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Abstract - Protein classification has been performed by many 
protein databases to infer annotations of unknown proteins 
and therefore enhance the performance of protein annotation. 
In this study, we implemented an integrated pipeline for 
protein classification using specific PSSMs and proteins with 
the same entity name. After clustering sequences on the basis 
of their evolutionary distances, a target group is selected 
using Jarccard distance. Finally, each group is represented 
using specific PSSMs generated from sequences in the target 
group.  Using 76 p53-relative and 155 non-relative sequences 
to validate the performance of our pipeline, we measured 
100% accuracy of protein classification by our pipeline. In 
addition, we identified 35 homologous proteins of p53 among 
86,718 sequences through high-throughput analysis of human 
proteome.  
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1 Introduction 
   There is a high demand of automated protein 
annotation approaches and methods due to the latest advance 
in high throughput genomics and proteomics technology. 
However, automated protein annotation is a very challenging 
task in computational biology. In general, the first step in 
annotating a novel protein is to identify homologous proteins 
related to the protein. If its homologous proteins are well 
annotated, we can infer the characteristics of the protein from 
the homologous proteins’ annotations.  
 One of the simplest methods to identify homologous 
proteins is to measure the similarity between novel and 
reference sequences [1, 2]. If their identity is high, they can be 
structural and/or functional homologous. However, for 
sequences that are distantly related, sequence-sequence 
comparison algorithms may lose the sensitivity in detecting 
the homologous relationship [3]. To increase the sensitivity in 
detecting remote homologues, instead of comparing two 
proteins directly through pair-wise sequence alignment, the 
new sequence can be compared with profiles, which contain 
common information from known protein sequences 
belonging to the same families. Indeed, after building multiple 
sequence alignments of related sequences in the same family, 
a PSSM (Position Specific Scoring Matrice) or HMM 
(Hidden Markov Model) model is then generated on the basis 
of the common information from the alignments. Using PSSM 

or HMM, sequence-profile comparison methods such as PSI-
BLAST (Position specific iterative-BLAST) and SAM 
(Sequence Alignment and Modeling System) can increase the 
sensitivity in detecting the distant homologous sequences with 
low sequence identities [4, 5]. In addition, the sensitivity and 
specificity of PSSM or HMM tend to depend on sequences 
used for building multiple sequence alignments. Thus, 
specific PSSMs generated from functional related sequences 
can improve the sensitivity of protein classification. 
 In this study, we implemented an integrated pipeline for 
protein classification using specific PSSMs and considering 
proteins with the same name based on the observation that 
biologists tend to assign related genes or proteins similar 
names. Sequences are clustered on the basis of their 
evolutionary distances. After selecting a target group using 
Jarccard distance, specific PSSMs are generated from 
sequences in the target group. Finally, each group is 
represented using specific PSSMs.  
 In next section, we describe the background information 
of tools and resources used in the pipeline. We will then 
introduce our classification pipeline. A case study based on 
p53 (tumor suppressor protein) is provided in detail. 
 

2 Method and Resources 

2.1 Tools and Resources 

 The tools in this study contain PSSM and RPS-BLAST 
(Reverse Position specific iterative-BLAST). A PSSM profile 
is a position-specific scoring matrix with 21 columns and M 
rows where M is the length of probe. Each row matches a 
sequence position of the probe [6]. The first 20 columns in 
each row show the score for searching each of 20 amino acid 
residues at the specific position of the target sequence. A 
penalty for insertions or deletions (INDELs) at each position 
of the target sequence is encoded in the 21st column. When a 
target sequence is compared with PSSMs, the highest score or 
scores above a specified threshold are retained as outputs [6]. 
RPS-BLAST searches homologous sequences in the inverse 
way of PSI-BLAST [7]. Thus, it reverses the role of a 
sequence and PSSMs, comparing a query sequence against a 
library of position-specific scoring matrices (PSSMs).  
 The resources used in the study include UniProtKB, a 
comprehensive knowledgebase about protein sequences and 
functional information, BioThesaurus, a comprehensive 
collection of gene/protein names collected from over 30 
molecular databases for UniProtKB records, and several 



gene/protein family classification and functional annotation 
knowledge bases including PANTHER, PIRSF, and Gene 
Ontology. The following summarizes them. 
 UniProtKB provides the scientific community with a 
comprehensive, high-quality and freely accessible resource of 
protein sequence and functional information [8, 9]. It consists 
of a manually annotated and reviewed component, Swiss-
Prot, and an automatically annotated component, TrEMBL. 
Proteins with sequence similarities of 50% or 90% were 
grouped into UniREF50 and UniREF90 clusters [10].   
 BioThesaurus is a thesaurus aiming to provide a 
comprehensive collection of protein and gene names for 
protein records in the UniProtKB. Currently covering six 
million proteins, the latest version of BioThesaurus consists 
of over eight million names extracted from multiple molecular 
biological databases according to the database cross-
references in UniProtKB and iProClass [11].  
 The PANTHER (Protein ANalysis THrough Evolutiona- 
ry Relationships Classification System) is a resource that 
classifies genes by their functions, using published scientific 
experimental evidence and evolutionary relationships to 
predict function even in the absence of direct experimental 
evidence [12]. Proteins are classified by expert biologists into 
families and subfamilies of shared function, which are then 
categorized by GO terms.  
 The PIRSF (Protein superfamily classification system) is 
a protein classification system based on the domain 
information of the whole proteins. It provides comprehensive 
and non-overlapping clustering of UniProtKB sequences into 
a hierarchical order to reflect their evolutionary relationships 
[13]. 
 Gene Ontology (GO) presents a structured vocabulary 
about biological roles of gene and proteins from different 
species [14]. GO defines three different parts including 
molecular function, biological process and cellular 
component. GO terms are organized in directed acyclic 
graphs (DAG) whose nodes have child-parent relationships 
[14].   
 PHYLIP (Phylogeny Inference Package) is a package of 
programs for inference of phylogenies from sequences.  Data 
types of the package include molecular sequences, gene 
frequencies, restriction sites and fragments, distance matrices, 
and discrete characters. Methods in the package are to 
generate distance matrix and consensus trees, and calculate 
bootstrapping, parsimony, and likelihood [15]. 
 

2.2 Method 

 Figure 1 shows the pipeline that consists of three 
modules. The first module is to collect sequences from public 
databases based on names collected in BioThesaurus, then 
calculate evolutionary distances among sequences, and finally 
cluster proteins in groups on the basis of their evolutionary 
distances. 
 The second module is to characterize clustered groups 
by measuring the dissimilarity between the groups and 
reference protein families in PIRSF and PANTHER. After 

calculating the relative frequencies of domain architectures 
and Gene ontology terms which each protein family has, we 
use weighted Jaccard distance to measure their dissimilarity. 
Jaccard distance is generally used to measure dissimilarity 
between sample sets [16], and is calculated by subtracting the 
Jaccard coefficient from 1 in equation (1) and (2). Then, we 
give a relative frequency weight  to Jaccard distance for 
reflecting the number of domain architectures or GO terms. 
Since the sum of the relative frequencies of domain 
architectures or GO terms is 1 in a protein family, we assume 
that the probabilities that protein family C1 and C2 have the 
same domain architecture or GO terms are P(C1) and P(C2).  
Then, the weight is defined in equation (3) assuming 
independency and mutual exclusiveness. We finally define 
weighted Jaccard distance in equation (4) : 

Figure 1: Diagram showing the workflow of the pipeline 
for protein classification 
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 The third module is to identify the characteristics of a 
protein using specific PSSMs. After selecting a target group 
for the classification, we generate specific PSSMs using 
sequences in the group.  PSSM generally describes the 
distribution of residues at each position in a conserved pattern 
such as motif or domain. Thus, if we generate specific PSSMs 
using sequences in a specific group, the specific PSSMs can 
allow us to identify proteins whose functional charactersitics 
are similar to the specific group in novel proteins or 
proteomes.  
 Based on this assumption, a pipeline first generates 
PSSMs from sequences which have similar domain 
architectures and functional GO terms. Second, each query 
sequence is searched against the specific PSSMs using RPS-



BLAST. If the alignments returned from the search do not 
satisfy our e-value threshold, they are filtered out. Then, 
given the alignments to specific PSSMs, a residue score is 
calculated. For every alignment returned from the RPS-
BLAST search of each query against specific PSSMs, each 
amino acid of a query which is identically or positively 
(identical, but conserved) aligned is scored with BLOSUM62 
score for the aligned pairs. These scores are summed for each 
amino acid of the query (i.e., residue score). The specific 
score for a query protein is calculated using equation (5). 
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where n is the length of a protein sequence and ip  is a 

positional score of ith amino acid of the protein. 
 

3 Results 
 To validate the performance of our pipeline, we first 
selected p53 tumor suppressing protein as a key word. Using 
BioThesaurus, we collected 205 sequences, which have the 
entity name as “p53”, and 3204 sequences, whose sequence 
similarities are over 50%, from UniProtKB, based on 
UniREF50. We calculated evolutionary distances among 
these sequences using phylip library and clustered them into 
38 groups. 
 

Table 1. The weighted Jaccard distances of domain 
architecture and functional GO term between group1 and 
protein families in PIRSF. 

 

Figure 2: The identification of conserved regions in a protein 
sequence using specific PSSMs. (a) domain regions predicted 
by BLAST (b) the distribution of residue scores (c) the 
conserved regions predicted by the new pipeline using 
specific PSSMs. 

 To test the accuracy of the prediction, we selected 76 
sequences as a positive dataset and 155 sequences (RRM: 37, 
non-nucleic binding protein: 127) as a negative dataset. Then, 
we calculated sensitivity, specificity, and accuracy using 
equation (5), (6), and (7). The pipeline did not identify any 
conserved region in proteins not related to p53 proteins, the 
sensitivity, specificity, and accuracy of the pipeline are 100%. 
 
                T PSensitivity =  100%

T P FN



                    (5)            
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
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                     (6) 

 Calculating the weighted Jaccard distances of these 
groups against protein families in PIRSF, the weighted 
Jaccard distance of the biggest group is very close to 
PIRSF002089 (tumor suppressor p53) in Table 1. Among 111 
sequences in the group, we selected 35 reviewed sequences 
for the generation of specific PSSMs. We then chose 76 
sequences as a positive dataset, and 26 RRM (Rna 
Recognition Motif)s and 127 non-nucleic binding proteins as 
a negative dataset. 

        T P T NAccuracy =  100%
T P T N FP FN

 
  

          (7) 

 

Table 2. The sensitivity, specificity, and accuracy of positive 
and negative datasets about p53 proteins.  

 

 Shown in Figure 2, the specific PSSMs successfully 
identified the conserved patterns related to p53 in a sequence 
of testing dataset. X-axis represents the position of amino 
acid, and Y-axis represents residue score. Since Figure 2 (b) 
shows only the distribution of residue scores, we filtered 
residue scores using smoothing filter for the identification of 
conserved regions. Shown in Figure 2 (c), the conserved 
regions match the domain regions identified by BLAST. This 
indicates that our pipeline can predict the conserved regions 
such as domains or motifs in a protein sequence using specific 
PSSMs. 

 For further validation, we identified p53 related proteins 
in human proteome. In fact, after downloading 86,718 
proteins from International Protein Index (IPI) site, we did 
high-throughput analysis of these proteins using specific 
PSSM for p53 proteins. Among 86,718 sequences, we 
identified 12 of p53, 13 of p63, and 10 of p73 proteins. 
 Even though we used specific PSSMs for p53 proteins, 
our pipeline identified tumor-related proteins including p63 
and p73 proteins in the proteomic analysis. In 2009, Dr. 
Vladimir’s group proved that they are evolutionary close to 
each other and they have very similar structures [17]. Because 
of that, our pipeline captured all of p53, p63, and p73 proteins  



in human proteome. Therefore, these two experiments suggest 
that, generating functional specific PSSMs for sequences with 
similar functional characteristics is able to identify new 
proteins that have similar characteristics.  

 

4 Conclusions 
 Many protein databases use homology-based approaches 
to build protein families and improve their protein 
annotations. While these protein families provide important 
resources for biologists to predict structures and functions of 
novel proteins, it is not clear how well those protein families 
capture the characteristics of proteins. Generally, we use 
sequence similarity, domains (or domain architectures), and 
GO terms to annotate proteins. Since protein families are used 
to infer protein annotations, proteins from the same family 
should tend to share similar GO terms and domain 
architectures. The names of biological entities related to these 
proteins can also be shared. 
 Based on the above, we add reliable information related 
to the characteristics of protein families into a pipeline for 
protein classification. As we use sequences which are 
collected on the basis of similar domain architectures and 
functional GO terms for specific PSSMs, these specific 
PSSMs allow RPS-BLAST to identify proteins which have 
similar characteristics in human proteome with high accuracy. 
Thus, this study suggests that additional information such as 
the entity name, evolutionary distance, domain architecture, 
and functional GO terms besides sequence similarity is 
helpful in improving protein classification. Finally, the 
integration of different methods in different fields into one 
pipeline can be cornerstone to implement a unified protein 
classifier. 
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