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Abstract— The Structural Classification of Proteins (SCOP)
database uses a large number of hidden Markov models
(HMMs) to represent families and superfamilies composed of
proteins that presumably share the same evolutionary origin.
However, how the HMMs are related to one another has not
been examined before. In this work, taking into account the
processes used to build the HMMs, we propose a working
hypothesis to examine the relationships between HMMs and
the families and superfamilies that they represent. Specifi-
cally, we perform an all-against-all HMM comparison using
the HHsearch program and construct a network where the
nodes are HMMs and the edges connect similar HMMs.
We hypothesize that the HMMs in a connected component
belong to the same family or superfamily more often than
expected under a random network connection model. Results
show a pattern consistent with this working hypothesis.
Moreover, the HMM network possesses features distinctly
different from previously documented biological networks,
exemplified by the exceptionally high clustering coefficient
and the large number of connected components. The current
finding may provide guidance in devising computational
methods to reduce the degree of overlaps between the HMMs
representing the same superfamilies, which may in turn
enable more efficient large-scale sequence searches against
the database of HMMs.
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1. Introduction
The Structural Classification of Proteins (SCOP) database

is a comprehensive protein database that organizes and
classifies proteins based on their evolutionary and structural
relationships [1], [7], [8]. It is organized into four hier-
archical levels: family, superfamily, fold, and classes. At
the lowest level (family), individual proteins are clustered
into families based on some criteria that may indicate their
common evolutionary origin, such as having a pairwise
sequence similarity of more than 30% or lower sequence
similarity but similar functions and structures. A good ex-
ample of the latter is seen in globin proteins whose pairwise
sequence similarities are much lower than 30% but which
have similar protein functions. Next, families are grouped
into superfamilies if their structures and/or function features
indicate a possible common evolutionary origin. Then su-
perfamilies are clustered into folds if superfamilies share

major secondary structures with the same topological ar-
rangements. Finally, different folds are grouped into classes
based on their secondary structural compositions. Unlike the
other levels, a class might not necessarily imply common
evolutionary origins and exists more for convenience than
for actual biological implications.

Apart from the hierarchical classification and organization
of proteins, the SCOP database employs hidden Markov
models (HMMs) to represent superfamilies [4], [5]. The
basic procedure of building an HMM for a particular su-
perfamily starts with a seed protein and performs sequence
search in a database to obtain other proteins that have
sequence similarities above a set threshold. The newly
obtained sequences are used to iterate the search for some
number of times to obtain additional proteins. Finally, all
sequences are aligned and an HMM is constructed for the
multiple sequence alignment [4], [5]. It has been shown
that different seed proteins might produce HMMs that cover
different members of the superfamily [4], [5]. Thus, in
order to represent the full set of proteins in a superfamily,
multiple HMMs are built for the superfamily using multiple
seed proteins. For example, the beta-beta-alpha zinc fingers
superfamily has altogether 91 HMMs representing it, and
the P-loop containing nucleoside triphosphate hydrolases
superfamily has 406 HMMs representing it.

Because each superfamily might be represented by mul-
tiple HMMs, there may be a high degree of overlap and
redundancy among the models. However, there have not been
any studies examining this issue systematically. To under-
stand how the HMMs in the SCOP database are related to
one another and the degree of overlap or redundancy among
HMMs from either the same or different superfamilies, we
perform a detailed analysis of the HMMs in SCOP for
their similarity and relationships using a network approach.
Specifically, we perform an all-against-all HHsearch for the
library of HMMs in the SCOP database. HHsearch is similar
to BLAST, except that instead of matching a sequence
against a database of sequences, it uses a query HMM
or sequence to match against a database of HMMs and
identifies the HMMs significantly homologous to the query
HMM or sequence [10]. We then construct a network of
HMMs, where the link between two HMMs is based on their
similarity, and examine some commonly evaluated network
properties. We compare the current network with previously
documented networks and outline some questions for future
research.



2. Methods
The SCOP library of HMMs was downloaded from

the SCP website (http://scop.mrc-lmb.cam.ac.uk), where the
SCOP version was filtered to 70% maximum pairwise
sequence identity. The library contains a total of 13,730
HMMs, from seven classesa,b,c,d,e,f,g, where classa con-
tains onlyα (i.e., α helix) proteins, classb contains only
β (i.e., β sheet) proteins, classc containsα andβ proteins
(mainly parallelβ sheets (beta−alpha−beta units)), classd
containsα andβ proteins (mainly antiparallelβ sheets, i.e.,
segregatedα andβ regions), classe contains multi-domain
proteins (i.e., folds consisting of two or more domains
belonging to different classes), classf contains membrane
and cell surface proteins, and classg contains small proteins.
It is useful to mention that the SCOP domain classification
ID specifies the entire hierarchy, e.g. c.1.1.1, the first field is
for the classc, second for the fold, third for the superfamily,
and the last for the family.

HHsearch [10] was performed for all-against-all HMMs
with the default parameters. HHsearch, similar to BLAST,
uses a query that can be either a protein sequence or an
HMM to search a database of sequences or HMMs and iden-
tify homology between the query and sequences and HMM
models in the databases that is above a given threshold. In
the current study, the e-value, a measurement of homology
similar to BLAST’s e-value, was set to 0.001. This e-value
cutoff has also been used by Pfam to identify a Pfam clan [2],
which is essentially equivalent to the superfamily hierarchy.
A total of 13,547 HMMs have matches that met the criterion,
with 1,618 having no other matches except themselves.
Thus, 11,929 HMMs were used for the subsequent network
analysis.

To study the relationship of the HMMs, an undirected
networkG = (V, E) was constructed, where the verticesV
are HMMs, and there is an edge inE between two HMMs
if their e-value is below the threshold. General network
statistics were computed, and a quadratic function was fitted
to the log-log degree distribution. Three common vertex
centrality measurements, degree centrality, betweennesscen-
trality, and closeness centrality, were computed to evaluate
the importance of vertices in the network. The degree of a
vertexa is the number of edges incident ona. Betweenness
for a vertexa,

b(a) =
∑

s,t∈V
s6=a
t6=a

σ(s, t | a)

σ(s, t)
, (1)

introduced in Freeman [3], measures roughly the number
of shortest paths going througha. σ(s, t) is the number of
shortest paths between verticess and t, and σ(s, t | a) is
the number of shortest paths between verticess and t that
go througha. Thus, the higher the betweenness of a vertex,
the more central/important the vertex is. In a fully connected

network, the betweenness of all vertices is 0.
The closeness centrality measures the number of steps

required to access every other vertex from a given vertex,
specifically, the closeness of a vertexa, c(a), is computed
by

c(a) =
|V | − 1
∑

i∈V
i6=a

da,i

, (2)

whereda,i is the length of the shortest path between vertex
a and vertexi. Closeness ranges from 0 (does not reach 0) to
1; the higher it is for a vertex, the more “central” the vertex
is. These centrality measurements have different motivations
and show different aspects for the importance of vertices in
a network.

The network clustering coefficient, C, also known as
transitivity, measured by the ratio between the number of
triangles and the number of connected triplets, was computed
for the entire network. The number of connected components
that are trees, where there areN vertices but onlyN − 1
edges between the vertices, was computed for the entire
network as well.

To systematically study the consistency between the e-
value cutoffs for the prediction of whether or not HMMs
belong to the same hierarchical level and classification of
the SCOP database, we examined the Receiver Operating
Characteristic (ROC) curves for the prediction of the hier-
archical categories of two HMMs provided by different e-
value cutoffs. The ROC curve shows how the true positive
rate changes with the false positive rate for a classification.
Specifically, for example, at the family level, if a sample
of two HMMs were classified to the same family by the
SCOP database, the prediction based on a specific e-value
cutoff is considered to be a false negative (FN) if the e-
value similarity of the two HMMs is worse/higher than the
e-value cutoff, a true positive (TP) if the e-value is better
(i.e., lower) than the cutoff; if the two HMMs were not
classified to the same family by the SCOP database, the
prediction based on the specific e-value cutoff is considered
to be a true negative (TN) if the e-value similarity of the
two HMMs is worse/higher than the e-value cutoff, a false
positive (FP) if their e-value is better (i.e., lower) than the
cutoff. Similar rules were applied to classify each pair of
HMMs into the four categories (TP, FP, FN, and TN), for the
four hierarchies, class, fold, superfamily, and family. True
positive rate (i.e., sensitivity) was calculated as

TPR =
TP

TP + FN
, (3)

and false positive rate (i.e.,1− specificity) as

FPR =
FP

FP + TN
. (4)

An ROC curve was plotted for the four levels (i.e., class,
fold, superfamily, and family) with different e-value cutoffs
ranging from10−20 to 10−3.



Table 1: The general statistics of the HMMs
Class Number Number Number Number

of HMMs of folds of superfamilies of families
a 1975 157 262 506
b 2590 109 231 485
c 3391 120 194 686
d 2932 223 328 683
e 199 34 34 51
f 145 29 44 50
g 697 49 70 112
All 11929 721 1163 2573

Fig. 1: The HMM network

3. Results
The working hypothesis. Taking into account the pro-

cesses that built the HMMs and the hierarchical classification
of the HMMs in the SCOP database, we hypothesize that
the network should reflect this process, i.e.,the HMMs in a
connected component belong to the same family or super-
family more often than expected under a random network
connection model.

General statistics of the HMMs and their network. A
general description of the HMMs used to construct the
network is shown in Table 1. There are seven classes
in the collection of HMMs, falling into 721 folds, 1163
superfamilies, and 2573 families. Classc has the highest
number of HMMs (3391) and classf the fewest (145).

The entire HMM network is shown in Figure 1, where
the e-value cutoff is 0.001. There are altogether 151,461
edges for the 11,929 vertices. A significant property shown
in Figure 1 is that the entire network is highly disconnected,
with many much smaller connected components. In fact,
there are altogether 1524 connected components (CCs). The
smallest CC contains two vertices, the largest 590 vertices,
566/1524 = 37% contain only two vertices and about 73%
contain five or fewer vertices. The median CC size is 3 and
the mean 7.8. The top 20 largest CCs are listed in Table 2.

Table 2: The 20 largest CCs and their densities
Size rank Number of vertices Density
1 590 0.12
2 349 0.21
3 277 0.65
4 155 0.15
5 141 0.38
6 121 0.33
7 120 0.19
8 106 0.72
9 99 0.84
10 90 0.95
11 86 0.99
12 85 0.89
13 81 0.32
14 80 0.83
15 74 0.66
16 73 0.65
17 72 0.16
18 70 1.00
19 69 0.97
20 66 0.40
All 11929 0.002
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Fig. 2: Log-log degree distribution. The base is 2. The best
fitting quadratic curve is3.2481−0.176557x−0.133088x2.

Degree distribution. The degree of the HMM network
ranges from 1 to 268, with the average of 26 and median
of 10. The log-log degree distribution is shown in Figure 2.
It is evident that a power law distribution does not fit the
data. The best fitting quadratic curve is also plotted with the
data. It provides a relatively good fit for the smaller values
of log(degree), and then towards the larger degrees, the fit
is not so good.

Network Density. Density, computed as the number of
edges over the number of all possible edges (in a fully
connected graph), provides some quantitative evaluation on
the connectivity of a network. The density of the entire
network is low, only0.002 = 151461/

(

11929

2

)

. In contrast,
individual CCs tend to have high densities, with more than
82.5% of CCs having density greater than0.95. 1236 CCs
are fully connected, i.e., cliques, with the largest cliqueof
size 70.

Thus, individual CCs tend to have very high connectivity,
whereas the entire network is not well connected. The



Table 3: The 20 HMMs with highest degree
Rank HMM ID SCOP ID Degree
1 d1n26a1 b.1.1.4 268
2 d1f2qa1 b.1.1.4 265
3 d1qz1a3 b.1.1.4 265
4 d1biha1 b.1.1.4 264
5 d1rhfa1 b.1.1.1 263
6 d1tnna_ b.1.1.4 263
7 d2aw2a1 b.1.1.1 262
8 d1nbqa1 b.1.1.1 262
9 d1x44a1 b.1.1.4 262
10 d1biha3 b.1.1.4 262
11 d1cs6a3 b.1.1.4 262
12 d1f2qa2 b.1.1.4 261
13 d2avga1 b.1.1.4 261
14 d1epfa1 b.1.1.4 261
15 d3b5ha1 b.1.1.4 261
16 d1cs6a2 b.1.1.4 261
17 d1f97a2 b.1.1.4 261
18 d1epfa2 b.1.1.4 260
19 d2dava1 b.1.1.4 260
20 d1f97a1 b.1.1.1 260

density of the 20 largest CCs is shown in Table 2. The
largest CC with 590 vertices has the lowest density, and the
18th largest CC with 70 vertices has a density of 1, and is
therefore a fully connected component. There is a significant
negative correlation between CC size and density (Kendall’s
rank correlationτ = −0.43, p-value< 2.2 · 10−16 for CC
size> 2).

Vertex centrality. Two centrality metrics, degree and
betweenness, were computed for the vertices in the entire
HMM network. Table 3 shows the top 20 HMMs that have
the highest degrees. These 20 HMMs all belong to the same
superfamily, b.1.1, Immunoglobulin, and also to the third
largest CC that has 277 vertices. Thus, these 20 HMMs are
connected with almost all other HMMs in the third CC. The
HMM d1n26a1 (SCOP ID b.1.1.4, (A:1-93)) has the highest
degree, 268, belonging to the Interleukin-6 receptor alpha
chain, N-terminal domain (Homo sapiens).

Table 4 shows the top 20 HMMs that have the highest
betweenness. Thirteen of the 20 HMMs belong to the su-
perfamily c.2.1 (NAD(P)-binding Rossmann-fold domains),
two to the superfamily b35.1.2, and two to the superfamily
c.37.1. Eighteen of the 20 HMMs belong to the largest
CC and the two remaining (c.37.1.14 and c.37.1.11) to the
second largest. The HMM d1bg6a2 (SCOP ID c.2.1.6, (A:4-
187)) has the highest betweenness, 14916, belonging to N-
(1-D-carboxylethyl)-L-norvaline dehydrogenase (Arthrobac-
ter, strain 1c). Interestingly, there is no overlap of HMMs
that have the highest of both degree and betweenness.

Network diameter. The diameter of the largest CC (con-
taining 590 vertices) is 9. The average distance between
the vertices is 2.94. We also measured the diameters of all
the CCs to see how they change as a function of CC size.
Figure 3 shows that larger CCs tend to have larger diameters.
However, smaller CCs can have large diameters as well. For

Table 4: The 20 HMMs with largest betweenness
Rank HMM ID SCOP ID Betweenness
1 d1bg6a2 c.2.1.6 14915.8
2 d1o8ca2 c.2.1.1 14665.7
3 d1e5qa1 c.2.1.3 14504.0
4 d2bzga1 c.66.1.36 9557.9
5 d3bswa1 b.81.1.8 9168.0
6 d1vj0a2 c.2.1.1 8211.0
7 d1ks9a2 c.2.1.6 7469.9
8 d2bmfa2 c.37.1.14 7439.8
9 d2dt5a2 c.2.1.12 7410.7
10 d1pjca1 c.2.1.4 7325.1
11 d1gtea4 c.4.1.1 7165.3
12 d1gu7a1 b.35.1.2 6768.0
13 d1tt7a1 b.35.1.2 6768.0
14 d2f1ka2 c.2.1.6 5985.2
15 d1ebfa1 c.2.1.3 5959.8
16 d1jqba2 c.2.1.1 5313.1
17 d1gr0a1 c.2.1.3 5220.0
18 d1ye8a1 c.37.1.11 5207.7
19 d1piwa2 c.2.1.1 4556.8
20 d1hdoa_ c.2.1.2 4403.8
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Fig. 3: Boxplot for the diameter of CCs as a function of
CC size. The box marks the lower and upper quantile of
CC sizes with the same diameter, the dark line marks the
median, the whiskers mark the border of lower and upper
outliers with the dots outside denoting the outliers.

example, a CC of size 32 has diameter seven, the same as a
CC of size 155; a CC size of 16 has diameter six, the same
as a CC of size 121. There are 1236 CCs with diameter 1,
corresponding to the number of cliques.

CCs and hierarchy. Within the CCs, we examined
whether the HMM members are from the same family,
superfamily, fold, or class. There are altogether 1178 CCs
whose members have the same SCOP domain classification



Fig. 4: The ROC curves for family, superfamily, fold, and
class with different e-value cutoffs. For each curve, the data
points from left to right correspond to the FPR and TPR for
the e-value cutoffs from10−20 to 10−3.

(conserved at all hierarchical levels), 271 CCs whose HMMs
belong to the same superfamily but to different families, 24
whose members belong to the same fold, but to different su-
perfamilies, 18 whose members belong to the same class but
have different folds, and the remaining 33 whose members
are from different classes.

The consistency between the prediction of HMM member-
ships at different hierarchical levels in the SCOP database
based on the e-value cutoffs and the classification of the
SCOP database was evaluated by ROC curves, shown in
Figure 4. We make several observations. First, for all four
levels of the hierarchy, the higher the e-value cutoff, the
higher the sensitivity (true positive rate), so is the false
positive rate, which is expected because higher e-value
means a less stringent prediction criterion that in turn leads
to a higher number of true positive predictions, and also a
higher number of false positive predictions. Meanwhile, the
rate of increase in sensitivity outpaces the rate of increase in
the false negative rate as the e-value becomes more stringent,
suggesting that beyond a certain e-value cutoff, the HMMs
belonging to the same hierarchical levels also tend to have
high similarity, which make them robust to the e-value cutoff
change. Second, the curves for the prediction of fold and
superfamily are very similar to each other, indicating that
for the same e-value cutoff, the predictions for whether two
HMMs belong to the same fold or superfamily are similar.
In fact, for the same e-value cutoff, the difference in true
positive rate (sensitivity) between the fold and superfamily
ROC curves is either 0 or 0.01, and the difference in false
positive rate (1-specificity) falls within the narrow range
[0.01 − 0.04]. Third, the prediction quality is the worst
for class as compared to the other three levels, with worst
sensitivity and specificity for the same e-value cutoffs. This
might not be so surprising as classification at the class level

is more for convenience than for biological reasons.

4. Discussion
The important HMMs. In this work, we used three

centrality measurements to evaluate the importance of an
HMM. The results show that from the entire network, the
vertices with the highest degrees do not necessarily have the
highest betweenness, and vice versa. Degree measures how
many immediate neighbors one HMM has, and therefore,
the more it has, the more central it is. The vertices with
the 20 largest degrees are all from the third largest CC,
and are connected to about94% of its vertices. The vertices
with the 20 largest betweenness values are from either the
largest CC or the second largest CC. Since betweenness
reflects how essential one vertex is to the connection of any
other two vertices in the graph, in the case of HMMs, it
may reflect the possibility that one HMM is thehybrid of
two HMMs, that is, between the two HMMs, there is no
significant similarity, but through the one HMM, the HMMs
can be linked. Biologically, this idea seems to reflect hybrid
or mosaic proteins where one protein contains domains from
multiple proteins. To our knowledge, the idea of hybrid
HMMs has not been discussed previously and deserves more
research attention. Moreover, we hypothesize that the HMMs
with high centrality measurements may be better able to pick
up the sequences that belong to the superfamily than the
more peripheral HMMs. Future studies can be directed to
test this hypothesis.

Comparison with other networks. The largest CC (590
vertices) of the current network has a diameter of 9 and
the average distance between its vertices is 2.94. This bears
some similarity to the protein interaction network [6], whose
largest CC (containing 5,128 vertices) also has the same
diameter of 9, but a larger average distance of 3.68. Thus,
the protein interaction network seems to have more vertices
that are a bit more spread out, which contributes to a larger
average distance. To this point, it is very interesting that
despite the big difference in the sizes of the two CCs of the
two networks, the diameters are the same.

It is evident that the HMM network is highly clustered. In
fact, its clustering coefficient is 0.85, which, to our knowl-
edge, is the highest among the biological networks that have
been studied so far. As shown by Newman [9], the undirected
networks that tend to have high clustering coefficients are
social networks. For example, the film directors network has
a clustering coefficient of 0.20 and coauthorship networks
for math, physics, and biology disciplines are 0.15, 0.45,
and 0.088, respectively, whereas biological networks suchas
metabolic network and protein interaction network have only
a clustering coefficient of 0.09 and 0.07, respectively. The
comparison indicates that the current network has distinct
features from the previously characterized real-world net-
works. Also, consistent with its high clustering coefficient,
the network has altogether 585 trees (i.e., the CCs of sizen



with n− 1 edges), most of which (566) are of size 2, 15 of
size 3, and four of size 4.

Testing the working hypothesis. The results show strong
evidence that HMMs in a connected component tend to
represent the same family or superfamily. Among the total
1524 CCs, more than 77% have only members from the
same family; more than 95% have only members from the
same superfamily. Thus, there is overwhelming evidence
supporting our working hypothesis that HMMs belonging
to the same family or superfamilies tend to cluster together
in the network. However, to formally evaluate this and
provide some statistical support, we also simulated 10000
random networks while preserving the degree distribution
and the number of connected components. Among the 10000
simulated random networks, the highest proportions of CCs
having only members from the same family and superfamily
are as low as0.5% and0.7%. This shows that in the observed
network, the HMMs from the same family or superfamily do
have a strong tendency to cluster, agreeing with our working
hypothesis.

5. Conclusion
In this paper, we examined the properties of the network

constructed for HMM models in the SCOP protein structural
classification database. A number of questions remain to be
addressed in future research. For example, can we devise
a computational method to measure or evaluate the degree
of redundancy or overlap between HMM models that are
used to represent the same superfamily? This research is
meaningful given the ever increasing number of large-scale
genomic sequences (thereof more protein sequences). Given
that we can measure the redundancy of the HMMs of a
superfamily, the logical question becomes, can we com-
putationally reduce the redundancy of the HMM library,
e.g., possibly by constructing super-HMMs, each of which
represents a collection of redundant HMMs, so that a pro-
tein sequence is scanned against a reduced set of HMMs
(super-HMMs) rather than the entire set of HMMs that
have overlaps and redundancies? Finally, because the HMM
network shows distinct properties from many documented
networks as discussed above, can we propose a theoretical
model to better account for the observations in the current
network? Moreover, as our HMM network is also weighted,
with edges quantifying the similarity between two HMMs,
future proposed models can also consider the incorporation
of weighted edges into the network.
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