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Abstract—Numerous retinopathies are related to the dysfunc-
tion of retinal vasculature, especially micro-vessels. Extensive
research in ophthalmology has singled out critical roles of
vascular morphology, and the functional dynamics of blood flow
in diseases. Advances in angiography has yielded a myriad of
applications for computational methods that design efficient tools
to complement retinal imaging and microscopy in analytic oph-
thalmology. In this paper, we propose a novel mathematical ap-
proach for the design of quantitative tools that enable researchers,
as well as automated vision-based systems, to perform pattern
recognition, and feature extraction in retinal vasculature. The
present feasibility-stage implementation of these new algorithms
demonstrates the power and versatility of the set of tools we
provide for the detection of morphological pathology, as well as
the theoretical study of retinal neurovasculature anatomy when
regarded as a complex (dynamic) system. In contrast to current
state-of-the-art methods that rely on bottom-up algorithms to
deal with noise and trace the vessels, we propose a top-down
scheme to overcome noise and capture morphological features
such as center-lines, radii, and the edge locations of circulatory
blood vessels. This approach is comprised of three components.
First, the algorithms for detection and measurement of the
vasculature morphological structures in two-dimensional fundus
images are implemented. These algorithms combine advanced
kernel-based methods to extract blood vessels, and are further
enhanced by variants of Canny Edge Detection algorithms.
Second, a fully automated approach is provided to identify
the optic disc in healthy/diseased fundus images, eliminating
current bottle-necks requiring extensive human expertise. Third,
we construct a hierarchical network of geometric (topological)
structures of the extracted vessels, rooted in the optic disc. A
notable application of our methods is to capture complex vas-
culature structures in noisy, blurred, and light-reflecting fundus
images. Another advantage of our approach is the automation
of in vivo quantification of complex phenotypic traits of retinal
neurovasculature, which are expected to play an important role in
emerging computational models for mapping genotype-phenotype
relations and personalized medicine.

I. INTRODUCTION

Analysis and quantifying medical images forms an essential
step in delineating practical issues in relation to the diagnoses

of systems. Extracting appropriate features to represent the
content and structure of an image by precisely capturing
anatomical and pathological features of the retinal tissue
is the goal of quantifying fundus images. Segmentation of
blood vessels and quantifying phenotypic traits, such as width,
length, and distinguishing between regions of lesions, plays an
important role in the diagnosis of vasculitis, malformations,
vein occlusion [12], exudates, diabetes [19], glaucoma [13],
and many other retinal diseases exhibiting a vascular pheno-
type.

Currently, almost every medical imaging technique (ultra-
sound, X-ray, MRI, CT, etc...) can be used to capture high
resolution, two- or three-dimensional, blood vessel images.
However, the complexity of the vasculature structure, un-
avoidable noise in the system, and faded images, challenges
scientists to come up with precise, efficient, and practical
approaches.

Decades of intensive research have brought a vast array of
tools and methods. Comprehensive reviews and comparison
of many of these accomplishments are mentioned [2], [3].
Li Wang [3] recently proposed a multi-resolution, Hermite
polynomial-based model to analyze two-dimensional images,
and construct a tree-type data structure of the blood vessels.

Using fuzzy methods is currently in vogue due to its ability
to achieve noise removal and ease of enhancement in combina-
tion with other probabilistic methods [4], [6]. Statistical and
kernel-based methods have also been proposed to overcome
uncertainty in images [7], [9]. Additionally, template matching
approaches have been examined [8], [10], [11]. Nonetheless,
greater advancements are needed to handle unaddressed pat-
terns of noise, reflection of light, and complex structural
arrangements in images. Extensive variation in vessel width
(especially in the case of arterial stenosis and aneurysms)
remains an obstacle for quantifying phenotypic traits. Experts
tend to have subjective variability in their identification of
subtle features, creating an urgency for the ability of automated



methods to quantify phenotypic traits. Our own research [1],
high throughput in vivo phenotyping, is needed to collect the
time-series that encodes the dynamic variation of morpholo-
gies, and can predict the onset of angiogenesis in diabetic and
other high-risk patients.

In this paper, we propose a new top-down method in which
a kernel-based method was used to project the images to
a higher-dimensional space. Using this projection, we avoid
dealing with lesions, various types of noise, and reflected
light. Thereafter, we applied a local to global model to extract
the edges of the vessels and their bifurcated segments. A
Canny-type algorithm was applied to fill the gaps along the
longitudinal vessel, while closeness and varying widths of
vessels were considered. Through application of the Canny
based edge detection algorithm, we constructed a multi-
resolution topological structure from the vessels. Whereas
the blood vessels originate from the optic disc [5], we use
this topological structure to identify it. In addition to the
geometrical correlation between blood vessels and the optic
disc, the impact of the density of blood vessels to measure the
size of the optic disc and fovea has already been demonstrated
[19].

In the next section, we describe our methodology and
algorithms in detail. In the Identifying the Optic Disc section,
we evaluate our algorithms by comparing them with a current
standard.

II. METHODOLOGY

Measuring morphological traits of retinal blood vessels
plays an important role in the screening of numerous oc-
ular diseases. The mysterious structure of the retinal blood
vessels has motivated researchers to study this topic from a
computational point of view. The identification of fractals as
the mathematical structure underlying vasculature has opened
new branches of research [9], [10]. Utilizing fractals as a data
structure for storing vessels, to study their distribution, has
been examined and yielded promising results [11], [12], [13].
In this study, the method for storing vessels and finding the
density of their distribution (i.e. locating the optic disc) is
inspired by their fractal structure. The first part of this section
explains the algorithm for extracting the vessels and generating
the hierarchal structure rooted in the optic disc. The second
illustrates the ability of the hierarchical structure to identify
the optic disc.

A. Vasculature Structure

Using statistical learning and kernel machines in data
mining is a well known approach. Vapnik introduced a new
branch of data clustering approaches; whereby applying
kernel machines, complex data structures could be clustered
[16], [17]; ’Foundation of Analysis’. In this work we
used kernel methods to project complex data objects to
higher-dimensional spaces in order to efficiently distinguish
meaningful information (pixels) from noise [14], [15].

1) Kernel Mapping: A preliminary step towards extracting
the vasculature structures from the fundus images is to increase
their respective pixel contrast. Mapping the images, via a
kernel, allows us to individually project the color intensities
of the images’ respective pixels to higher and lower levels
of saturation, providing greater separation of pixel values
effectively ”sharpening” the images. Figure 1 compares an
original and kernel-mapped fundus image.

Fig. 1. The first column shows the original fundus image with its associated
color intensity histogram. The second column shows the image and its
histogram after adjusting the color indexes. As shown in the histograms,
the range of color indexes (x-axis) and their intensities (y-axis) provides a
quantifiable difference between the original and adjusted image.

2) Canny Edge Detection: Canny Edge Detection involves
pre-filtering the image through convolution with a simple
Gaussian filter to eliminate noise that might otherwise interfere
with the edge detection process. Selection of a small, versus
a large, filter window directly affects the observable and
statistical smoothing applied to the image, and helps to reduce
unavoidable noise from image acquisition. After smoothing,
standard kernels Gx and Gy are applied in both the x and y
directions of the image to determine edges by calculation of
the image’s gradient |G|.

Gx =

−1 0 1
−2 0 2
−1 0 1


Gy =

 1 2 1
0 0 0
−1 −2 −1


|G| =

√
G2

x +G2
y

θ = arctan(
|Gy|
|Gx|

)

The detection of the edges after applying the 3 x 3 kernels
to each pixel is determined by the angle θ and stored for
comparison to determine the ”strong” versus ”weak” edges of
the image, as specified by a double threshold intrinsic to the
image based on maximum and minimum pixel values.
For example:



1) Round the θ value to the nearest multiple of 45 degrees,
corresponding to the directional choices for the pixel’s
eight adjacent pixels. (0 = right, 45 degrees = upper-right,
90 degrees = upper-center, 135 = upper-left, 180 = left,
etc. . .)

2) Compare the gradient value for each pixel based on the
positive and negative θ value to obtain the next piece of
the edge based on the gradient thresholding values.

3) If the pixel under examination, relative to its eight adja-
cent pixels, is largest within this threshold it is preserved
as a ”strong” edge. If it is ”weak”, as long as it is
connected to a ”strong” edge it is preserved. If it is neither
of these, it is marked for removal.

The Canny algorithm applies a double threshold to label edges
corresponding to ”strong” and ”weak”, by referencing the
value of the gradient as described in (3). It is these thresholds
which ultimately determine edges detected as ”strong” (i.e.
pixels in the neighborhood described in (1) referring to the
pixel of interest’s gradient value) or ”weak”. Figure 2 shows
the results of the edge detection algorithm with different
threshold values.

3) Dilation: Dilation is a set operation performed over a
discrete neighborhood of size n. The structuring element can
be thought of as a geometric shape that overlaps and extracts
the maximum pixel value lying within its boundaries; per-
forming this operation iteratively pixel by pixel and replacing
the pixel of interest with the maximum pixel value within the
neighborhood.

Dilating the detected edges by n = 1 extends them towards
filling the vessels and segmenting the vasculature structures
from surrounding regions. Figure 3 shows an example of
dilated edges in comparison with the original image.

B. Identifying the Optic Disc

Despite the optic disc being located in the observably blind
region of the eye, known as ”the blind spot”, studying discs
is important for diagnosing vascular disorders. The optic disc
is also the gateway between the nervous and visual systems
[18]. Since all blood vessels are directed towards the optic
disc, extracting the geometrical distribution of the vessels is
the first step towards the optic disk’s location [5]. Differences
in color indexes of an optic disc, relative to its surrounding
regions in fundus images, has motivated researchers to develop
color-index image analysis tools. However, since there is a
distinct similarity between color indexes of the optic disc
and exudative lesions, these color-index image analysis tools
are not appropriate for quantifying affected images. In this
study, we used a geometric-based algorithm to define a feasible
region for the location of the optic disc and to exclude exudate
regions from it. Moreover, we enhanced this algorithm, where
appropriate, with image analysis tools to improve its accuracy.

Figure 4 shows the color indexes of the two-dimensional
images. These graphs show the differences between the color
distributions in the optic discs relative to their surrounding
areas. Notice that the gradient of the surface around the optic

Fig. 2. Multi-resolution of vessel edges: the Canny Edge Detection algorithm
with different threshold values. The threshold values decrease generally, and
with respect to each other (i.e. upper versus lower threshold), left to right,
and top to bottom.

disc is zero. To further emphasize the importance of analyzing
color indexes, consider the contour plots of these images in
Figure 5.

Previously, some healthy fundus images were considered.
Next, let us consider some pathological subjects. Figure 6
shows four examples of affected fundus images and their
respective color intensity surfaces. As depicted by the color
intensity surfaces (second column), identifying the optic disc
based on the analysis of color indexes is insufficient. However,
analyzing the multi-resolution structure of the blood vessels
provides satisfactory results. The results of the analysis of
the multi-resolution structures are shown in the first column
of Figure 7, where in the second column one can observe a
strong correlation between these structures and the location of



Fig. 3. The detected edges were dilated pixel by pixel over a neighborhood
of radius n = 1.

the optic disc.
To evaluate our methodology, we applied these algorithms to

two datasets: STructured Analysis of the Retina (STARE) [20],
and Digital Retinal Images for Vessel Extraction (DRIVE)
[21]. These datasets included fundus images of both healthy
and pathological subjects. We compared the results of our
algorithm with the manually extracted vessels provided by
Adam Hoover [22]. As mentioned previously, instead of
tracking vessels in our algorithm, the automated extraction
and measurement of morphological traits is emphasized.

A direct comparison of automated and segmented vascula-
ture structures to manually extracted vessels is shown in [23].
Moreover, some of the fundus images show different levels
of hierarchical vasculature structure. To evaluate the second
part of our methodology, we compared it to two well-known
applications for identifying optic discs [5], [6]. The results
from the application of our algorithm on the two datasets are
available at [23].

CONCLUSION

In this paper, we have presented a novel computational
method to quantify retinal blood vessels and identify optic
discs in two-dimensional fundus images. This methodology
consists of a kernel-based algorithm to extract vasculature
structures. Taking advantage of the Canny Edge Detection
algorithm, our methodology constructs a hierarchical structure
of the blood vessels. This algorithm accurately quantifies
vessel structure, length, and can capture dynamics in width by
precisely detecting the edges of vessels. Moreover, analyzing

Fig. 4. The x and y-axis form the xy-plane of the image. The z-axis shows
the color indexes of the image corresponding to its xy-coordinate. The optic
disc is the flat region on the surface and differentiation of the color densities
in these regions are zero in contrast with other parts of the image. This is an
important feature to identify the optic disc.

Fig. 5. These are the contour plots of the fundus images, left to right and
top to bottom correspond to the images in Figure 4. The optic disc regions
have the highest color indexes and are indicated by dark red. Other structures
have lower color indexes, indicated by their colder colors relative to the optic
disk.

this hierarchical structure, and appropriately using standard
image analysis tools, we can identify the optic disc. In this
manner, we have used two important biological features of
angiography to detect the optic disc: the intrinsic geometry of
the optic disc with respect to the vessels; and the differences
of color indexes of the optic disc relative to its surrounding
regions. This methodology precisely distinguishes between



Fig. 6. These images are examples of affected retinal fundus angiography
from the STARE datasets.

closely located vessels and their longitudinal gaps. It also
separates the lesion regions from the optic disc. We evaluated
our methodology on two datasets, where the results showed
its robustness and accuracy on normal and pathological retinal
fundus images. Efficiency and precision of the algorithms
are demonstrated by comparing our results with manually
segmented fundus images [22] and comparing them with
current well-known algorithms for identifying optic discs [5],
[6].
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