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Abstract— The emerging confocal fluorescence endomicro-
scope is capable of imaging living tissues in a non-invasive
way using a probe to continuously scan the surface and sub-
surface tissue structures. Due to possible tissue movement
and tissue expansion/contraction, the acquired images con-
tain various noises and distortions. It is necessary to align
these images in order to obtain a better 3D reconstruction of
the tissue’s microstructure for clinicians. In this paper, we
present an automatic image registration method using the
phase correlation technique, which uses a fast frequency-
domain approach to estimate the relative transformation pa-
rameters between two consecutive endomicroscopy images.
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1. Introduction
The confocal fluorescence endomicroscope (Fig. 1) is a

newly developed endoscopic tool that makes it possible
to carry out in vivo microscopic observations of living
subjects with about 1000-time magnification and subcellular
resolution [1], [2], [3]. An endomicroscope is more powerful
than a microscope or an endoscope which generally needs
biopsy and carries the risk of causing bleeding, infection,
perforation, or mechanical agitation that may lead to the
spread of tumor cells through the blood and lymphatic
vessels [4]. In addition, a microscope or an endoscope can
only see the surface layer without depth resolution.

As illustrated in Fig. 2, the endomicroscope operates
in a non-invasive way. By placing the probe on the sur-
face of the target subject, it enables direct observation of
molecular mechanisms by continuously scanning the surface
and subsurface tissue structures without removing tissues
from the body or sacrificing animals. The fluorescence
imaging parameters are optimised for a wide range of tissues
including brain, intestine, lungs, colon, kidneys, muscle,
heart, liver, and pancreas. Thus, molecular imaging of dif-
ferent types of tissues and diseases is becoming feasible,
and thus has the potential to facilitate early diagnosis of
cancers. Compared with other multi-million pounds imaging
instruments such as magnetic resonance imaging (MRI)
scanners [5], [6] and X-ray computed tomography (CT)

Fig. 1: The in vivo cellular imaging system using an en-
domicroscope.

scanners [7], [8], the endomicroscope is of much lower cost
(£100K). While MRI and CT are widely used in disease
diagnosis by acquiring global information from the scanned
subjects, the new technique of endomicroscopy can provide
complementary local information in detail for the clinicians,
thus further improving disease diagnosis accuracy. This will
provide profound health benefits to society. The technique
will also enable further advancement in the field of basic
cell biology, aid our understanding of the mechanism of
disease progression, and allow monitoring of drug effects
at the cellular level.

Before the imaging process is carried out, a fluorescence
dye is injected into the target subject. After half an hour,
the endomicroscope probe is placed on the subject’s surface.
The probe begins to scan an area of 475μm× 475μm (field
of view) from the surface layer. Once an image is acquired
and saved, it continues to scan the subsurface layer (4μm
below the surface) by adjusting the laser illumination within
the probe. This process continues until the laser light reaches
the deepest layer (250μm below the surface). Finally, a stack
of 60 slice images is obtained with a resolution as high as
1024 × 1024. Then the probe may be moved to a new site
to capture another image stack.

The acquired endomicroscopy images are quite different
from natural images in several aspects: (1) the images are
molecular imaging of the living tissues across a 475μm ×
475μm area, (2) they are usually magnified by 1000 times
by the microscopic probe, (3) the images are labelled with
photosensitisers that selectively accumulate within the tissue,



Fig. 2: The endomicroscopy images of mouse brain microvasculature at different z-depths and its 3D reconstruction.

(4) the fluorescence images are much noisier due to low
signal to noise ratio, (5) the images are non-uniformly
illuminated, and (6) the images are translation-, rotation-,
and scale-variant. To reconstruct the 3D microstructure of
the living tissue, we need to first register/align consecutive
slice images. The challenges are twofold. On the one hand,
each of the arbitrarily taken slice images suffers from vari-
ous distortions due to possible tissue movement and tissue
expansion/contraction. On the other hand, beyond a certain
time frame, the 3D volumetric images may be different due
to physiological changes.

Image registration or image alignment algorithms can be
classified into two categories: spatial-domain methods and
frequency-domain methods. One of the images is referred
to as the reference and the second image is referred to as
the target. In this work, we present a phase correlation-
based image registration algorithm, which finds the trans-
formation parameters while working in the frequency do-
main. Applying the phase correlation method to a pair of
images produces a third image which contains a single
peak. The location of this peak corresponds to the rela-
tive translation between the images. Compared with the
spatial-domain algorithms such as intensity-based correla-
tion methods [9], feature-based methods [10], and graph-
theoretic methods [10], the phase correlation method is
resilient to noise, occlusions, and other defects typically in
the biomedical images. Additionally, the phase correlation
uses the fast Fourier transform (FFT) to compute the cross-
correlation between the two images, generally resulting in
large performance gains. The method can be extended to
determine rotation and scaling differences between two im-
ages by first converting the images to log-polar coordinates.
Due to properties of the Fourier transform, the rotation and
scaling parameters can be determined in a manner invariant
to translation.

2. Theoretical Analysis
Assume two images I1(x, y) and I2(x, y) with a displace-

ment (x0, y0), i.e., I2(x, y) = I1(x− x0, y − y0). Applying

the Fourier transform, we have,

I2(u, v) = e−j2π(ux0+vy0)I1(u, v). (1)

The cross-power spectrum of the two images is defined
as,

I1(u, v)I
∗
2 (u, v)

|I1(u, v)I∗2 (u, v)|
= ej2π(ux0+vy0), (2)

where I∗2 (u, v) is the complex conjugate of I2(u, v). The
Fourier shift theorem guarantees that the phase of the cross-
power spectrum is equivalent to the phase difference between
the images.

By applying the inverse Fourier transform to the above
phase difference, we have an impulse function r(x, y) =
δ(x−x0, y−y0). The location of its peak value corresponds
to the displacement that is needed to optimally register
the two images. Fig. 3 shows the flowchart of the phase
correlation technique.

The advantage of this method is that the discrete Fourier
transform and its inverse can be performed using the fast
Fourier transform, which is much faster than intensity-based
correlation for large images. In practice, it is more likely that
I2(x, y) will be a simple linear shift of I1(x, y), rather than
a circular shift as required. In such cases, r(x, y) may not
be a simple delta function, which can possibly reduce the
performance of the method. Therefore, a window function
such as the Hamming window [11] should be employed
during the Fourier transform to reduce edge effects, or the
images should be zero padded so that the edge effects can be
ignored. If the images consist of a flat background, with all
detail situated away from the edges, then a linear shift will
be equivalent to a circular shift, and the above derivation
will hold exactly. For periodic images such as a chessboard,
phase correlation may yield ambiguous results with several
peaks in the resulting output.

The method can be extended to determine the rotation and
scaling differences between two images by first converting
the images to the log-polar coordinates. Assume I2(x, y)
is a translated, rotated, and scaled replica of I1(x, y) with
displacement (x0, y0), rotation θ0, and scale s, according
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Fig. 3: The phase correlation technique.

to the Fourier translation, rotation, and scale properties, we
have,

I2(u, v) = e−j2π(u′x0+v′y0)I1(su
′ cos θ0 − sv′ sin θ0,

su′ sin θ0 + sv′ cos θ0). (3)

Assume F1(u
′, v′) = |I1(u′, v′)| and F2(u, v) =

|I2(u, v)| are their Fourier magnitude spectra, we have,

F2(u, v) = F1(su
′ cos θ0−sv′ sin θ0, su′ sin θ0+sv′ cos θ0),

(4)
i.e.,

u = s(u′ cos θ0 − v′ sin θ0),
v = s(u′ sin θ0 + v′ cos θ0). (5)

In the polar coordinate system, we have,

u = ρ cos θ,

v = ρ sin θ, (6)

and

u′ = ρ′ cos θ′,
v′ = ρ′ sin θ′, (7)

By combining Eqs. (5)-(7), we have,

u = s(ρ′ cos θ′ cos θ0 − ρ′ sin θ′ sin θ0),
= sρ′ cos(θ′ + θ0),

= ρ cos θ, (8)
v = s(ρ′ cos θ′ sin θ0 + ρ′ sin θ′ cos θ0),

= sρ′ sin(θ′ + θ0),

= ρ sin θ, (9)

i.e.,

ρ = sρ′ ⇒ ρ′ = ρ/s,

θ = θ′ + θ0 ⇒ θ′ = θ − θ0. (10)
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Fig. 4: The flowchart of the phase correlation-based image
registration.

Thus, the Fourier magnitude spectra F1(u
′, v′) and

F2(u, v) in the polar representation are related by,

F2(ρ, θ) = F1(ρ/s, θ − θ0). (11)

By converting the axes to logarithmic scale, we have,

F2(log ρ, θ) = F1(log ρ− log s, θ − θ0), (12)

i.e.,
F2(α, θ) = F1(α− β, θ − θ0), (13)

where α = log ρ, β = log s. Thus, the problem becomes one
with relative translation only. Applying the phase correlation
technique, we can find the scale s = eβ and rotation θ0.

After scaling and rotating I2(x, y) by the amounts of s
and θ0 respectively, the translation parameters x0 and y0
can then be obtained using the phase correlation technique.
Fig. 4 summarises the process of the phase correlation-based
image registration approach.

3. Experimental Results
To evaluate the performance of the algorithms, we perform

a series of experiments on several sets of confocal fluores-
cence endomicroscopy images. Note that all the images in



Fig. 5: Mouse tongue images (1024×1024) with displace-
ment. (a) The original reference image and (b) the target
image.

Fig. 6: The Fourier spectrum of the original reference image
and the phase correlation image of the tongue images, where
the translation parameters is estimated as: x=1, y=49.

the following figures are largely reduced for display purpose.
First, we apply the phase correlation technique to a pair of
mouse tongue images, as shown in Fig. 5. Fig. 6 shows
the Fourier spectrum of the original reference image and the
inverse Fourier transform of the cross-power spectrum of the
tongue images. We can see a peak in the phase-correlation
image approximately at (1, 49). Theoretically, the peak value
should be equal to 1.0. However, the presence of dissimilar
parts and the noise in images reduce the peak value. The
aligned target image is illustrated in Fig. 7. Experimental
results conducted on a pair of mouth images are shown
in Fig. 8. From these results, we can see that the phase
correlation technique does not work without preprocessing
the endomicroscopy images.

In order to obtain a reasonable estimation of the trans-
lation parameters, we filter the original endomicroscopy
images by a Laplacian filter to remove high-frequency
components in the frequency domain. Fig. 9 shows the
Fourier spectrum of the reference tongue and mouth images
after applying the Laplacian filter and their aligned target
images. The improved results demonstrate that by applying
the Laplacian filter, the phase correlation is applicable to the
endomicroscopy images with displacement.

Fig. 10 shows registration results on the mouse tongue
(another pair) and mouse brain microvasculature images.

Fig. 7: The aligned mouse tongue images with white-pixel
padding.

Fig. 8: The mouth image pair (1024×1024) with displace-
ment. (a) The original reference image, (b) the target image,
(c) the phase correlation image with the estimated translation
parameters: x=2, y=159, and (d) the aligned tongue images
with white-pixel padding.

From these experimental results, we can see that the phase
correlation method is a robust approach for the estimation
of the transformation paraments, leading to good image
registration results.

4. Conclusions
In this work, we have developed a phase correlation-

based registration approach for estimation of the relative
transformations in the consecutive endomicroscopy images.
The experimental results conducted on different sets of
images reveal that the phase correlation-based alignment can
be performed in real time and is robust to noise, occlusions,
and other defects existing in the images. The good align-
ment between consecutive slice images will directly benefit
the subsequent 3D reconstruction and visualisation of the



Fig. 9: The phase correlation results after applying the
Laplacian filter. (a) The Fourier spectrum of the filtered
reference tongue image, (b) the aligned tongue image using
the estimated translation parameters (x=36, y=27) by phase
correlation, (c) the Fourier spectrum of the filtered reference
mouth image, and (d) the aligned mouth image using the
estimated translation parameters (x=133, y=89).

living tissue’s microstructure. It will enable clinicians to
navigate within the living tissue freely, leading to a much
more clinician-friendly imaging tool, and more definitive
diagnostic results of various diseases including early-stage
cancers, in a non-invasive way. This will provide profound
health benefits to society.
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Fig. 10: The alignment results of mouse tongue and brain microvasculature images (1024×1024). (Left column) The original
reference images, (middle column) the target images, and (right column) the aligned images with white-pixel padding.


