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ABSTRACT
Motivation: Recently, much attention has focused on using prediction
from population genetic theory to quantify variation in recombination
rate along the human genome owing to the promise of association
or linkage disequilibrium(LD) mapping to identify genes underlying
complex traits. Current state of the art approaches to the problem
estimate the local population recombination rate from patterns of LD
among common single nucleotide polymorphisms(SNPs) assuming
the population is randomly mating and constant in size.
Results: Here we describe an alternative method that can
accommodate complex population structure and ascertainment bias.
Using multiple linear regression and non-parametric bootstrap re-
sampling, our method uses the variances and co-variances of
un-phased SNPs at different frequencies to estimate the local
recombination rate. We evaluate this new approach via Monte Carlo
simulation and compare its performance with three other available
methods. Our approach is less biased when the demographic
assumptions of the standard neutral model are violated. We also
apply our approach to the well-characterized hot spots near the
human TAP2 gene and a 206-kb region on human chromosome
1q42.3 near minisatellite MS32. The results are consistent with
findings in literatures.
Keywords: Recombination, Regression, Linkage Disequilibrium
Contact: lan.zhu@okstate.edu

1 INTRODUCTION
Understanding how and why recombination rates vary along
a genome is a fundamental problem in genomics. From an
evolutionary perspective, recombination is a rich source of novel
variation and a potent force that can lead to gametic associations
among positively selected mutations as well as break up associations
among deleterious mutations. Recombination rates also vary
dramatically among genomes with some, such as Drosophila,
showing no clear fine-scale structure while others, such as humans,
showing a great deal of local variation where regions of low to
moderate recombination are punctuated by short 1-2 kb hotspots of
meiotic exchange that can account for 50−80% of all recombination
events (McVean et al., 2004; Myers et al., 2005).

When the contributions of recombination and its interaction with
selection to the process of evolution are shown essential (Cutter and
Choi, 2010; Cutter and Moses, 2011), understanding recombination
rate variation is also fundamentally important to the design of
efficient methods for association mapping, since the degree of
association among markers dictates the density and distribution of
markers used for mapping (Noor et. al., 2001). Classical methods
for estimating recombination rates from natural populations include
pedigree studies, sperm typing analysis and methods based on

predictions from population genetics. In humans, the difficulty of
obtaining large pedigrees limits the utility of pedigrees to estimation
of large-scale (megabase) recombination rates (Kong et al., 2002).
Likewise, while sperm typing can provide accurate estimates of
the local recombination rate in male gamete production, it is
typically only applied to a few individuals and to only short regions
of the genome (Greenawalt et al., 2006). Moreover, it is very
labor intensive and expensive. These limitations coupled with the
increasing availability of genome-wide polymorphism data from
humans and other species make estimation of recombination rates
via population genetic theory an attractive alternative.

A number of estimators of the population recombination rate
(R = 4Ner , where r is the rate of crossing over for the region
and Ne is the effective population size) are currently available,
including moment-based (Hey and Wakeley, 1997; Hudson, 1985;
Hudson, 1987; Wall, 2000), full maximum likelihood estimators
(Fearnhead and Donnelly, 2001; Griffiths and Marjoram, 1996;
Kuhner, et al., 2000; Nielsen, 2000), and full-likelihood Markov
chain Monte Carlo method (Wang and Rannala, 2008). From
a statistical perspective, one would prefer to use full-likelihood
methods, since these are guaranteed to capture the most amount of
information in the data regarding recombination. However since it
can take months of computer time to estimate recombination rate
for even a modest size region using full-likelihood, there has been
considerable effort to develop a litany of approximate likelihood
estimators (Crawford et al., 2004; Fearnhead and Donnelly, 2002;
Fearnhead, et al., 2004; Fearnhead and Smith, 2005; Haubold, et.
al., 2010; Hudson, 2001; Jiang et. al., 2009; Li and Stephens,
2003; McVean, et al., 2002; McVean, et al., 2004). For example,
the composite likelihood methods of Hudson (2001) and McVean
et al. (2004) use pre-computation of pairwise likelihood for a given
sample size to achieve speeds orders of magnitude faster than full-
likelihood. Auton and McVean (2007) further constructed a pseudo-
likelihood as the product of the likelihood over all pairs of SNPs
in the region under consideration. To maintain the computational
feasibility, SNPs separated by no more than 50 intermediate SNPs
were considered to contribute to the composite likelihood.

These approaches, while quite fast, have several limitations
including the need to precompute pairwise likelihood for a novel
sample size or demographic model and an apparent lack of power
to detect recombination hotspots that do not significantly affect
linkage disequilibrium (Jeffreys, et al., 2005) . The methods of
Fearnhead et al. (2004), Li and Stephens (2003), and Fearnhead
and Smith (2005) appear to have excellent power to detect hotspots,
but are computationally costly (e.g., according to Fearnhead and
Smith (2005) it takes their method 10-30 minutes to estimate
the recombination rate for a window of six SNPs with sample



size 60 sequences). It is also important to note that the effective
population size is confounded within the estimate of the population
recombination rate, therefore, population genetic estimators are by
definition dependent on assumptions regarding the demographic
history of the sample. A limitation of many of these approaches,
therefore, is that they are based on the assumption that the
population under study is randomly mating and constant in size
- an assumption violated by nearly all populations to which
the approaches are applied. In theory, population structure and
demography can be built into almost any method, but for methods
such as composite likelihood that make use of a great deal of pre-
computation, this will require months (or years) of computer time
for each new model to generate the lookup tables used in estimation.

In this paper, we present a novel statistical method for estimating
the population recombination rate via coalescent simulations with
recombination coupled with multiple linear regression (MLR) and
non-parametric bootstrap. Three advantage of our method are that
(1) it can readily accommodate complex demographic history, (2)
provide prediction intervals for the estimated recombination rate,
and (3) is computationally efficient and applicable to whole-genome
data. Furthermore, since the method appears to weight heavily the
variance of new mutations in estimating recombination rates, it may
be able to detect recent changes in recombination rate that do not
leave an explicit LD signal.

Our method is based on a readily discernible statistic of the data:
the observed variability in the number of mutations at different
frequencies across sub-samples of the data. It is important to note
that the idea of using the variance of mutation counts in a sample
to estimate recombination rates is not new. About two decades
ago, Hudson (1987) introduced an estimator of the population
recombination rate based on the variance of pairwise nucleotide
differences among sequences in the sample. In 1997, Wakeley
proposed an improved version of Hudsons (1987) estimator that
has smaller bias and standard error. Our approach is loosely a
generalization of Hudsons estimator in that we aim to use the most
informative components of the frequency distribution to estimate the
local recombination rate. A major advantage of this approach is that
it does not require calculation of pair-wise linkage disequilibrium
and, thus, does not require phasing of the data. Likewise, while
our approach requires some pre-computation to fit the model, it
is orders of magnitude less than existing approaches (roughly
minutes to hours for our approach compared to days or weeks for
composite likelihood). We investigate the accuracy of the approach
using Monte Carlo simulations under a wide range of demographic
models. We also compare the performance of our method to three
commonly used approaches (Hey and Wakeley, 1997; Hudson,
1987; McVean, et al., 2002).

2 METHODS

2.1 Data and Model
Consider a set of n aligned DNA sequences from a population with
known demography Q (e.g., population of constant size, bottleneck, island
migration, recent population growth, etc.) in which S sites are observed to be
variable in the alignment. Let Xi for i = 1 . . . n - 1 represent the number of
SNPs at frequency i out of n in the sample. For simplicity, here the ancestral
state of each SNP is assumed known (i.e., the polarized site-frequency
spectrum); a model with unknown ancestral state can be easily derived in
the similar way. Across independent realizations of the evolutionary process,

X will vary stochastically so that for each component one has an associated
variance Vi. For example, V1 is the variance in the number of singletons
that one would observe if one were to have rerun the evolutionary process
and obtained an independent sampling of chromosomes at the same locus.
Here we describe how recombination affects the variances and co-variances
of the components of the SFS (SFS variances) in a fully predictable way and
how by estimating SFS variances, one can predict the recombination rate
of a genomic region for a given demographic model. For a given observed
data set, however, one only has a single observed vector of frequencies, so
we must first define what we mean by variance within components of the
site-frequency spectrum.

Here, we consider the variance in Xi under two scenarios: (1)
independent realizations of the evolutionary process (i.e., a variance that
one can estimate only via simulation) and (2) bootstrap resampling of the
sequences (i.e., a variance one can readily estimate via a common statistical
readily applicable to the observed data). As we show in the results section,
these two scenarios give different, but nearly perfectly correlated variances
such that one may estimate the former given an observed value from the later.

First, let us assume that one was able to rerun the evolutionary process
Q under the same recombination rate R so as to obtain Q replicate data
sets, sampling an independent set of n sequence each time. From population
genetic theory we expect variance and co-variance of the Xis across the
Q replicates to be informative about recombination (Fu, 1995; Sawyer and
Hartl, 1992; Zhu and Bustamante, 2005).

For example, for a population that evolves according to the standard
neutral Wright-Fisher model, Fu (1995) derived that variance and co-
variances of the Xis as a function of the population mutate rate θ = 4Neµ
under complete linkage. Specifically, under complete linkage one can write
the variance of Xi as Vi=Var(Xi)=θ/i+σiiθ2, where σii is a function of
i and sample size n. Under complete independence among sites, Ewens
(1972) and Sawyer and Hartl (1992) showed that Xi should be Poisson
distributed with mean and variance Vi = θ/i. Given these two well-known
results, one might posit a monotonic decrease in the variance of Vi with
increasing R so that recombination acts simply to decrease the σii term
above. (These predictions are born out in Figures 1 and 2 as explained
below.) The reasoning above immediately suggests a simple and potentially
powerful strategy for estimating R.

2.2 Algorithms for Estimating Recombination Rate
2.2.1 Algorithm 1: estimating recombination rate across evolutionary
replicates

1. Simulate data by Hudson’s ms program (Hudson, 2002) under the
demographic model for Q replicates keeping the matrix of site-
frequency spectra (SFS) with the Q rows representing the site-
frequency spectra for independent replicates (simulations can be carried
out conditional on the estimated mutation rate, θ, or on the observed
number of segregating sites, S):∣∣∣∣∣∣∣∣∣∣∣∣

x1,1 x2,1 ... xn−1,1

x1,2 x2,2 ... xn−1,2

. . . .

. . . .

. . . .
x1,Q x2,Q ... xn−1,Q

∣∣∣∣∣∣∣∣∣∣∣∣
2. For each pair of columns i and k, calculate the column means Xi

, column variances Vi, and co-variance Vik across replicates (note
Vii = Vi in our notation above). The results of this step will constitute
an n− 1 dimensional vector of SFS meansX = [X1, X2, ..., Xn−1]

, where Xi =
∑Q

j=1
Xi,j

Q
and a variance-covariance matrix with

entries: Vik =
∑Q

j=1

(Xi,j−Xi)(Xk,j−Xk)

Q
.

3. Repeat above steps across a range of recombination rates (in practice
we use R ∈ {1, 5, 10, 20, 50, 100, 200, 400, 1000, 2000}) so as to
produce a set of predictor variables in the form of the (n− 1) variance



and
(n−1

2

)
covariance entries of the variance-covariance matrices

across levels of R.

4. Natural log-transform both the predictor (Vik for different levels of R)
and predicted variables (R).

5. Use stepwise selection or best subset methods to choose the model that
is sufficient to explain the relationship among log(R) and the log of
the components of the variance-covariance matrix. Formally, the full
model would have

(n−1
2

)
+ (n− 1) + 1 terms of the form:

log(Rj) = α+
∑n−1

i=1

∑i
k=1 βiklog(Vik,j) + ej

where ej ∼ N(0, σ2). In the model above, α is the intercept of the
regression, βik are regression coefficients under the saturated model,
and ej are independent and identically distributed error terms for the
residual variance for j = 1 ... J where J is the number of levels
of recombination used to fit the model. In practice, we use stepwise
selection and best subset methods to search over the space of models so
as to identify the subset of βik terms that are sufficient to explain the
data.

6. Check all assumptions for fitting a linear regression model, including
normality, equal variance of residuals, and independence among
residuals.

2.2.2 Algorithm 2: estimating recombination rate by bootstrap-
based regression(BSTReg) across k-subset replicates A potential
problem of applying the above method to real data is that for a given data
set, one only has a single observed site-frequency spectrum, X . In order
to generate estimates of the variance/covariance matrix across replicates of
the evolutionary process we need to use a resampling scheme such as non-
parametric bootstrap resampling of the data. Since the estimated variances
under the bootstrapping procedure use correlated data, we expect estimates
of Vik to be affected. Therefore, we need to modify our MLR fitting
procedure as follows:

1. Sample a single data set with n sequences under a demographic model
of interest Θ, and label the data set q.

2. Divide the n sequences into k subsets of equal size, calculate the
SFS for each subset, then modify the above step so that the mean
and variance-covariance matrix are now calculated across the k site-
frequency spectra.

3. Repeat this k-subset division sampling for the same n sequences for B
bootstrap replicates to obtain B variance-covariance matrices.

4. Let V (q)
i = 1

B

∑B
k=1 Vi,k be the average variance of component i

and Cov(q)ij = 1
B

∑B
k=1 Covijk the average covariance across the B

replicates of the subsetting approach. (In practice, we use n = 60 and
k = 10. If the data is unphased, resample individuals; if the data is
phased, resample phased haplotypes.

Repeat steps 1-4 for Q replicate data sets to obtain the bootstrap estimated
variance-covariance matrix Vbs for a given model Θ, where Vi bs =
1
Q

∑Q
q=1 V

(q)
i and Covij bs = 1

Q

∑Q
q=1 Cov

(q)
ij .

3 RESULTS
3.1 Estimating recombination rate when θ is known or

S is fixed under evolutionary replication
We first consider the problem of predicting the population
recombination rate from polymorphism data arising under a known
demographic model. Using standard coalescent algorithms, we
simulated 10, 000 replicate samples for each of 10 levels of
recombination rate R ∈ {1, 2, 5, 10, 20, 50, 100, 200, 400, 1000}
under a fixed mutation rate θ = 4Neµ = 30 where µ is the
regional mutation rate per chromosome. (These parameter values
correspond roughly to a 30kb region in humans with recombination
rate varying from 2.5 × 10−4 cM to 0.25cM .) or a fixed number

Fig. 1. Linear regression of log transformed recombination rate (logR)
and log transformed variance in the number of singletons in the
sample. Top: 200 replicates of data sets each with sample size
n = 6, S = 10 were simulated independently under the standard
neutral Wright-Fisher model. Each points represents the V1 quantiles
{0.025, 0.10, 0.20, 0.40, 0.5, 0.60, 0.80, 0.90, 0.975} corresponding toR
in the range of {1, 5, 10, 50, 100, 400}. Cross signs are the means of logV1
over 200 replicates; Bottom: Linear model is fitted by logR on the average
of logV1 bs by k-subset bootstrap resampling over 1000 replicates.

of segregating sites S = {10, 20, 30, 50, 100}. For a given level
of recombination, we calculate the vector of SFS variances V =
{V1, V2, ..., Vn−1} across the Q replicate data sets as explained in
the method description above.

When we perform the multiple linear regression of R on all
Viks including all pairwise covariances among SFS components
and use both stepwise selection and best subset methods, all terms
are dropped except for the variance of singletons (V1) in the
model. Scatter plot of R versus the V1 across simulated data sets
shows a curvilinear relationship suggesting that linear regression
of log-transformed data could be used to estimate R from a
linear combination of the components in V . Using a step-wise
addition rule, we find that log(V1) alone is a sufficient predicator
variable for the population recombination rate with the best fit linear
regression explaining over 95% of the variance in either fixed θ or
S scenarios, as shown in Figure 1 (top) when S = 10. Diagnostic
tests (linearity, constant variance, normality, independence) for
validation of the model were performed and none of the tests
suggests a violation of the assumptions. (Note: for all regressions
performed, diagnostic tests were checked and no violation is found,



Fig. 2. Relationship between the average of bootstrap estimated variance
in the number of singletons (V1 bs) and that from independent sampling
(V1 iid). Sample size n = 6, S = 10 under the standard neutral Wright-
Fisher model.

Fig. 3. Coverage of predicted local recombination rate using our bootstrap-
based linear regression method with sample size n = 60, S = {10, 20},
k = 10. X-axis is plotted in log scale. Linear regression model is fitted in
the range of R = {1, 5, 10, 20, 50, 100, 200, 1000, 2000} with equation
log(R) = 13.644 − 16.612 ∗ log(V1) for S = 10 (R2 = 0.933) and
log(R) = 17.544− 9.517 ∗ log(V1) for S = 20 (R2 = 0.959). Coverage
is defined as the percentage of replicates that have 90% or 95% predicted
intervals cover true recombination rate.

results not shown). This simple example shows that for a fixed
level of the mutation rate or a fixed number of segregating sites,
the transformed recombination rate and the first component of SFS
variances are highly correlated. By choosing a fixed number of
segregating sites in a genomic region, one can reliably predict the
recombination rate for the region using the observed SFS variances
across samples.

3.2 Estimating recombination using bootstrap
re-sampling and k-subseting (BSTReg)

For a real data set, however, one only has a single observed SFS
vector. To estimate the SFS variances, one therefore needs to
couple a re-sampling step such as non-parametric bootstrapping

Table 1. Multiple linear regression output for estimating log(R) on
log(V1 bs) for Q = 1, 000 replicate simulated data set, each with n = 60,
S = 10, R ∈ {1, 5, 10, 20, 50, 100, 200, 400}. Each V1 bs was estimated
by K-subset non-parametric bootstrap sampling as described in the method
session. Here K = 10.

log(R) = 11.9959− 14.2855 ∗ Log(v1)
RSquare 0.9846
RSquare Adj 0.9820

Parameter Estimates
Term Estimate Std. Error t value Prob > |t|
Intercept 11.9959 0.45210 26.53 1.89e-07
log(v1) -14.2855 0.7294 -19.59 1.15e-06

to the MLR procedure. K-subset bootstrap sampling as described
in the method session results in a predictive relationship between
log(R) and the average of log(V1 bs) over 1000 replicates as shown
in Figure 1 (bottom). The output of the regression is shown in
Table 1. In simulations we have also found that non-parametric
bootstrap estimates of variances are systematically smaller than the
evolutionary variance since the bootstrap procedure only considers
variability across samples with the same population history instead
of the evolutionary variance across random populations; however,
there is a clear linear relationship between these two variance on
a log-log scale. Figure 2 shows the near-perfect linear correlation
between the average log(V1 iid) and average log(V1 bs) as indicated
by the cross-signs. This provides us the flexibility of using i.i.d.
samples to estimate the relationship between log(R) and the SFS
variances for a given demographic model. We can then estimate
log(V1 bs) from log(V1 iid) greatly speeding up the computation.

3.3 Comparing BSTReg to existing methods
Figure 3 shows the coverage (the percentage of replicates that have
90% or 95% prediction intervals cover true recombination rate)
of predicted local recombination rate using our bootstrap based
linear regression model with sample size n = 60, segregating sites
S = {10, 20} under the standard neutral Wright-Fisher model.
The method performs well with coverage close to or greater than
90% at all level of R in the range of 1 to 400. Moreover, the
coverage increases with the number of segregating sites where more
information is included in the data. Mean square errors (MSEs) in
figure 4 are low and uniform by our new method compared with
Hudson’s (1987) approach. LDhat results in the lowest MSE. Due
to the limit of the maximum R that can be estimated by LDhat
software, R > 100 are not explored here. We did not include
Hey-Wakeley’s (1997) performance in MSE comparison because
for data with S = 10, Hey-Wakeley’s (1997) failed to output
the estimates and for samples with S = 20, the estimators were
quite under estimated. This can be seen in figure 5 where we
report the ratio of the median estimates over the true parameters
for four methods. We can see that Hey-Wakeley’s (1997) estimator
is uniformly downwardly biased for all levels of the recombination
rate in the range of R ∈ {1, 5, 10, 20, 50, 100, 200, 400} while
Hudson’s (1987) is upwardly biased forR ≤ 50 and performs better
for larger R. Our new BSTReg approach performs almost equally



Fig. 4. Comparison of mean square errors (MSE) of predicted local
recombination rate over 1000 replicates using Hudson’s (1987) method,
LDhat (McVean 2004) and our bootstrap based linear regression method.
Sample size n = 60, segregating sites S = {10, 20}, k = 10. X-axis
is plotted in log scale. Linear models are the same as used in the coverage
evaluation. Due to the limit of the maximum R that can be estimated by
LDhat software, R > 100 are not explored.

well as LDhat when the population size is constant and without
structure: the ratios are around 1 for all levels of R.

One question that arises is: how sensitive are other approaches
to the demographic assumptions of the standard neutral model? In
figure 6, we report the ratio of median estimates to the true paramter
by our BSTReg method and LDhat across a range of recombination
rates for 1, 000 simulated data sets under two island migration
(4Nem = 12) and population growth (rate = 5.0). We note that
our approach has less bias, presumably since it can incorporate the
demographic details explicitly in the estimating equations.

3.4 Application to the TAP2 and MS32 recombination
hotspots

We have also used our approach to estimate fine-scale recombination
rate variation around two recombination hotspots in the human
genome characterized through sperm typing (haplotype sequences
were kindly provided by Professor Sir Alec J. Jeffreys). For the
TAP2 gene region, a total of 60 sequences with 48 SNPs were
included in the analysis. According to Jeffreys et al. (2000), 81%
of the sperm crossover breakpoints in the data were localize to
the 1.4kb region between markers T15 and T30 (depicted as grey
box from position 4, 017 to 5, 417 in Figure 7). We estimated the
recombination rate between adjacent pairs of SNPs (as well as
associated prediction intervals) using a sliding window approach
with 10 SNPs in each window as described in the Methods section.
Figure 7 shows the mean and lower bound of the 95% prediction
interval of the recombination rate along the TAP2 genomic region
before the SNP ascertainment bias correction. As we see from
Figure 7, the hot spots regions identified by our approach are
completely consistent with the results from both sperm typing
and haplotype analysis (Jeffreys, et al., 2000). That is we detect
a strong signal of dramatically active recombinational exchange
in the regions between markers T16(4180) and T18(4553),

Fig. 5. Performance comparison of Hudson’s (1987), Hey-Wakeley’s(1997),
LDhat (McVean 2004) and our bootstrap-based linear regression method
in terms of the ratio of the median of predicted local recombination rates
over 1000 replicates to the true recombination rate. Sample size n = 60,
segregating sites S = {10, 20}, k = 10. Both axes are plotted in log scale.
(For S = 10, Hey-Wakeley’s (1997) method fails to work due to not enough
informative segregating sites, results are not included in the figure; results of
R > 100 from LDhat are not explored as well).

Fig. 6. Median estimates over the true recombination rate ratio over
1000 replicates by LDhat (McVean 2004) and our bootstrap-based linear
regression methods under twoisland migration model (4Nem = 12) and
population exponentially growing model (growth rate G = 5.0). Sample
size n = 60, segregating sites S = 10. X-axis is in log-scale.

T23(4917) and T24(4934), and T27(5188) and T30(5417). After
the ascertainment bias correction, the same hot spots regions
are identified (result not shown); but without correcting the
ascertainment bias will results in more conservative estimation. In
this case, the ascertainment bias increased the variance of singletons
about 1.55 fold.



Fig. 7. The mean and lower bound of 95% prediction interval of
recombination rate along the TAP2 region. The regression model in Table
1 is used for the prediction. SNPs marker positions are consistent with those
in Jeffreys et al. (2000). Region in the grey box is the location where sperm
crossover breakpoints were highly clustered (Jeffreys et al., 2000).

We have also applied this approach to a 206 kb region
on human chromosome 1q42.3 which contains several well-
characterized autosomal crossover hotspots around the highly
variable minisatellite MS32 (Jeffreys, et al., 1998). Due to
the complexity of the SNPs identification in this data set, we
only estimated the recombination rate without correcting the
ascertainment bias. For this analysis, 80 individuals with 214 SNPs
were included (we again use a w = 10 SNP window). Figure
8(top) shows the mean ratio of predicted recombination rate to the
estimated background rate (the estimated background rates along
the region which are the average rates of the local predicted rates
exclude the putative hotspot regions are shown in figure 8 bottom)
as well as the location of predicted hotspots by several approaches
as reported in figure 1b of Jeffreys et al. (Jeffreys, et al., 2005).
The black rectangles in our figure 8(top) show the location of
recombination hotspots as estimated by sperm typing (figure 1b,
Jeffreys et al., 2005). As demonstrated in Jeffreys et al. (2005), the
approximate likelihood method of Fearnhead et al. (2004) (white
triangles) and the PAC likelihood method of Li and Stephens (2003)
(grey triangles) do an excellent job of identifying the location of the
hotspots in the region as evidence by the strong concordance with
hotspots estimated from sperm typing. Both of these approaches
are very computationally intensive and require hours to run on the
data set, and are thus not currently viable options for genome-
wide estimation of recombination rate variation. We note that our
approach (which takes about 70 seconds by a Power Mac G5 with
2.5GHz CPU speed and 4GB memory to run on the same region)
shows clear signatures of recombination rate variation near the six
putative hotspots (NID1,NID2, andNID3 in and near theNID
gene, as well as MS32, MSTM1 and MSTM2).

Fig. 8. Top: Ratio of recombination rate estimates to the background
values in the 206 kb interval surrounding minisatellite MS32 on
chromosome 1q42.3. Putative hotspots identified by sperm typing
(Jeffreys et al., 2005), Fearnheads method (2004), Hotspotter (Li and
Stephens, 2003), and LDhot (McVean et al., 2004), respectively, are
also shown as reported in Jeffreys et al. (2005), Figure 1b. Bottom:
Estimated background recombination rate along the region. Data from:
http://www.le.ac.uk/ge/ajj/MS32/MS32%20genotypes%20file.html.

4 DISCUSSION
We proposed a new bootstrap-based linear regression approach to
estimate the population recombination rate. While the algorithm we
have presented is fast, flexible, and scalable to the whole genome
level, a few caveats must be raised. In order to make inference, we
must still presuppose some demographic model for the data. Our
preliminary results confirm the predictions of population genetic
theory that recombination rate estimates will be sensitive to the
demographic model used in the MLR fitting step. This sensitivity
is not likely unique to our approach and probably holds for the
majority of algorithms currently in use. At the same time, it also
appears that our approach is robust to demography for the problem



of detecting recombination rate variation. Secondly, our method
can currently only deal with uniform ascertainment schemes. When
ascertainment differs dramatically among SNPs in the same region,
however, this may likely cause problems for any method aiming to
discover variation in recombination rate.

It is important to note that the choice of the window size on the
regression region may affect rate estimation. Windows significantly
overlap when we move one SNP site step by step. If the window size
is too large, rate estimates are upwardly or downwardly affected
by adjacent SNPs, especially when the window ranges from no
or low recombination rate region to a hot spots region. From our
experience with this model, we suggest that a window size between
10 to 20 SNPs appears to be an optimal trade-off between signal of
recombination rate variation and noise due to stochastic variation of
individual SNPs.

Lastly, we have assumed (as all other methods) that the SNPs in
our sample are evolving neutrally. Since natural selection is known
to affect both the patterns of linkage disequilibrium as well as the
site-frequency spectrum in a region, our method is likely sensitive
to this assumption. For example, a region that has experienced a
recent selective sweep is expected to have low levels of nucleotide
variation as well as a skew towards rare alleles. If the variance of
singletons in the region is also reduced, then one may overestimate
the recombination rate. One possible way to distinguish these two
factors is to test explicitly for evidence of a selective sweep in the
region (which is expected to leave a characteristic spatial pattern
of reduced variation around the target of selection). For regions
that show strong evidence of a sweep other approaches such as
direct sperm typing may be necessary for accurate estimation of
recombination rate variation.
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