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Abstract— Microarrays are broadly used for high-
throughput gene expression analyses in molecular biology
and medicine. Nevertheless, the quality of the technology
is still capable for further improvements. One of the
main problems is cross-hybridization of the transcripts
to non-corresponding probes on the array by unspecific
binding.

Four different Affymetrix GeneChip arrays are analyzed,
namely the Human Genome arrays HG-U133A, HG-U133B,
HG-U133 Plus 2.0 and the Mouse Genome 430 2.0 array. It
is shown that putative cross-hybridizations are common for
the examined arrays (e.g., 45 % of all probes for the U133A).
Furthermore, a considerable amount of probes does not
match the annotated transcript correctly. A new set of CDFs
is created avoiding putative cross-hybridization completely.
It is compared with three other CDFs (Affymetrix, Dai et al.,
Ferrari et al.) with the help of correlation between microar-
ray and qRT-PCR results for two datasets. The newly created
and the Ferrari CDFs perform significantly better than the
original Affymetrix CDFs. The new CDFs are available as R-
packages at http://www.sysbio.hki-jena.de/software and have
been submitted to BioConductor.
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1. Background
Microarrays are broadly used for high-throughput gene

expression analyses in molecular biology and medicine.
They are applied to measure changes in expression levels for
thousands of genes simultaneously. Until 2011, more than
20,000 measurement series based on microarray technology
have been published in public repositories like NCBI’s Gene
Expression Omnibus.

Nevertheless, the quality of the technology is still capable
for further improvements [1], [2]. Several studies tried to
compare data derived from different types of arrays and
showed a rather poor consistency [3], [4]. Although mi-
croarrays are commonly used, this is a daunting problem.
In addition, although there has been extended work on this
field [5], there is still a lack of standardized experimental
protocols among different laboratories [6].

The main problem of microarray analysis is unspecific
binding of transcripts by cross-hybridization. This means
that RNA fragments hybridize to a probe which is not
designed for this gene. It was shown that fragments longer
than 8 nucleotides are able to hybridize and that cross-
hybridization can emerge from alignments ranging from 10
to 16 nucleotides. Further, the 5’-ends were found to cross-
hybridize more likely than the 3’-ends [7].

Unspecific binding may lead to false-positive and false-
negative results following in incorrect hypotheses about
gene expression [8], [9]. Affymetrix, a technology widely
used [10], accounts for the influence of cross-hybridization
by introducing internal controls: each probepair comprises a
Perfect Match (PM) and a Mismatch (MM) probe which
are statistically evaluated [11]. Unfortunately, this proce-
dure cannot solve the problem of cross-hybridization com-
pletely [12] and further refinements are suggested [13]. For
example, Wu et al. [7] stated that the MM probes can also
cross-hybridize, even though by another mechanism as the
PM probes. Therefore, they recommended ignoring the MM
probes.

Generally, expressed transcripts are represented on the
array by a series of probepairs called probesets. The signal
intensities are summarized to a single value per probeset. A
large number of single transcripts are represented by multiple
probesets. Multiple probesets representing the same gene are
expected to show similar fold changes calculated from the
signal intensities of the hybridized samples. However, this
is in fact not the case [14], [15], [16]. This problem arises
from single probes in the probeset which are capable of
cross-hybridization. Ways to deal with this problem is either
a probe-based analysis, leaving out the probe-to-probeset
summarization step [17], [18], or the composition of the
probesets could be improved by setting up alternative Chip
Definition Files (CDFs) based on information contained in
different sequence databases. For example, the group of
Ferrari et al. [19] created a set of custom CDFs based on
the GeneAnnot database [20]. In these CDFs the probesets
that match the same gene were merged into one probeset.
Hence, the existence of more than one probeset per gene
was eliminated, avoiding discordant expression signals for
the same transcript.

Another set of custom CDFs relying on a broad repertoire



of databases like RefSeq or Unigene has been created by
the group of Dai et al. [21]. Probesets matching the same
gene were merged, but remained divided if they were able
to discriminate different isoforms of a gene. Probes causing
cross-hybridizations were removed from the new probesets,
but the filter had been not very strict.

Several groups dealt with the question of the minimum
probeset size [19], [21]. For example, the group of Lu et
al. [22] sets the minimum probeset size to 4 probes because
smaller probesets result in high error rates. In this study the
minimum probeset size was set to 4 [19], [21]. From these
new probesets custom CDFs and the corresponding Biocon-
ductor libraries for Affymetrix GeneChips were created.

In the work presented here, a new set of CDFs is in-
troduced avoiding putative cross-hybridization completely.
These CDFs are compared with those from Affymetrix,
Ferrari, and Dai by validation of the respective microarray
results using qRT-PCR for two different datasets.

2. Results
Four different Affymetrix GeneChip arrays are analyzed,

namely the HG-U133A, HG-U133B, HG-U133 Plus 2.0
designed for human samples, and the Mouse Genome 430
2.0 array. For the detection of putative cross-hybridizations,
the sequences of all Affymetrix probes (only the PM probes,
the MM probes are discarded) are aligned against the RefSeq
database using blastn [23] as described in the methods
section.

The GeneChip HG-U133A consists of 22,283 probesets,
each of 11–20 probepairs and 247,937 probepairs in total.
Additional 1,155 probepairs are controls and are furthermore
ignored. About 44 % of the PM probes (109,245) match
exactly one single gene. 11 % of the probes (26,159) do not
match any annotated gene. 45 % of the probes (112,533)
match more than one gene and thus have cross-hybridization
potential.

Furthermore, the direction of the probes was analyzed.
Normally, sense strand RNA fragments are expected, al-
though there are some loci in the human genome [24], as
well as in the mouse genome [25], where both sense and
antisense strands are transcribed. However, mixing up probes
detecting sense or antisense strands in one single probeset
could cause wrong expression results. Here, only probes
matching the sense strand are considered as correct. For the
U133A microarray all probes match the sense strand.

The GeneChip HG-U133B consists of 22,645 probesets,
each of 11–20 probepairs and 249,491 probepairs in total.
Again, there are additional probesets containing more than
11 probes as controls and are ignored (1,100). About 35 %
of the probes (87,067) are found to match exactly one gene.
2 % of the probes (5,453) match more than one gene, so
they possibly cross-hybridize, 5 % of the probes (12,805)
match at least one gene but in the wrong direction (antisense

direction) and no gene in the sense direction, and 58 % of
the probes (144,166) do not match any annotated gene.

The GeneChip HG-U133 Plus 2.0 consists of 54,675
probesets and 604,247 probepairs. Like in the other arrays,
additional probesets containing more than 11 probes are
controls and are discarded. Here, 37 % of the remaining
probes (221,821) match exactly one gene, 23 % of the probes
(141,146) match more than one gene, 11 % of the probes
(65,327) match at least one gene but in the wrong direction
(antisense direction) and no gene in the sense direction, and
29 % of the probes (175,953) do not match any annotated
gene.

The Mouse Genome 430 2.0 array consists of 45,036
probesets and 496,457 probepairs. About 52 % of the
counted probes (257,331) match exactly one gene and 5 %
of the probes (27,112) match more than one gene. About
1 % of the probes (4,661) match genes only in the wrong
direction and 42 % of the probes (207,353) do not match
any annotated gene.

Nearly all Affymetrix probesets contain at least one probe
which has cross-hybridization potential. In fact, for the HG-
U133 Plus 2.0 Chip about 65 % of all probesets include
more cross-hybridizing probes than non-ambiguous ones.

All probes matching exactly one single gene are classified
as good and all probes matching more than one gene are
classified as problematic. Those probes, that match in the
wrong direction or do not match any RefSeq sequence are
also classified as problematic. Only the good probes are
used to create the new CDFs as described in the methods
chapter. Accordingly, for the HG-U133A microarray origi-
nally measuring 14,500 genes by 22,283 probesets the newly
created CDF contains 12,400 probesets representing 12,400
genes. For the HG-U133 Plus 2.0 the number of probesets is
reduced from 54,675 (representing 38,500 genes) to 18,800
(representing 18,800 genes). The HG-U133B comprises
22,645 probesets measuring the expression of 18,400 genes.
Here, the number of probesets is reduced to 6,500 matching
6,500 transcripts. The Mouse 430 2.0 microarray consists
of 45,036 probesets for 39,000 genes. With the new CDF
there are 16,400 probesets matching 16,400 genes. Hence,
the number of identifiable genes is reduced in order to
achieve a higher specificity of the probesets. The result for
the HG-U133 Plus 2.0 is in good agreement to the results
of Barnes et al. [26], who used BLAT and the Golden Path
database and achieved a number of 17,143 genes that can
be measured.

Small probesets lead to higher error rates and result in
lower statistical significance. In the Affymetrix CDFs the
size is 11 for nearly all probesets, but in the newly created
probesets the size is not fixed. Some probesets are smaller
than those from Affymetrix due to the removal of the
problematic probes. However, many probesets increase in
size due to useful probes on the array that have not been
used for the matching gene before and probesets measuring



the same gene beeing merged. For example, for the HG-
U133 Plus 2.0 the mean probeset size increases from 11 to
17.

For the validation of all CDFs two test datasets are chosen:
(i) the Etanercept (ETC) and (ii) the MAQC dataset. The first
of the two datasets is derived from a study analyzing the ef-
fect of the TNF-α blocker Etanercept, a rheumatoid arthritis
drug, using data from 17 patients at three time points [27]. It
is a typical dataset that arises in medical studies and is rather
representative. One Affymetrix HG-U133A array experiment
was performed for each time point. The second dataset is the
Microarray Quality Control (MAQC) reference dataset [28].
It contains data from more than 1,300 microarrays and qRT-
PCR data for more than 1,000 genes. The subset of the 120
Affymetrix U133 Plus 2.0 expression results and all the qRT-
PCRs are selected for the analysis presented here.

qRT-PCR results are considered to reflect the real tran-
script concentrations with higher reliability than those de-
termined by microarrays. Therefore, qRT-PCR experiments
are regarded as a ’gold standard’ for chip analyses [29], [30].
The Pearson correlation coefficient (PCC) of the microarray
and the qRT-PCR data is computed for each gene using the
different CDFs.

For the Etanercept dataset we performed qRT-PCR ex-
periments for 16 genes. In total, this dataset now contains
results from 51 microarrays and 816 qRT-PCR experiments.
In addition, the genes with qRT-PCR data in both records
are analyzed in more detail.

The perfomance of these CDFs were compared: the orig-
inal Affymetrix CDFs (A), the two alternative CDFs of
Ferrari et al. (F) [19] and Dai et al. (D) [21], and the
new CDFs (H) presented here. The CDFs from Ferrari,
using the GeneAnnot database, contain merged probesests
(see background chapter), and cross-hybridization was not
considered. The group of Dai offers a broad spectrum of
different CDFs based on different databases. The one using
RefSeq is chosen for comparison because it corresponds best
to the new CDFs, using RefSeq as well. In the Dai CDFs
different probesets matching a single gene are combined,
although there are exceptions for genes comprising different
isoforms. A check for cross-hybridization is also included.
However, it applies a different algorithm than the new CDFs
and the filter is much less strict.

For the probe to probeset summarization step two algo-
rithms are used as described in the methods section: (i)
the Robust Multi-array Analysis Algorithm (RMA) [13],
[31] and (ii) the Affymetrix Microarray Suite MAS5 [32].
These were compared repeatedly, but it is difficult or even
impossible to decide which of the both algorithms performs
better in any case [33], [34], [35].

For the Etanercept dataset, the mean correlation coef-
ficient of all 16 genes for the Affymetrix CDF is 0.61
using the robust multi-array analysis algorithm (RMA) and
0.60 using the Affymetrix Microarray Suite MAS5. These

values include 31 probesets in total matching these 16 genes
according to the Affymetrix annotation file. If only the best
correlating probeset for each gene is considered, the average
correlation coefficient increases to 0.73 for RMA and 0.71
for MAS5. However, this value is more of theoretical interest
because the knowledge which probeset will perform best is
gained not until the qRT-PCR experiments and correlation
analysis is finished. On average, the incorporated probe-
sets contain 5.58 putative cross-hybridizations calculated by
BLAST (4.47 including only the best performing probesets).

The Dai CDF contains 23 probesets for the 16 genes of
the Etanercept dataset. Their mean correlation coefficient
increases to 0.67 for both RMA and MAS5 compared to
the 0.60 using the Affymetrix CDF. Considering the best
correlating Dai probesets only, the values further increase
to 0.73 for RMA and 0.69 using MAS5. The mean size of
the Dai probesets increases to 20.59 probes containing 8.82
putative cross-hybridizations. This number changes to 4.71
if normalized to a probeset size of 11. Here, normalization
means the number of putative cross-hybridizations calculated
for a hypothetical Dai probeset size of 11. Considering
only the best Dai probesets, the number of putative cross-
hybridizations decreases to 7.88 on average.

For the Ferrari CDF, the mean correlation coefficient
equals 0.73 for RMA and 0.69 using MAS5 on average.
The mean probeset size increases to 19.56, harboring 10.81
possible cross-hybridizations (6.07 if normalized).

Using the new CDF the mean correlation coefficient
amounts to 0.72 for RMA and 0.68 for MAS5. The mean
probeset size decreases to 10.25 with no cross-hybridizations
at all. The detailed results are shown in the table below:

PCC PCC PCC Number of Probeset-
Gene Probeset ETC ETC MAQC ambiguous size

(RMA) (MAS5) (RMA) probes

TNF A: 207113_s_at 0.88 0.85 N/A 8 11
D: NM_000594_at 0.88 0.85 N/A 8 11
F: GC06P031652_at 0.88 0.85 N/A 8 11
H: gi_25952110 0.86 0.81 N/A 0 3

IL1B A: 205067_at 0.95 0.90 0.37 6 11
A: 39402_at 0.95 0.87 0.82 6 16
D: NM_000576_at 0.96 0.89 0.74 12 27
F: GC02M113303_at 0.96 0.89 0.74 12 27
H: gi_27894305 0.95 0.88 0.86 0 15

IL6 A: 205207_at 0.69 0.71 0.81 3 11
D: NM_000600_at 0.69 0.71 0.81 3 11
F: GC07P022732_at 0.69 0.71 0.81 3 11
H: gi_10834983 0.65 0.72 0.71 0 8

IL8 A: 202859_x_at 0.88 0.81 0.90 6 11
A: 211506_s_at 0.86 0.73 0.98 6 11
D: NM_000584_at 0.88 0.73 0.96 12 22
F: GC04P074845_at 0.88 0.73 0.96 12 22
H: gi_28610153 0.89 0.73 0.95 0 10

IL1RN A: 212657_s_at 0.75 0.87 N/A 2 11
A: 212659_s_at 0.77 0.84 N/A 4 11
A: 216243_s_at 0.75 0.86 N/A 6 11
A: 216244_s_at 0.13 0.07 N/A 4 11
A: 216245_at 0.21 0.11 N/A 10 11
D: NM_173841_at 0.80 0.88 N/A 12 33
D: NM_000577_at 0.80 0.88 N/A 12 33
D: NM_173842_at 0.80 0.88 N/A 12 33
D: NM_173843_at 0.84 0.86 N/A 15 42
F: GC02P113591_at 0.83 0.86 N/A 16 44
H: gi_27894315 0.78 0.88 N/A 0 23

ICAM1 A: 202637_s_at 0.63 0.73 0.97 7 11
A: 202638_s_at 0.62 0.72 0.98 4 11
A: 215485_s_at 0.71 0.73 0.94 3 11
D: NM_000201_at 0.70 0.76 0.99 14 33
F: GC19P010247_at 0.70 0.77 0.99 14 33
H: gi_4557877 0.72 0.74 0.97 0 20

SOD2 A: 215078_at 0.25 0.35 N/A 10 11
Continued on next page



PCC PCC PCC Number of Probeset-
Gene Probeset ETC ETC MAQC ambiguous size

(RMA) (MAS5) (RMA) probes

A: 215223_s_at 0.15 0.28 N/A 7 11
A: 216841_s_at 0.18 0.39 N/A 3 11
A: 221477_s_at 0.32 0.44 N/A 10 11
D: NM_001024466_at 0.16 0.33 N/A 6 12
D: NM_000636_at 0.19 0.37 N/A 10 22
D: NM_001024465_at 0.16 0.33 N/A 6 13
F: GC06M160020_at 0.20 0.36 N/A 20 33
H: gi_67782304 0.20 0.39 N/A 0 12

TRAF1 A: 205599_at 0.61 0.50 0.88 6 11
D: NM_005658_at 0.61 0.50 0.88 6 11
F: GC09M122704_at 0.61 0.50 0.88 6 11
H: gi_53759116 0.59 0.47 0.89 0 5

ZFP36 A: 201531_at 0.84 0.86 N/A 5 11
A: 213890_x_at -0.01 -0.46 N/A 8 11
D: NM_003407_at 0.84 0.86 N/A 5 11
F: GC19P044589_at 0.84 0.86 N/A 5 11
H: gi_141802261 0.85 0.82 N/A 0 6

PTGS2 A: 204748_at 0.91 0.71 0.97 4 11
D: NM_000963_at 0.91 0.71 0.97 4 11
F: GC01M184907_at 0.91 0.71 0.97 4 11
H: gi_4506264 0.89 0.72 0.95 0 9

TNFAIP3 A: 202643_s_at 0.78 0.82 0.97 4 11
A: 202644_s_at 0.87 0.85 0.93 6 11
D: NM_006290_at 0.82 0.83 0.96 10 22
F: GC06P138230_at 0.82 0.83 0.96 10 22
H: gi_26051241 0.80 0.82 0.98 0 13

DUSP2 A: 204794_at 0.75 0.66 N/A 5 11
D: NM_004418_at 0.75 0.66 N/A 5 11
F: GC02M096230_at 0.75 0.66 N/A 5 11
H: gi_12707563 0.74 0.60 N/A 0 6

ADM A: 202912_at 0.80 0.67 0.92 5 11
D: NM_001124_at 0.80 0.67 0.92 5 11
F: GC11P010283_at 0.80 0.67 0.92 5 11
H: gi_4501944 0.82 0.67 0.94 0 6

CROP A: 203804_s_at 0.44 0.56 N/A 5 11
A: 208835_s_at 0.43 0.36 N/A 5 11
A: 220044_x_at 0.43 0.44 N/A 4 11
D: NM_016424_at 0.49 0.50 N/A 13 32
D: NM_006107_at 0.49 0.45 N/A 13 30
F: GC17P046151_at 0.48 0.48 N/A 14 33
H: gi_52426741 0.46 0.47 N/A 0 17

NFκBIA A: 201502_s_at 0.81 0.73 N/A 4 11
D: NM_020529_at 0.81 0.73 N/A 4 11
F: GC14M034940_at 0.81 0.73 N/A 4 11
H: gi_10092618 0.82 0.77 N/A 0 7

JUNB A: 201473_at 0.44 0.44 0.94 7 11
D: NM_002229_at 0.44 0.44 0.94 7 11
F: GC19P012763_at 0.44 0.44 0.94 7 11
H: gi_44921611 0.54 0.44 0.73 0 4

Ø all Affymetrix 0.61 0.59 0.88 5.58 11.16
best Affymetrix 0.73 0.71 0.92 4.47 11.00
Dai 0.67 0.67 0.91 8.82 20.59
best Dai 0.73 0.69 0.91 7.88 18.69
Ferrari 0.73 0.69 0.91 10.81 19.56
Hummert 0.72 0.68 0.89 0.00 10.25

Evaluating the PM and MM probes statistically, the MAS5
software assigns ’present’, ’absent’ or ’marginal’ to each
expression value, and Affymetrix recommends to use only
the ’present’ detection call for further analysis. Following
this recommendation and using only those results for the
correlation analysis that are marked as ’present’ the mean
correlation coefficient increases from 0.59 to 0.66 (0.74
including only the best performing probesets). Hence, incor-
porating the Affymetrix detection call indeed improves the
correlation, but using alternative CDFs is still better than
using the Affymetrix probesets and the detection call.

Analyzing the MAQC reference dataset using the RMA
suite, the results are almost in accordance with those of
the Etanercept data described above. The mean correlation
coefficient for all 1,000 genes is 0.47 for the Affymetrix CDF
(0.71 incorporating only the best probeset for each gene).
Using the Dai CDF, the mean correlation increases to 0.63
(0.64 for the best probesets). With the Ferrari and the new
CDF the mean correlations are 0.63 and 0.58, respectively.
The detailed results for all MAQC genes can be downloaded.

Discussion
Results from microarray experiments contain considerably

high error rates [36]. Due to error propagation, it is of

particular importance to minimize errors in the beginning
of the analysis chain [37]. Therefore, especially the pre-
processing of the chip data has to be done as accurate
as possible. Many efforts were spent on these problems
before [38], such as the notable results of the ’Golden Spike
Project’ [6]. The question which statistical method should be
adequately chosen is even more complicated if experimental
data from different laboratories are incorporated in one
single analysis [39].

For microarray analyses algorithms are essential which
combine the 11-20 probepair intensities for a given gene and
define a measure of expression that represents the amount
of the corresponding mRNA species. In this study, two of
these algorithms are compared, the robust multi-array anal-
ysis algorithm (RMA) and the Affymetrix Microarray Suite
MAS5. Applying both algorithms to the Etanercept dataset
RMA outperforms MAS5 on average. Other studies revealed
similar results. However, their performance is assumed to be
dependent on the actual dataset [40]. In fact, normalisation
steps are applied after the probe to probeset summarization.
Some of these steps depend on global parameters (e.g. mean
of total gene expression) which depend on the total set
of probesets. Therefore, identical probesets within different
CDFs vary slightly in the final gene expression values.

Analyzing the probes of the Affymetrix microarrays dis-
closes many inaccuracies. A large number of problematic
probes are based on the fact that Affymetrix had to rely
on genome annotation available at the time the chips were
designed (U133A and U133B: 2001; U133 Plus 2.0 and
Mouse 430 2.0: 2003). Because genome annotation improves
permanently, the chip design does not properly match the
present annotations anymore. Due to compatibility reasons,
Affymetrix is not able to keep the design of their microarrays
up to date.

The problem of cross-hybridization is well known. The
first work on custom CDFs examining this error source was
published by the group of Dai in 2005 [21]. They created
a large amount of high quality custom CDFs related to
different reference databases. Some probes, causing cross-
hybridizations, are deleted from the probesets, but the filter is
quite loose, so the number of problematic probes decreased
but did not vanish. The use of the new CDFs can avoid full
length, i.e., 25 mer long, cross-hybridizations completely.
Cross-hybridization of shorter fragments are very difficult to
handle due to the fact that the number of putative bindings
grows exponentially the shorter the considered fragments
are. Hence, if all putatively cross-hybridizing probes are
excluded the amount of measurable genes will be reduced
extremely.

The underlying gene annotation which is used for se-
quence alignment has a big impact on the number of cross-
hybridizations. Manually curated mRNA sequences have a
high chance of missing transcripts. Therefore, the inclusion
of computational proposed gene annotations decreases the



number of false negative predicted cross-hybridizations. The
drawback is that a number of false positive hybridizations in-
creases. A more strict approach should be preferred, because
it does not significantly decrease the number of covered
transcripts as there is a high amount of availabe probes. In
this study, the exclusion of XM-RefSeq-accessions results in
smaller differences between the different CDFs in the num-
ber of putative cross-hybridzing transcripts. Interestingly, the
correlation coeefficents of the newly created probesets do not
change significantly.

Evaluating the four different CDFs, we figured out that
the usage of the original Affymetrix CDFs leads to poorer
results than the usage of the custom CDFs, although the best
Affymetrix probesets give equally good or even better results
than the other CDFs. However, as already mentioned, this
cannot be taken into account, because it is not known which
probeset will perform best before the correlation analysis
is completed. The Dai probesets perform better, but the
problem of several probesets representing a single gene had
not been solved. Although multiple probesets representing
the same gene are expected to show similar signal intensities,
this is in fact not the case [14], [15]. Thus, it is difficult to
decide which of the probesets matching the same gene is
the most reliable. The Ferrari and the new CDFs comprise
only one probeset per gene, which is of great advantage.
The Ferrari CDFs perform slightly better on the Etanercept
dataset and both CDFs perform equally well on the MAQC
data.

The analysis of the genes for which qRT-PCR results are
available in the Etanercept dataset as well as in the MAQC
dataset clearly shows higher correlation coefficients in the
MAQC dataset. This is most likely due to the fact that the
U133 Plus 2.0 arrays which were used in the MAQC dataset
outperform the older U133A microarrays.

The results show that probesets consisting of more probes,
i.e., larger probesets, lead to better correlation results in gen-
eral, whereas smaller probesets perform poorer. This finding
correlates to the results of the study of Cui et al. [14] that
merges probesets matching the same transcript. Interestingly,
probesets containing many putative cross-hybridizations do
not considerably perform poorer than probesets containing
only a few. This result is very surprising, because it is obvi-
ous that cross-hybridization is one of the main error sources
in microarray experiments [8], [9]. The normalization step
in the two summarizing algorithms RMA and MAS5 may
explain for that because they possibly eliminate some cross-
hybridization effects. Another explanation is that leaving out
the problematic probes does not compensate the influence of
cross-hybridization. Unspecific binding leads to two types
of error: (i) false-positives because RNA fragments bind to
problematic probes of the probeset, and (ii) gene expression
events are missed or underestimated, leading to a false-
negative error if the RNA fragments are already bound to
problematic probes of other probesets (competitive binding).

Custom CDFs can only account for the first type of error by
leaving out the problematic probes, the second effect could
only be overcome by better array design.

The newly created CDFs perform slightly poorer than the
Ferrari probesets (0.72 vs. 0.73) on the Etanercept dataset
and equally well on the much larger MAQC dataset. On
the one hand, the Ferrari CDFs can obviously countervail
the negative effect by their much larger probesets in com-
parison to the new CDFs. On the other hand, using the
new CDFs, putative cross-hybridizations are systematically
excluded whereas using the Ferrari CDFs, the negative effect
vanishes for statistical reasons due to the larger probesets.
For exact studies, it is better to avoid a putative error source
instead of averaging the cross-hybridization effects out as
the Ferrari CDFs do. In addition, it has to be mentioned
that the new CDFs provide as good or better results as the
other CDFs using only about half the amount of probes (HG-
U133A: 44 %, HG-U133B: 35 %, HG-U133 Plus 2.0: 37 %,
Mouse Genome 430 2.0 Array: 52 %). Hence, designing new
microarrays without the problematic probes, the dimension
can be reduced by half without loosing any information
and minimize the costs of the technology tremendously.
Future microarray design using only the good probes and
incorporating probesets of large sizes like in the Ferrari
CDFs will certainly provide optimal solutions.

Methods
Probe Analysis

For the detection of putative cross-hybridizations by
sequence alignment, the sequences of all Affymetrix probes
(only the PM probes, the MM probes are discarded) are
aligned against the RefSeq database using blastn [23]. For
the U133A and the U133 Plus 2.0 the RefSeq release from
05/14/07 was used (download from ftp://ftp.ncbi.nih.gov/-
refseq/H_sapiens/mRNA_Prot/human.rna.fna.gz), for
the U133B the realease from 01/10/08, and for the
Mouse 430 2.0 microarray the release from 05/09/08
(∼M_musculus/mRNA_Prot/mouse.rna.fna.gz) was used.
These parameters were applied: ValW = 7, ValE = 1000,
ValHspmax = 1.

In this work all those RefSeq accession numbers be-
ginning with XM or NM are used. The XM-identifiers
indicate mRNA-RefSeq-accessions which are produced by
computationally annotated genome submissions. The NM-
identifier show that the RefSeq records are subsequently
curated. Using both accessions in our model leads to more
predicted cross-hybridizations which increases the reliability
of the specificity of the probes.

The strand direction of the probes is analyzed. For each
probe it is counted how many genes match and checked
whether the match has the correct direction, i.e., the sense
direction.



All BLAST hits for different transcript isoforms are
merged, i.e., if the probe hybridizes to alternative splice
variants of one gene but not to another gene, it is considered
as unambiguous. Different gene isoforms of one gene are
identified by screening the gene descriptions of the RefSeq
database.

All probes matching only one single gene are classified
as good and all probes matching more than one gene are
classified as problematic. Those probes that match in the
wrong direction or do not match any RefSeq sequence
are also classified as problematic. For the creation of the
new CDFs only the good probes are used. The probe
sequences are annotated with GeneIDs derived from RefSeq.
The GeneID is a database cross-reference qualifier, which
supports access to the Entrez Gene database and provides
a distinct tracking identifier for a gene or locus. Probes
sharing the same GeneID are grouped together into a new
probeset. The intersection between two different probesets
is therefore always empty for all probesets. The size of the
newly created probesets is variable and not fixed to 11 like
in the Affymetrix CDFs.

Datasets
Two datasets were chosen for the validation of the differ-

ent CDFs. The first of the two datasets chosen is derived
from a study published by Koczan et al. [27] analyzing
the effect of the TNF-α blocker Etanercept, a rheumatoid
arthritis drug, using data from 17 patients at three time
points. One Affymetrix HG-U133A array was performed for
each time point. The data are available at the Array Express
archive [41] with the accession number E-MTAB-11.

Expression levels of 16 genes were measured by
quantitative real-time RT-PCR (qRT-PCR) performed with
TaqMan assay reagents according to the manufacturer’s
instructions on a 7900 High Throughput Sequence Detection
System (Applied Biosystems, Foster City, CA, USA) using
predesigned primers and probes (GAPDH Hs99999905_m1,
ICAM1 Hs00164932_m1, TNFAIP3 Hs00234713_m1,
IL1B Hs00174097_m1, NFκBIA Hs00153283_m1,
IL8 Hs00174103_m1, ADM Hs00181605_m1, TNF
Hs00174128_m1, IL6 Hs00174131_m1, IL1RN
Hs00277299_m1, SOD2 Hs00167309_m1, TRAF1
Hs00194638_m1, ZFP36 Hs00185658_m1, PTGS2
Hs00153133_m1, DUSP2 Hs00358879_m1, CROP
Hs00538879_s1, JUNB HS00357891_s1).

The threshold cycle values (CT ) for specific mRNA
expression in each sample were normalized to the CT values
of GAPDH mRNA in the same sample. This provides ∆CT

values that were used for the correlation analysis. In total,
816 qRT-PCR experiments were performed and complement
the 51 microarray experiments (17 patients, 3 time points)
described in [27]. The results of the qRT-PCR experiments
can be downloaded.

The second dataset is the Microarray Quality Control
(MAQC) reference dataset [28]. It contains data from more
than 1,300 microarrays and qRT-PCR data for more than
1,000 genes. All available 120 Affymetrix U133 Plus 2.0
expression results and all the qRT-PCRs are selected for
the analysis presented here. The MAQC data discussed in
this publication are available in NCBI’s Gene Expression
Omnibus with accession number GSE5350. In addition, the
nine genes for which qRT-PCR results are available in both
datasets, are analyzed in more detail.

Comparison of the CDFs
For the comparison of different CDFs, the correlation

between the microarray and the qRT-PCR experiments is
used [29], [30]. As a performance index the Pearson cor-
relation coefficient of the microarray results and the qRT-
PCR experiments is calculated. Calculation of the Spearman
correlation coefficient showed very similar results (data
available at http://sysbio.hki-jena.de/software).

The raw chip data (CEL Files) are analyzed using the Ro-
bust Multi-array Analysis Algorithm (RMA) [13], [31] and
the Affymetrix Microarray Suite MAS5 [32] in combination
with the different CDFs.

The MAS5 software assigns ’present’, ’absent’ or
’marginal’ to each expression value, and Affymetrix recom-
mends to use only the ’present’ detection call for further
analysis [32]. For an additional correlation analysis only
the ’present’ probesets are used to check if the calculated
detection call from MAS5 gives a good prediction for the
probeset quality.

Availability
The newly created CDFs as R-packages and additional

files are available for download at http://www.sysbio.hki-
jena.de/software. Using the CDFs does not interfere with
all further steps of microarray analysis.
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