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Abstract - DNA-binding proteins perform various functions in 
the cells. Determining the structures of protein-DNA 
complexes using experimental methods are hindered by many 
obstacles. Thus, computational methods for predicting DNA-
binding sites on protein structures are needed to elucidate the 
mechanism of protein-DNA interactions. In this study, we 
divided atoms of amino acid residues into 14 groups and used 
a vector consisting of the distribution of these atom groups to 
describe the characteristics of protein surface around an 
amino acid. We then trained a Random Forest method to 
predict DNA-binding sites on protein surface. The predictions 
were then refined using a post-processing procedure based on 
the clustering of DNA-binding residues on the surface. The 
method achieved an accuracy of 80.8% when evaluated using 
10-fold cross-validation. The results show that the distribution 
of different types of atoms around the surface provides 
sufficient structural information for predicting DNA-binding 
sites on protein structures. 
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1 Introduction 
  Structural genomics projects are yielding an increasingly 
large number of protein  structures with unknown function. As 
a result, computational methods for predicting functional sites 
on these structures are in u rgent demand. There has been 
significant interest in developing computational methods for 
identifying amino acid residues that participate in p rotein-
DNA interactions based on combinations of sequence, 
structure, evolutionary informat ion, and chemical or physical 
properties. Some methods predict DNA-binding sites using 
protein sequence-derived informat ion as input [1-3]. 
Compared to methods that make pred iction based on protein 
structures, these methods have the advantage that they can be 
applied to proteins whose high-resolution structures are 
unavailable. However, they also suffer relatively  low 
predicting performance. Thus, methods that can explore 
structural features to detect DNA-binding sites are also 
needed. For example, Jones et al. [4] analyzed residue patches 
on the surface of DNA-binding proteins and used electrostatic 
potentials of residues to predict DNA-binding sites. Later, 
they extended that method by including DNA-binding 
structural motifs [5]. In related studies, Tsuchiya et al. [6]  

used a structure-based method to identify  protein-DNA 
binding sites based on electrostatic potentials and surface 
shape, and Keil et al. [7] trained a neural network classifier to 
identify patches likely to be DNA-binding sites based on 
physical and chemical properties of the patches. Neural 
network classifiers have also been used to identify protein-
DNA interface residues based on a combination of sequence 
and structural informat ion [8, 9]. Many recent studies have 
also been published [10-13]. 

 Bagley and Altman [14] developed a FEATURE method 
to investigate the radial distributions of properties around 
protein sites like binding sites for calcium, the milieu of 
disulfide b ridges, and the serine protease active site. Later, 
the method was also used to detect zinc-b inding sites [15], 
phosphorylation sites [16], and peptide binding sites [17]. 
Using a similar approach, in this study, we investigated the 
distribution of atomic g roups around the DNA-binding sites 
and trained a random forest method to predict  DNA-binding 
sites on protein structures. 

2 Materials and methods 
2.1 Datasets 
 139 p rotein-DNA complexes were ext racted from the 
PDB [18]. A ll the structures had resolution better than 3.0 Å 
and R factor less than 0.3. Each protein in this set had at least 
40 amino acid residues and the mutual sequence similarity 
between the proteins in this set was less than 30%. 

2.2 Definition of binding-site residues 
 Binding-site residues were defined based on atom 
distance [19]. A protein residue was defined to be a DNA-
binding residue if the distance from any of its atoms to any 
atom of the interacting DNA was less than 5 Å. The 139 
proteins had 26,862 residues in total and 5,932 of them were 
DNA-binding residues. A residue was defined to be a surface 
residue if its relative accessibility is at least 5% as calculated 
using NACCESS [20]. 



2.3 Microenvironmental features of DNA-
binding sites on protein surface 

 We calculated the distance from nucleotides to protein 
surface. The average distance is 6 Å. Thus, for every surface 
residue, we define a sphere such that the center of the sphere 
is 6 Å from the protein surface and the line connecting the 
sphere center and the most exposed atom of the residue was 
perpendicular to the protein surface. Then we counted the 
number of different types of atoms from amino acids that fall 
into the sphere. The atoms were div ided into 14 types as 
described in [17], namely : C3 (alphatic carbons; sp3), C= 
(carbonyl carbon; sp2), O= (carbonyl oxygen; sp2), N2H 
(nitrogen of amides; sp2; also sp2 neutral nitrogen of side 
chains), Car (aromatic carbon; sp2; general), O2- (negatively 
charged oxygens (-1/2) in carboxylates; sp2), SH (sulphur in 
thiols; sp3), OH (hydroxyl group; sp3), NarH (aromat ic 
nitrogen with a hydrogen; sp2), NarH+ (aromat ic n itrogen 
with a hydrogen and a postive charge; sp2), Set (sulphur in 
thioethers; sp3), C+ (carbon of carbocations; sp2), N3H+ (sp3 
nitrogen with a hydrogen and a positive charge), N2H+ (sp2 
nitrogen with a hydrogen and a positive charge). Thus, for 
each surface amino acid residue, a  vector of 14 features was 
obtained. These vectors describe the structural characteristics 
on the protein surface centering at each surface amino acid. 
We used these vectors to train a classifier to classify surface 
residues into DNA-binding and non-DNA-binding classes 
based on these structural characteristics. Different rad ius 
values of the sphere were tested and the best result was 
achieved when the radius was 20 Å. 

2.4 Classifier for predicting DNA-binding 
residues 

 We used a Random Forest (RF) method [21] to  train  a 
classifier to predict DNA-binding residues. A RF is a method 
consisting of an ensemble of tree-structured classifiers. It has 
been applied to solve many bio informat ics problems in recent 
years. In this study, we used the implementation of RF in 
WEKA package [22]. Ten fo ld cross-validations were used to 
evaluate the performance of the classifier. The proteins in the 
dataset were randomly split into 10 subsets. In each round of 
experiments, 9 subsets were used as training set to train a 
classifier, and the remaining subset was used as test set.  This 
procedure was repeated 10 times with each subset being used 
as test set once. From a protein in the training set, the feature 
vectors associated with all binding-site residues were used as 
positive examples. We noticed that the sphere of a binding-
site residue and that of a non-binding surface residue might 
overlap in space. Thus, to reduce noise in the training set, for 
the negative examples we only considered the surface 
residues whose spheres did not overlap with any spheres of 
binding-site residues. The feature vectors extracted from these 
residues were used as negative train ing examples. For a 
protein from the test set, all surface residues were used as test 
examples, so that a prediction was made for every surface 
residue. 

2.5 Assessment of prediction performance 
 Prediction performance was evaluated using sensitivity, 
precision, accuracy (ACC), and Matthews’ correlation 
coefficient (MCC): 

 

ACC =
TP + TN
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MCC =
TP × TN − FP × FN

(TP + FN)(TP + FP)(TN + FP)(TN + FN)               (4) 
where TP was the number of true positives (i.e., residues 
predicted to be DNA-binding residues that are in  fact DNA-
binding residues); TN was the number of true negatives (i.e., 
residues predicted to be non-DNA-binding residues that are in 
fact non-DNA-binding residues); FN was the number of false 
negatives (i.e., residues predicted to be non-DNA-binding 
residues that are in fact DNA-binding residues) and FP was 
the number o f false positives (i.e., residues predicted to be 
DNA-binding residues that are in fact not interface residues). 
Sensitivity is a measure of the percentage of DNA-binding 
residues that are correctly pred icted. Specificity is the fraction 
of non-DNA-binding residues that are correctly predicted. 
Accuracy is the percentage of overall predictions that are 
correct. MCC (Matthews correlat ion coefficient) measures the 
correlation between predictions and actual class labels, which 
is in the range of [-1, 1], with 1 denoting perfect predictions 
and -1 denoting that every example is incorrectly predicted. 
In a two-class classification, if the numbers of examples of 
the two classes are not equal, MCC is a better measure than 
accuracy [23].  
 
3 Results 
3.1 Identification of DNA-binding residues by 

the Random Forest method 
 A Random Forest (RF) classifier was trained to predict 
whether a surface residue is DNA-bind ing residue based on 
the feature vector associated with its surrounding sphere. 10-
fold cross-validation was used to evaluate the performance of 
the classifier. Table 1 (co lumn 2) shows that the classifier 
achieved an overall accuracy of 67.3% with a MCC of 0.2, 
and 57.9% of DNA-binding residues and 69% of non-DNA-
binding residues are correctly identified. 

3.2 Post-processing of prediction results  
 A visualizat ion of the DNA-binding sites revealed that 
DNA-binding residues clustered on protein surface to form a 
contiguous patch. Thus, the predicted DNA-binding residues 
were also expected to form a patch on the surface. However, 
when we analyzed  the prediction results by RF, we found that 
that some predicted DNA-binding residues were isolated on 
protein surface, and in some cases, the predicted DNA-



binding sites form multiple small patches on the surface. 
Thus, we designed a post-processing procedure to remove 
isolated predictions and merge small patches into a large one. 
For a surface residue that was predicted to be DNA-binding 
residue, if less than 2 of its neighboring surface residues were 
predicted to be DNA-binding, then we changed its prediction 
to non-DNA-binding. For a surface residue that was predicted 
to be non-DNA-binding, if more than 60% of its neighboring 
residues were pred icted to be DNA bind ing, then we changed 
its prediction to DNA binding. After the post-processing 
(Table 1, column 3), the predict ion performance was 
improved to an  overall accuracy  of 73.5% with a MCC of 
0.26, and  57.2% of DNA-binding  residues and 76.0% of non-
DNA-binding residues are correct ly identified. Compared this 
with the results without post-processing, we can see that the 
post-processing improve accuracy, MCC, and precision at 
only litt le cost of sensitivity. 

3.3 Relaxation of prediction results after post-
processing 

 In this study, the DNA-binding residues were defined 
based on their d istance to the binding DNA using a cutoff 
chosen in a previous study [19]. However, different cutoff 
values had been used in many other studies. In our study, the 
majority of the false positive predictions were very close to 
the observed DNA-binding residues (either being the d irect 
neighbor of a DNA-binding residue or separated from the 
DNA-binding sites by only one residue). Some of these false 
positive predictions could have been counted as true positives 
if a different cutoff value was used. To account for the 
uncertainty in the cutoff value, we re-evaluated the 
performance by relaxing the criterion of true positive as in 
[9]. With the relaxed criterion when a surface residue was 
predicted to be a DNA-binding residue, the prediction is 
considered a true positive prediction if (1) the surface residue 
was indeed a DNA -binding residue, or (2) it was a direct 
neighbor (on the protein surface) of a DNA-binding residue. 
After the relaxat ion (Table 1, column 4), the prediction had 
an accuracy of 80.8%, with 0.50 MCC, 71.5% sensitivity and 
80.8% precision. 

Table 1. Predict ion performances of the proposed method 

 Random 
Forest1 

Post-
processing2 

Relaxation3 

Sensitivity (%) 57.9 57.2 71.5 

Specificity (%) 69.0 76.0 83.5 

ACC (%) 67.3 73.5 80.8 

MCC 0.20 0.26 0.50 

1Predictions by the Random Forest method. 2Predictions from 
the Random Forest method were processed using the post-

processing procedure. 3A relaxed criterion of true positive 
was used to evaluate the performance. 

4 Conclusions 
 In this study, we used vectors consisting of the 
distribution of atom groups to describe the characteristics of 
protein surface and used them to train  a RF method to predict 
DNA-binding residues. A post-processing procedure was 
used to refine the pred ictions based on the distribution of 
DNA-binding residues over the protein surface. After the 
post-processing, the predicted DNA-binding sites form a 
contiguous path on the protein surface. The accuracy of the 
method reached 80.8% based on a relaxed criterion. The 
results confirmed that the distribution of atom groups on the 
protein surface provided useful structural informat ion for 
predicting DNA-binding sites. 
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