the most informative features is a crucial 

task in predictive modeling from microarray data [4-5]. 
Another is the unsupervised clustering approaches, which 
are usually used to determine gene clusters that are mostly 
correlated with clinical outcomes [6].  However, the 
clustering approach is purely exploratory and methods that 
can be used to assess the significance of the clustering 
results are required. It has been widely known that most 
diseases (such as cancer) are ‘caused’ or influenced by 
multiple gene variations more often than only a single 
gene. Traditional microarray-based disease classification 
approaches use only individual differentially expressed 
genes as biomarkers to discriminate classes of cancer and 
normal samples. However, a large proportion of such genes 
are irrelevant and functional correlations among those 
genes are ignored. Since the genes with the best 
discriminative power are likely to correspond to a limited 
set of biological functions or pathways, it is rational to 
focus on these key functional expression patterns for 
disease prediction. This approach may then provide clues 
as for the types of biological processes that underlie the 
expression patterns of sets of genes. 
        Some attempts have been made to integrate the 
unsupervised gene clustering and the supervised disease 
classification approaches into a unified classification 
process. Li et al. developed cluster-Rasch models, in which 
a model-based clustering approach was first used to cluster 
genes and then the discretized gene expression values were 
input into a Rasch model to estimate a latent factor 
associated with disease classes for each gene cluster [7]. 
The estimated latent factors were finally used in a 
regression analysis for disease classification. They 
demonstrated that their results were comparable to those 
previously obtained, but the discretization of continuous 
gene expression levels usually results in a loss of 
information. Hastie et al. proposed a tree harvest procedure 
for finding additive and interaction structure among gene 
clusters, in their relation to an outcome measure [8]. They 
found that the advantage of the method could not be 
demonstrated due to the lack of rich samples. Dettling et 
al. presented a new algorithm to search for gene clusters in 
a supervised way. The average expression profile of each 



cluster was considered as a predictor for traditional 
supervised classification methods. However, using simple 
averages will discard information about the relative 
prediction strength of different genes in the same gene 
cluster [9]. Yu also compared different approaches to form 
gene clusters. The resulting information was used for 
providing sets of genes as predictors in regression [10]. 
       Recently, gene co-expression networks have become a 
more and more active research area [11-14]. A gene co-
expression network is essentially a graph where nodes in 
the graph correspond to genes, and edges between genes 
represent their co-expression relationship. The gene 
neighbor relations (such as topology) in the networks are 
usually neglected in traditional cluster analysis [13]. One 
of the major applications of gene co-expression network 
has been centered in identifying functional modules in an 
unsupervised way [11-12], which may be hard to 
distinguish members of different sample classes. Recent 
studies have shown that prognostic signatures that could be 
used to classify the gene expression profiles from 
individual patients can be identified from network modules 
in a supervised way [14].  
      In this paper we explored a clustering-based approach 
for classification of high-throughput gene expression data. 
Specifically, we first used a seed based approach to identify 
correlation-shared gene clusters from gene network. Each 
of these clusters included a differentially expressed gene 
between sample classes, which was treated as a seed, and a 
set of other genes highly co-expressed with the seed gene; 
then we performed principal component analysis (PCA) to 
extract meta-gene expression profiles; finally a supervised 
PCA-based logistic regression (LR) model was built to 
predict disease outcomes. We call the method as CPCLR. 
The method returned signature components of tight co-
expression with good predictive performance. The 
performance of this method was compared with other state-
of-the-art classification methods. We demonstrated that the 
approach has the advantage of computational simplicity 
and efficiency with lower classification error rates than the 
compared classification methods.  
      The remainder of this paper is organized as follows: 
Section 2 gives a detailed description of our classification 
method and briefly discusses other methods to be compared 
as well as the evaluation strategy; Section 3 presents the 
results based on six classification methods and three case 
studies; Section 4 summarizes our findings in the study. 
 

2 Methods 
 

2.1 CPCLR algorithm 
 
CPCLR classification algorithm includes three stages: 1) 
construct correlation-sharing based gene clusters; 2) 

extract meta-gene expression profiles from the constructed 
clusters using PCA; 3) classify samples using PCA-based 
LR model. Here we briefly described each of the three 
stages:  
        Stage 1: construct correlation-sharing based gene 
clusters. We modified the correlation-sharing method 
developed by Tibshirani and Wasserman [15], which was 
originally proposed to detect differential gene expression. 
The approach works in the following steps: 

       A: Compute test statistic ),...,2,1( piTi  for each 

gene i using the standard t-statistic or a modified t-
statistic, such as significance of microarrays (SAM) [16]. 
      B: Select seed genes having larger absolute test 
statistic values, say top m genes. 
      C: Find the cluster membership s for each selected 

seed gene
*i . The cluster assignments can be characterized 

by a many to one mapping. That is, one seeks a particular 
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genes s for each seed gene 
*i is an adaptively chosen 

cluster, which maximizes the average (ave) differential 

expression signal around gene 
*i . The set of identified 

genes s should have absolute (abs) correlation (corr) with 
*i larger than r. The advantage of the correlation-sharing 

based clustering method is that the membership in 
different clusters can be overlapped rather than mutually 
disjoint. 
        Stage 2: Principal component analysis of correlation-
shared expression profiles: To do this, for each of the 
seed-based gene cluster, we performed principal 
component analysis. Specifically, for a given gene cluster 

with C genes, assume 
t
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can be computed using singular value decomposition 
(SVD) [17]. Briefly, assume X be an NxC matrix with 
normalized gene expression values of C genes in a given 
cluster, so we can express the SVD of X as TULAX  , 
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of associated with k and coefficients for defining PC 

scores. Magnitude of loadings for the first principal 
component score can be viewed as an estimate of the 
amount of contribution from the clustered genes. 
       Stage 3: Classification using PCA-based logistic 
regression model: Assume Y is a categorical variable 
indicating the disease status (such as cancer or no cancer). 
Here we only focus on binary classification and suppose 
that Y=1 denotes the presence and Y=0 indicates the 
absence of the disease.  Therefore, we can have following 
supervised PCA-based logistic regression model: 

log(
pj

1 pj
)  0  

i* PC1
i* j

i*

m

   j                            (2) 

where ),...,2,1,1|1Pr( *
* miPCYp jijj  . 

ji
PC *1 is the first principal component score estimated 

from the seed gene cluster 
*i  for sample j and represents 

the latent variable for the underlying biological process 
associated with this group of genes. The model was fitted 
using GLM function in stats R package.  
 

2.2 Method Comparisons  
 
       We compared the prediction performance of CPCLR 
with other established classification methods, which 
include, diagonal linear discriminant analysis (DLDA), 
logistic regression (LR) model, one nearest neighbor 
method (1NN), support vector machines (SVM) with linear 
kernel and recursive partitioning and regression trees 
(Trees). We used the implementation of these methods in 
different R packages (http://cran.r-project.org/), which are 
sma for DLDA, stats for LR, class for 1NN, e1071 for 
SVM and rpart for Trees. Default parameters were used. In 
the comparison, we selected seed genes using t-test and 
SAM and evaluated the performance of DLDA, LR, 1NN, 
SVM and Trees using different number of top seed genes 
and that of CPCLR using the gene clusters built on the 
selected seed genes.  

 

2.3 Cross-validation 
 
      We performed ten-fold cross-validation to evaluate the 
performance of these classification methods. The basic 
principle is that we split all samples in a study into 10 
subsets of (approximately) equal size, set aside one of the 

subsets from training and carried out seed gene selection, 
gene cluster construction, extracted super-gene expression 
profiles and classifier fitting using the remaining 9 subsets. 
We then predicted the class label of the samples in the 
omitted subset based on the constructed classification rule. 
We repeated this process 10 times so that each sample is 
predicted exactly once. We determined the classification 
error rate as the proportion of the number of incorrectly 
predicted samples to the total number of samples in a given 
study. This 10-fold cross-validation procedure was 
repeated 10 times and the averaged error rate was reported. 
 

3 Experimental Results 
 

3.1 Real datasets 
 
We applied the CPCLR algorithm and the established 
classification methods mentioned in Section 2.2 to three 
microarray data sets. The detailed description of these data 
sets is shown in Table 1. We got the preprocessed Colon 
cancer microarray expression data from http://genomics-
pubs.princeton.edu/oncology/. For prostate cancer and lung 
cancer microarray data, we downloaded the raw data from 
gene expression omnibus 
(http://www.ncbi.nlm.nih.gov/geo/) and preprocessed them 
using robust multi-array average (RMA) algorithm [18]. 
 

Table 1: Descriptive characteristics of data sets used for 
classification 

Disease Groups 
No. 

Samples 
No. 

Genes Studies 
Colon 
Cancer 

Tumor/ 
Normal 40 / 22 2000 [6] 

Prostate 
Cancer 

Tumor/ 
Normal 50 / 38 12635 [19] 

Lung 
Cancer 

Tumor/ 
Normal 60 / 69 22215 [20] 

 
      Tables 2, 3 and 4 listed the prediction performance of 
different classification methods applied to colon cancer, 
prostate cancer and lung cancer microarray gene 
expression data using different number of top seed genes. 
As we can see, for the colon and lung cancer data sets, 
CPCLR algorithm has better or comparable classification 
performance than other well-established classification 
methods based on different number of top seed genes or 
significantly differentially expressed genes (Tables 2, 4 
and 5). However, for the prostate cancer data, the best 
performance was observed by using SVM predictors (Table 
3). In order to save the time to search for genes which were 
correlated with a given seed gene and maximized their 
averaged test statistic value (formula 1), we tested 10 



cutoffs of correlation r from 0.5 to 0.95 with interval 
0.05. We observed that the averaged correlation of 
genes in the constructed gene cluster is usually between 
0.65 and 0.85 with the number of genes in the clusters 
from 2 to 60, suggesting the genes in the constructed gene 
clusters are highly co-expressed.  
 

Table 2: Error rates (%) of six classification methods 
applied to colon cancer data set 

No. 
Genes 

DLDA 1NN Tree SVM LR CPCLR 

5 11.3 21.0 22.6 11.3 11.3 9.7 

10 17.7 16.1 29.0 12.9 14.5 9.7 

15 12.9 12.9 24.2 14.5 12.9 11.3 

20 12.9 16.1 25.8 12.9 14.5 11.3 

30 12.9 16.1 19.4 14.5 19.4 12.9 

 
Table 3: Error rates (%) of six classification methods 

applied to prostate cancer data set 
No. 
Genes 

DLDA 1NN Tree SVM LR CPCLR 

5 23.9 26.1 22.7 21.6 22.7 21.6 

10 19.3 28.4 31.8 17.0 26.1 19.3 

15 22.7 26.1 29.5 26.1 26.1 23.9 

20 22.7 25.0 27.3 19.3 21.6 20.5 

30 21.6 23.9 29.5 21.6 22.7 21.6 

 
Table 4: Error rates (%) of six classification methods 

applied to lung cancer data set 
No. 
Genes 

DLDA 1NN Tree SVM LR CPCLR 

5 17.0 18.6 20.1 16.2 19.3 17.0 

10 14.7 18.6 19.3 17.0 20.1 14.7 

15 16.2 20.1 17.8 13.2 17.8 15.5 

20 16.2 17.0 19.3 17.8 19.3 15.5 

30 12.5 13.2 19.3 14.7 20.1 12.5 

 
      We also used SAM [16] to select top seed genes and 
evaluated the prediction performance following the same 
procedure as described above. Similar prediction results 
were also observed as shown in Table 5 for lung cancer 
data. Overall, the CPCLR method has lower error rate than 
other being compared classification methods.  
      In all cases, we found that the simple method, DLDA, 
works well. Its performance is comparable with the 
advanced method, such as SVM.  We also observed that 
the performance of the predictors with more genes is not 
necessary better than that of the predictors with fewer 
genes. For example, the best performance was obtained 
with only 5 genes for CPCLR predictors in colon cancer 
data set (Table 2), 10 genes for SVM predictors in prostate 

Table 5: Error rates of six classification methods applied to 
lung cancer data set (seed genes selected by SAM) 

No. 
Genes 

DLDA 1NN Tree SVM LR CPCLR 

5 17.0 19.3 22.5 16.2 18.6 17.8 

10 17.0 20.9 19.3 17.8 17.8 15.5 

15 14.7 20.1 22.5 14.6 20.1 13.2 

20 16.2 18.6 17.8 18.6 17.0 15.5 

30 17.8 13.2 19.3 10.1 14.7 10.1 

 
cancer data set (Table 3). For lung cancer data set, the best 
performance was observed using 30 genes for DLDA and 
CPCLR predictors (Table 4). 
 

4 Discussions and Conclusions 
 
In this study we investigated a correlation-sharing based 
method for classification of high-throughput gene 
expression data. The core idea of the method is to identify 
‘essential’ correlation structure among genes and extract 
representative features from the correlated gene clusters in 
a supervised classification procedure. The method takes 
into account the fact that genes act in networks and the 
gene clusters identified from the networks act as the 
features in constructing a classifier. The rationale is that 
we usually expect tightly co-expressed genes to have a 
meaningful biological explanation. For example, if gene A 
and gene B has high correlation, it sometimes hints that 
the two genes belong to the same pathway or are co-
expressed.  Instead of using individual genes as predictors 
in our classification models, we constructed meta-gene 
expression profiles representing information from each co-
expressed gene cluster as predictors to classify disease 
outcomes. The advantage of this method over other 
methods has been demonstrated by three real data sets. Our 
results show that this algorithm is working well for 
improving class prediction.  
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