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Abstract- Drug resistance has now posed more severe 
and emergent threats to human health and infectious 
disease treatment. However, the wet-lab approaches 
alone to counter drug resistance have so far achieved 
limited success in understanding the underlying 
mechanisms and pathways of drug resistance. Our 
approach applied A* heuristic search algorithm in order 
to extract drug response pathways from protein-protein 
interaction networks and to identify the co-target for 
effective antibacterial drugs. In this paper, we chose one 
of the killer infectious diseases, Mycobacterium 
Tuberculosis as our test bed. The results showed that the 
acetyl-CoA carboxylase is believed to be involved in fatty 
acid and mycolic acid biosynthesis and is strongly 
associated with the drug resistance mechanisms. Our 
analysis are consistent with the recent experimental 
results and also found alanine and glycine rich 
membrane and cell wall-associated lipoproteins to be 
potential co-targets for countering drug resistance. 
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1 Introduction 
Drug resistance has been posing an emergent threat 

to human health and infectious disease treatment. Several 
web-lab experiments like rotation of antibiotic 
combinations, identification of new targets and chemical 
entities that may be less mutable are being explored to 
counter this problem by inhibiting the resistance 
mechanism employed by the bacterium [1]. However, 
those strategies are still not effective enough and have so 
far achieved limited success due to limited knowledge 
about how the resistance mechanisms are triggered in 
bacteria upon antibiotic drug treatment [7]. 
Mycobacterium Tuberculosis has remained one of the 
killer infectious diseases that have widely spread with 
prominent drug resistance. Multidrug resistant 
Mycobacterium Tuberculosis has underscored the need 
for research into the mechanisms of drug resistance and 
the design of more effective anti-tuberculosis agents.  

Systems biology approach is essential to gain novel 
insights into the pathways involved in the mechanism of 
drug resistance from biological networks. Due to the 
increasing availability of protein interaction networks, 
network-based analysis provides an opportunity to 
discover active (significant) networks under specific 
conditions. High-throughput microarray data technology 

has led to genome-wide measurements of mRNA activity 
levels under different conditions and it is one of the data 
sources that can help us realize the active networks. Most 
of statistical methods such as fold change, t-test identify 
genes using only different expressed genes among 
different conditions with large set of the microarray data. 
These methods do not utilize the knowledge of protein 
interaction networks nor do they capture the coordination 
of multiple genes. Recent works estimated the weights of 
protein interactions based on differential gene expression 
values that scored edge or vertex in the sub-networks and 
applied a heuristic search method to extract the 
significant networks and infer regulatory and signaling 
modules [2,3,4,5]. They proposed a search of active 
sub-networks in terms of a minimum-weight path search 
or an unsupervised maximum score sub-network 
problem. Vertex-based scoring methods take all known 
interactions among proteins as the edges of the active 
sub-networks. They do not further select the active 
interaction relationships among protein while only a part 
of the interactions among a set of proteins may be active 
This kind of methods are inconsistent with previous 
studies which found that not all protein interactions 
occur at a specific condition [6]. Edge-based scoring 
applied Pearson correlation coefficient for analyzing pair 
relationships which do not work in the small set of the 
microarray data and could be unsuitable to explore the 
true gene relationship because it is overly sensitive to the 
expression value. All of them applied greedy or heuristic 
search instead of exhausted search and may sacrifice the 
optimality of the identified active sub-networks.  

Typically, the target of a drug inhibits the pathogen 
or arrests its growth but the resistance machinery is 
established via certain pathways. A recent idea for a 
systems-level analysis is called “co-targets” instead of 
being the ancillary or secondary targets that have a 
critical physiological function for the survival of the cell 
but help in modifying the properties of the drug to inhibit 
the resistance mechanism [7]. Thus, co-targets could be 
either essential or non-essential but it is necessary to 
have a strong influence in the network and to counter 
drug resistance. Raman and Chandra formulated this 
problem as a search for the shortest paths obtained from 
the bacteria after exposure to the drug and calculated 
betweenness attribute of genes in the protein interaction 
networks to identify the potential co-target [7]. However, 
this formulation has an obvious weakness because the 
shortest paths are the only routes of drug resistance and 
there are some “back-up" ways to make the robustness of 
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possible inhibitors associated with the function of the 
drug. It can be envisaged that upon inhibition of a protein 
and the drug-related functional mechanism often occur 
so as to minimize the effect of inhibition on the 
particular protein [12]. Therefore, we used the drug 
target and the genes associated with the drug-related 
function as source nodes for searching. In search for 
paths using a traditional tree search method, it may 
expand a large collection of new nodes while traversing 
new level of tree. In order to determine the range of path 
lengths in the network we would detect, we apply the 
heap-based Dijkstra's algorithm for each node to get the 
longest shortest path of all pairs of nodes in the network 
[13]. This information shows if any pair of nodes in the 
network can link to others at most the length and we thus 
use the length of the longest shortest path as the 
maximum length in the path searching. We assume that 
the active sub-networks extraction issue is a minimum 
score linear path searching problem with the fixed length. 
First, we normalized the weight w(e) of the edge e 
calculated by Equation (1) to be the range [0,1]. Then, 
we transfer the larger weight of the edge to be a smaller 
score and the score of the edge e between two 
corresponding genes u and v is calculated as score(e) = 
score(u,v) = -log(w(u,v)). The negative logarithm makes 
larger weight become smaller score and so on. First, we 
defined the score of a path as the sum of scores of edges 
in the path and the formula is defined in Equation (2): 
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where  
score(e) is the score of an edge e in the path p 

To speed up the procedure in search of the 
minimum score linear path, it needs to prune the 
unexplored new nodes heuristically. We use the idea of 
A* search to design a pruning strategy and the heuristic 
function is to determine the weight of a pathway that 
reflects significance to some extent. In the preprocessing 
experiments, we determine the edge with minimum score 
as scoremin and an average score of edges as scoreavg. 
Then, we calculate the scores of the simple paths with 
the same length l between different source and end 
proteins in the network. We ran the procedure 5000 
times to determine the scores of all paths in the 
experiments formed a normal distribution and we defined 
the error rate based on the standard deviation scorestd to 
find the optimal pathway in estimating bound heuristic 
function of h(x) for a node x. We employed A* search 
method can explore heuristically after searching a fix 
length d in the paths that calculates current weight of a 
path as function of g(x). The overall heuristic function of 
f(x) is defined in Equation (3) for finding a pathway with 
an optimal (minimum) score.  
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where  
l means the length of a path, 

d means the length from the source node that we have 
already traversed in the network, 
score(Pd) means the sum of the score up to the current 
node x with a length parameter d, 
scoremin means the minimum edge score in the network. 
Because the lower f(x) a node is estimated, the more 
likely is it to be searched. We set a bound score for a 
path p with length l that is defined as Equation (4) to 
control the quality of the path we could find: 

   ( ) lscorescorepBound stdavg ××+= α)(   (4) 
α is a constant factor to control the bound 
scoreavg means the average score calculated in the 
preprocessing experiments, 
scorestd means the standard deviation calculated in the 
preprocessing experiments. 
While we move to the next node through the edge in 
each search process, we compute heuristic function f(x) 
and compare it with the initially-set bound score. If f(x) 
exceeds the initially-set bound score, we do not expand 
the node further. For the nodes that are allowed to 
expand, their children nodes are expanded and their 
heuristic functions are computed and compared with the 
bound score again until the search reaches the end node. 
As the example in Figure 2, we consider finding a 
pathway with length l=7 from the initial node A to the 
end node H. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 an example for A* searching method 
First we explored a fix length d=2 from initial node A 
that lead us to node C, we start to estimate the score of a 
path with an additional length of 5 that yields a total 
weight 11 from current node C. The estimated score of 
the path is smaller than the bound score 12.95, therefore, 
we continue to traverse its children. The function of f(x) 
of current node D is 13.2 and therefore we cannot search 
into its children. We applied heuristic method to prune 
the search space instead of exhaust searching for all the 
edges in the network. 

The known drug resistance genes reported in the 
previous researches further help in classification of the 
paths [9] and we identified the function the potential 
drug resistance pathways where at least one of curated 
resistance proteins within paths. We extract the linear or 
tree-like path in the protein interaction network and we 

 



assemble them to the active sub-networks NDR with 
significant gene set GDR.  
2.3 Random walk to discover co-target 

Random walk (RW) is a ranking algorithm [15]. It 
simulates a random walker starts on a set of seed nodes 
and moves to its immediate neighbors randomly at each 
step. Finally, all the nodes in the graph are ranked by the 
probability of the random walker reaching this node. The 
procedure of the RW model provides the basic idea to 
propagate the information from the drug target to the 
other genes in the network based to the gene expression. 
2.3.1 Initial probability for primary drug 

treatment using RW 
Based on the characteristic of RW, we applied this 

method to discover potential co-targets which have the 
maximum probability to affect the genes related to the 
drug resistance mechanisms. First, for every node v (v
V), we defined adj(v) which describes the set of nodes u 
with direct interaction with node v in the network G, and 
ws(v) as the sum of the weight associated from node v to 
its neighbors u in adjacency matrix A, their formal 
definition is in Equation (5) and (6), respectively. The 
transition matrix M for RW is computed using the 
adjacency matrix A and ws(v) and the transition 
probability from node v to node u is defined as Equation 
(7) where w(v,u) is calculated by Equation (1) 
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Let P0 be the initial probability vector constructed in such 
way that equal probabilities assigned to all the source 
nodes with their probability sum equal to 1. Let Ps be a 
vector in which a node in the network holds the 
probability of finding itself in the random walker process 
up to the step s, the probability of Ps+1 can be derived by 

             s
T

s PMP =+1                  (8) 

We plunge the transition matrix M and initial probability 
vector P0 into the iterative Equation (8). After certain 
steps, the probabilities will reach a steady state which is 
obtained by performing the iteration until the difference 
between Ps and Ps+1 measured by L1 norm falls below a 
very small number such as 10-8. We defined the vector 
Preference(d) representing the steady state probability 
vector for the treatment merely by drug target d and also 
represents the probability of the nodes in the network as 
the reference probability vector. 
2.3.2 Discovering potential co-target 

A combination of primary drug target and co-target 
should disrupt pathways and reduce the emergence of 
drug resistance thus allowing the main drug to kill the 
bacteria. Due to the calculation of the weight of the edge 
is done from the primary antibiotic treatment, we modify 
the transition matrix in order to determinate the possible 
probability of the interaction while setting candidate 

co-target. We make the following constraints to specify 
the new transition matrix M’: 
(1) To inhibit proteins that are co-target, the probability 

of the interaction to this node in the transition matrix 
should be set to a small value ε.  

(2) The constraint of the transition matrix is that sum of 
the weight of the node should be equal to 1, so the 
rest of the weights must be set accordingly if at least 
one of the edges is set to ε. 

In order to satisfy the above constraints, we have the 
following definition: Let ct(v) be a set of proteins where 
the node belong to adj(v) of node v and is also a 
co-target in Equation (9). 

     { }target-co a is )(|)( uvadjuvct ∧=   (9) 
For every node v in the network, if the nodes u in adj(v) 
belongs to ct(v), we want to reduce the probability of 
walking into co-target node with small value ε, else, we 
first count the number of the nodes in ct(v) as |ct(v)| and 
calculate the sum of the weights of those nodes in adj(v) 
which are not in ct(v) as ws’(v) in Equation (10). 
Afterwards, we adjust the weight to each node which is 
not in ct(v) based on their weight ratio of the remaining 
probability in Equation (11).  
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Where  
| ct(v) | denotes the number of nodes in ct(v) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 the example for transition matrix of co-target 
assignment 

The small undirected network is represented in Figure 
3(A) where node A is a primary drug target and all the 
weights of the edges are equal to one. Figure 3(B) is the 
adjacent matrix A and original transition matrix M 
calculated by Equation (7). While we choose the node C 
to be co-target, the modified transition matrix M’ is 
calculated by Equation (9)-(11). Take node B as an 
example, first we get adj(B) = {A,C,E} and ct(B)={C} 
from Equation (9) and then we set the probability of 

∈

 



MBCand MDC to be ε based on Equation (11). The 
probability of MBA is calculated by 
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In a similar manner are set the probabilities of MBE, MDE, 
and MDF. The initial probability P0 is formed such that 
equal probabilities are assigned to the nodes which are 
targeted by the drug and co-target with the sum equal to 
1. In Figure 3(C), the initial probabilities for the pair of 
the primary drug target and co-target are set as 0.5 
respectively. After certain steps, the probability will 
reach a steady state to the probability Pcotarget(d, t) for the 
treatment by the primary antibiotic target d and its 
co-target t. Finally, we obtained an function F(d,t) which 
is shown in the following Equation (11) for every 
primary drug target-co-target pair. The function F(d,t) 
denotes the relative visitation frequency of drug 
resistance gene set GDR between the co-target Pcotarget(d, t) 
and reference probability Preference(d). 
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Where Pcotarget(d, t)g denotes the probability of the gth 

gene which belongs to the function of drug resistance in 
the vector of the Pcotarget(d, t) 
3 Computational experiments and 

results 
We extracted protein interaction networks of 

Mycobacterium Tuberculosis H37rv from STRING 
database which contains 3,764 proteins with 179,920 
undirected interactions among them. We extracted 
microarray experiments data which have been deposited 
in Gene Expression Omnibus at NCBI with accession 
number GSE1642 [16]. Isoniazid (INH) is a central 
component of drug regimens used worldwide to treat 
tuberculosis. H37Rv treated with 0.2mg/mL and 
0.4mg/mL isoniazid (+1uL/mL EtOH) for 6h with MIC 
(0.02ug/mL) and control cells treated with equivalent 
amount of EtOH for 6h. It must be noted that it is 
possible that the high concentration may lead to 
abnormal expression but there may be a higher 
probability to develop drug resistance. Isoniazid is 
known to be inhibitors of mycolic acid biosynthesis. It 
can be envisaged that upon inhibition of a protein within 
drug treatment and metabolic adjustments often occur so 
as to minimize the effect of inhibition on the particular 
protein [7,12]. In order to incorporate the effect of such 
adjustments, we have considered the functional related 
genes as source rather than individual drug target and we 
use 21 proteins as source nodes for A* search to extract 
active sub-networks [4]. 
3.1 The drug response and resistance 

pathways of the antibiotic treatment 
The variation of the gene expression in the 

microarray data upon exposure to anti-tubercular identify 

lists of genes whose expression levels were either 
increased or decreased. There are 1,920 over-expressed 
genes, 1,806 down-expressed genes and the expression 
value of the 38 genes are equal to zero. Known 71 genes 
relevant to resistance mechanisms were classified into 
four types (a) efflux pumps which transport drugs out of 
the cell, (b) cytochromes and other target-modifying 
enzymes that cause potential chemical modification of 
drug molecules, (c) SOS-response and related genes 
leading to mutations or its regulatory region, (d) proteins 
involved in horizontal gene transfer (HGT) to import a 
target modifying protein from its environment. Table 1 
shows the number of the over- and down- expressed 
genes belong to curated resistance proteins [9]. Our 
experiments observed seven up-expressed genes of 
antibiotic efflux pumps and ten in down-expression. 
There are five over-expressed and four under-expressed 
genes in SOS. Most over- and under- expressed genes 
have connection with cytochromes, 15 up-expression and 
20 down-expression in cytochromes. We found that 
32.3% (22/68) of the genes’ absolute expression value 
are larger than the average of the absolute expression 
value of all genes in the microarray data. But we only 
found that expression values of two genes (iniA and 
efpA) are more than two standard deviations. Only 
dependent on the patterns of variation in terms of an 
increase or decrease in the expression levels of 
individual genes are hard to know the mechanism of the 
drug response and resistance. 

Table 1 the number of the over- and down- expressed 
genes belong to curated resistance proteins 

Drug resistance Up Down 

Antibiotic efflux pumps 7 10 

Hypothetical efflux pumps 2 2 

Antibiotic degrading enzymes 1    0 

Target-modifying enzymes 1 0 

SOS and related genes 5 4 

Genes implicated in horizontal 

gene transfer (HGT) 

1 2 

Cytochromes 15 20 

Previous researches observed that paths to different 
resistance mechanisms for different drugs and it suggest 
that a given target may have a higher propensity for 
eliciting a specific mechanism of resistance [8]. 
Therefore, we applied the length of seven is the longest 
shortest path in bacteria network and detect the path with 
the length from three to seven as our experiment testing. 
We identified the potential drug resistance pathways 
under isoniazid treatment where at least one of curated 
resistance proteins within paths and assemble them to the 
active sub-networks. The part of the drug resistance 
network assembles by the paths while setting alpha value 
equal to three is shown in Figure 4. Nodes are labeled by 
their gene symbol as indicated. The thickness of an edge 
is proportional to the number of times that the active 



sub-networks we extracted are traversed through this 
edge. The node with dashed line represents the gene is 
the known drug resistance genes.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 the part of the drug resistance networks 
The global view of the Figure 4, we suggest that 

drug resistance related genes efpA, ccsA, ctaD and 
dnaE2 strongly associated with fadE family which can 
contribute directly to the emergence of drug resistance. 
Genes kasA, kasB and fabD play important roles which 
have stronger relationship with fadE family in the active 
networks extracted by our method. Then, we show that 
the linear paths with small score in the network. Table 2 
denotes the paths with small score which are belong to 
different resistance mechanisms and the value of Savg(P) 
is the score(p) divided by the number of node involved in 
the path. The top significant drug resistance paths is 
antibiotic efflux pumps with minimum score 1.05. It was 
interesting to observe that efpA is an important 
transporter known to confer resistance involved in the 
antibiotic efflux pumps paths in isoniazid [12]. Genes 
fadE1/23/24, fadD, kasA, kasB, and accD6 encoding 
enzymes are involved in fatty acid oxidation and fatty 
acid biosynthetic pathway [17, 18, 19, 20]. Gene accD6 
is an acetyl-CoA carboxylase that is involved in the 
production of malonyl-CoA. The result has previously 
been shown that genes are over-expressed in 
Mycobacterium Tuberculosis in the presence of activated 
isoniazid in the wet-lab experiment [17]. The edges in 
the SOS response were common to paths from cell wall 
proteins and ahpC genes that encode type II fatty acid 
synthase enzymes involved in mycolic acid biosynthesis. 
In the cytochromes mechanism, Rv1592c and Rv0531 
are the genes with unknown functions and they are also 
transcriptionally induced by isoniazid [19]. Genes fabG1 
and inhA both encode mycolic acid biosynthetic 
enzymes and fabG1-inhA regulatory region have also 
been identified and associated with isoniazid resistance 
[17]. NADH dehydrogenase (ndh) has been associated 
with isoniazid resistance. The essential acetyl-CoA 
carboxylase is involved in fatty acid and mycolic acid 
biosynthesis in Mycobacterium Tuberculosis and those 
genes are also strongly associated with growth and cell 
wall function. Our findings suggest are consistency with 
the recent experimental results. 

Table 2 top paths of the drug resistance mechanism in 
active sub-networks 

Top paths in active sub-networks Savg(P) 

Antibiotic efflux pumps 

kasA--kasB--accD6--fadA2--fadE23--efpA--acn 1.05 

fabD--kasB--accD6--fadA2--fadE23--efpA--acn 1.08 

fabD--kasA--efpA--fadE23--echA6--fbpB--acrA1  1.12 

fadD32--fbpB--fadD11--fadE24--efpA--fadE23--accA2  1.14 

SOS  

fabD--kasB--accD6--fadE23--fadE24--fadE1--dnaE2  1.43 

fabD--kasA--accD6--fadE23--fadE24--fadE1--dnaE2 1.48 

inhA--kasB--kasA--fabD--panB--ruvA--ahpC 1.64 

Cytochromes 

kasA--kasB--fabD--ctaD--echA17--fbpB--acrA1 1.34 

kasB--fabD--kasA--ndh--nuoH--ctaD--aceE 1.42 

fabG1--kasB--fabD--ctaD--echA17--fbpB--acrA1 1.49 

kasB--accD6--fadA2--fadE24--Rv1592c--Rv0531--ccsA 1.56 

accA3--accD6--fadE23--fadE24--Rv1592c--Rv0531--ccsA 1.59 

fadD32--fbpB--fadD11--fadE24--Rv1592c--Rv0531--ccsA 1.61 

3.2 The potential co-target discovered by 
random walks  
After we ran our random walk model for 868 genes 

in GDR, we display top 5 co-targets in Table 3. The top 1 
potential co-taget, Rv2721c is associated with alanine 
and glycine rich membrane protein which has been 
suggested to be important for maintenance of the NAD 
pool [21]. Our method discovered rv0483 (lprQ) which is 
previously shown to be cell wall-associated by 
proteomics and it could be a specific inhibitor to counter 
the drug resistance [22]. Lipoproteins such like lprQ 
carry out important functions efficiently at the membrane 
aqueous interface and its biosynthetic pathway is also 
essential for bacterial viability. Bacteria may be 
inherently resistant with particular type of cell wall 
structure with an outer membrane that establishes a 
permeability barrier against the antibiotic. Although 
Rv0885, rv1109C and rv2137C are all hypothetical 
proteins, they are all strongly functional interact with the 
lipoproteins, adrenodoxin oxidoreductase and cell wall 
processes which is deposited in STRING database. 
Although the biological validation for the predicated 
results from our method is difficult, it turns out that some 
of our predicted results had been reported in the public 
literature for validation. 

Table 3 top 5 co-targets for countering drug resistance 

Co-target F(d,t) Annotation 

rv2721c 144.16 conserved alanine and glycine 

rich membrane protein 

 



rv1109c 144.03 conserved hypothetical protein 

rv0483 143.93 lipoprotein lprQ 

rv0885 143.87 conserved hypothetical protein 

rv2137C 143.86 conserved hypothetical protein 

4 Conclusion 
We develop a computational workflow for giving 

new insights to bacterial drug resistance which can be 
gained by a systems-level analysis of bacterial regulation 
networks. In our approach, we utilize information on 
STRING database and expression data to construct a 
weighted network and to decipher the active networks 
related to drug resistance using A* search method. We 
also identified the potential genes having higher 
probability using modified random walk model and 
suggested those genes that could be explored as 
co-targets. Knowledge of the active networks under 
specific condition will help us address more systematic 
and novel ways. The merit of this research would help 
biologists to understand the cellular mechanism more 
easily so that they could either based it to conduct further 
clinical diagnosis or verification. In the future, we could 
further integrate directed DNA-gene interaction and 
signal pathway to construct a more complete networks. 
The edge orientation of the undirected protein network 
based on the domain-domain interactions could be added 
to realize the signal flow in the network. The genome of 
the drug-resistant strain and non-drug-resistant strain 
should be compared to identify extra genes which are 
worth considering as significant components for 
co-targets and drug-resistance pathways. 
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