
 

 
Abstract— As one of the more prominent areas of 

bioinformatics research, protein sequence analysis has gathered 
considerable interest. The structure, function, and activities of 
the protein are strongly linked to structural motifs found in its 
sequence data. Building off of past research, we propose a new 
granule model that combines the strength of fuzzy logic and 
granule computing, with the speed and robustness of a decision 
tree for the purpose of identifying and extracting protein motif 
data that transcends protein families. We propose parameters for 
the model and test their effectiveness using several measures of 
accuracy and quality. The end result, a decision tree example, is 
explored for its usefulness in this endeavor. 
 
Index Terms—FGK Model; Decision Forest; Entropy 

Threshold; Protein Sequence Motif; 

I. INTRODUCTION 

As one of the basic components of an organic body, 
proteins have been of prominent interest for many years now 
in various fields of study. As such, their shape, their functions, 
and the analysis thereof have become increasingly important. 
In the past, the process by which one would link both protein 
structure and shape to its function was through arduous and 
time consuming methods[1] that included well known 
processes such as crystallography[2], spectroscopy, and 
various others. However, in recent years, the promising field 
of bioinformatics and its accompanying data mining 
techniques has broken into novel ground by looking not 
directly at the shape of the protein, but rather at its base 
composition. Doing so allows the prediction of the three 
dimensional shape of the protein within an acceptable 
threshold of accuracy.  

To understand this, one must understand that a protein can 
be described by three basic categories: primary, secondary, 
and tertiary structure. A protein’s primary structure, or “base 
composition,” is its amino acid sequence. These are the 
building blocks of proteins and the repeating patterns therein 
are known as motifs. Each of these amino acids can have non-
covalent, intermolecular reactions with other amino acids 
within the protein, causing repeating patterns of folds and 
sheets within the protein’s structure. This localized 
substructure describes the protein’s secondary structure. 
Finally, the tertiary structure of the protein is the overall three 
dimensional shape. This is important because not only does 
the tertiary structure of a protein denote its function, but 

biochemical research and data would suggest a protein’s shape 
is heavily determined by its primary structure (assuming the 
absence of any denaturing agents, such as heat or acid)[3]. 
This supports the idea of using data mining and bioinformatics 
as a tool for analyzing the primary structure in order to predict 
the tertiary structure of a protein.  

Naturally, in order for analysis of protein data to occur, the 
data has to be both available and numerous, which suggests 
that databases are good repository of protein information. 
Three of the most popular protein databases would include 
PROSITE[4], PRINTS[5], and BLOCKS[6]. Each describes, 
in some detail, the various structures of the protein, and, to 
some degree, also supports the idea that reoccurring primary 
and secondary structural patterns suggest common tertiary 
structure.  

Various researchers have tried using such databases and 
numerous techniques[7] to glean some meaningful correlation 
between protein structure and its three dimensional shape. One 
such study by Han and Baker utilized their K-means clustering 
algorithm [8, 9]. Using said algorithm, the protein motifs 
discovered by it, and an additional algorithm, Hidden Markov 
Model [10], they were able to predict with some level of 
success the local tertiary structure of various proteins. In the 
previous works related to this paper, a Fuzzy C-means 
algorithm was used to initially break the data into ten subsets. 
A K-Means algorithm was then utilized to refine each subset. 
This combination (noted as the FGK Model), was used to not 
only analyze similarities among protein structures, but also to 
eliminate low quality data [11]. Support Vector Machines 
were then proposed to be used for the purpose of predicting 
the shape of the protein using the above analysis [12].  

Granted such, the methodologies proposed within this paper 
suggest the use of decision trees in the stead of SVM. This 
method would be used to adequately analyze a protein’s 
primary and secondary structure, as well as offer the ability to 
use such trees for the prediction of the protein’s tertiary 
structure.  

Decision tree algorithms offer output in an easy to 
understand format, showing precisely how the algorithm made 
its decisions [13, 14]. Unfortunately, the algorithm requires 
the calibration of several parameters, including entropy 
threshold, data classifiers, and labelers. This paper discusses 
how each parameter has been chosen for further research on 
the matter.  
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Therefore, the ID3 (Itemized Dichotomizer 3) decision 
tree[14] is being proposed to extend the before mentioned 
previous works related to this paper (the FGK Model)[11]. 
With its ability to define whether proteins belong to a given 
cluster, it will be instrumental in eliminating noisy or 
meaningless data. As the purpose is to discover small, 
sequential patterns within the amino acid sequence in order to 
relate to common tertiary structures, it is only natural that not 
all data will be important. Thus, in this paper, the use of the 
ID3 decision tree algorithm in order to relate patterns of 
primary and secondary protein structure to its tertiary structure 
will be discussed. Just as well, the processes by which its 
parameters are decided for this particular solution will be 
heavily discussed primarily through the use of statistical charts 
describing the output of the decision trees. The following 
sections of the paper will be arranged as such: methods 
(describing both present and past approaches used to solve this 
problem), experimental setup (describing the input in more 
detail, all utilized equations, etc.), results, future works, and 
conclusion.  

II. METHODS 

2.1 Data Set Challenges-Large and Random 
As one might suspect, to adequately analyze protein 

primary sequences, one must overcome the challenges the data 
presents. The sheer size of the dataset can make even fairly 
robust data mining techniques seem rather inadequate. 
Coupled with the inherent random and noisy nature of pulling 
data from various, somewhat disparate databases [4, 5, 6], the 
task becomes even more difficult. This is particularly 
despairing in the case of using a decision tree as it is fairly 
susceptible to outliers and random data. However, previous 
works suggest that a preliminary analysis of the data with the 
“FGK Model”[11], tackles both of the before mentioned 
problems with a promising level of success. The data can then 
be further and efficiency processed by the proposed ID3 
algorithm. 

Granted such, our previous works refers to the experiments 
of Wei et al [15], which handles, specifically, the randomness 
aspect of the protein data set. Using the basic idea of the K-
Mean clustering algorithm, one will note that all initial 
centroids are randomly chosen. This potentially renders the 
algorithm worthless in data that is fairly random in the first 
place. Instead, they proposed that one run the K-Means 
algorithm five times. In each round, the randomly generated 
initial points that had the potential to form clusters with high 
structural similarity were chosen for the improved K-Means 
clustering algorithm. These were checked against other 
potential points, and if its minimum distance fell within a 
given threshold, it was included as an initial centroid.  

The method used in the “FGK Model” was similar, but used 
a method more akin to averaging the results of the five K-
Means runs to produce centroids for a sixth iteration. The 
resulting clusters from this additional run of the “Greedy K-
Means”[11] algorithm used these centroids to produce clusters 
of various qualities. These qualities are determined by 
analyzing secondary structural similarity of the proteins in 
each cluster (the equation for such is given in section 3). Each 
cluster and its respective centroids are ranked by these 

structural similarity values, under the safe assumption that 
centroids that produce higher quality clusters are more 
desirable.  

2.2 Fuzzy Greedy K-Means (FGK) Model 
The problem of an overly large and complex dataset is still 

a prominent issue. Although the five iterations of the 
traditional K-Means algorithm and then a sixth application of 
the so-called “Greedy K-Means” algorithm sufficiently handle 
a great deal of the noise in the data, it is still undesirably 
inefficient when dealing with the entire data set at one time. 
However, the proposed FGK Model presents a solution via a 
simple concept of granular computing. The concept proposes 
that a divide-and-conquer idea be used to break the original 
problem into various subsets that can be more easily processed 
by any given algorithm. In other words, it breaks the original 
data set into “information granules.” [16, 17] Although one 
might argue that this is simply spreading the running time 
across various subsets, this isn’t true. This is especially 
important in the case of the K-Means algorithm, which has a 
running time that increases significantly with a larger dataset.  

Therefore, the combination of the “Greedy K-Means” 
algorithm, and the concept of granular computing produces the 
FGK Model. The FGK model essentially breaks the protein 
data set into ten information granules using Fuzzy C-Means. 
Then performing the five iterations of the traditional K-Means 
algorithm and the sixth Greedy K-Means run solves both 
issues with data complexity and size. The resulting output 
groups the data into ten information granules containing any 
number of clusters containing any number of proteins.  

2.3 Decision Tree Forest Model 
Now, we know the FGK Model adequately processes the 

data, clustering it according to its primary structure into both 
granules and further into clusters. Even stating so, this model 
still needs further tools to produce any novel or interesting 
findings. Thus, the ID3 decision tree algorithm[14] is 
proposed to further the model. This produces a mechanism 
that, once trained in the typical fashion, can tell if any given 
random protein belongs to a cluster with decent prediction 
accuracy. This is to say that this paper suggests that a “forest” 
of decision trees is to be created for each cluster in each 
granule (producing, with the given dataset, a total of 799 
decision trees). Each decision tree in the so called forest is 
trained on the individual clusters’ proteins. This would imply 
that each decision tree will have a basic idea of the inherent 
sequential patterns (i.e. motifs) within each protein set, such 
that it can be used to then analyze a given protein’s primary 
sequence. If the decision tree produces a “yes” (the meaning 
of which, in this particular context, will be explained in the 
experimental setup section) for that given protein, then this 
would suggest that the protein has similar characteristics to the 
homologous proteins within the cluster, including tertiary 
structural characteristics.  A model of such can be seen in 
Figure 1, combining the elements of the FGK Model and the 
new Decision Tree Forest Model, to produce a novel approach 
that takes the analysis power of decision trees and combines it 
with the data sorting and cleaning power of the FGK-Model. 

Thus, the basic concept of the ID3 algorithm will be 
followed heavily to produce each of the 799 decision trees. 



 

The algorithm, while simple, is fairly robust with large data 
sets and adequately accurate for this particular task. Granted 
such, it seems obligatory to note that any future works related 
to this would make use of much more appropriate decision 
tree algorithms, as the ID3 algorithm is largely a proof of 
concept. This is not to say that any results produced by this 
algorithm are not applicable, but rather that this research team 
realizes there are more appropriate, albeit more complex, 
decision tree algorithms to apply. 

 

 
Figure 1. The FGK-Decision Tree Forest Model 

III. EXPERIMENTAL SETUP 

3.1 Dataset 
The incoming dataset that is first analyzed by the overlying 

FGK-Model is composed of 2710 protein sequences obtained 
from the Protein Sequence Culling Server (PISCES)[18]. 
None of the protein sequences within this database share more 
than a 25% sequence identity. Sliding windows with nine 
successive residues are generated from each protein sequence, 
such that each window represents one sequence segment of 
nine continuous positions. Granted such, more than 560,000 
segments are generated by this method. Also added to this 
dataset is the protein’s frequency profile, generated from the 
HSSP[19]. This frequency is based on the alignment of each 
protein sequence from the Protein Data Bank (PDB), where all 
the protein sequences are considered homologous in the 
sequence database. The secondary structure of each protein is 
also generated from DSSP[20], which is simply a database 
containing secondary structural assignments for all protein 
entries in the Protein Data Bank.  

The FGK-Model will take this dataset and produce 799 
clusters divided among ten information granules. Each granule 
will have a varying number of clusters within it (this number 
is determined by a function explained in section 3.4). Each 
cluster, itself, will have a varying number of protein sequence 
information in it as well. They will also be of a varying 
secondary structural similarity (explained in section 3.7). Each 
of these clusters will then used as the dataset for the induction 
of each individual decision tree for reasons described in the 
Methods section. 

3.2 Representation of Sequence Segment 
As mentioned, the sliding windows of nine successive 

residues are generated from all of the 2710 protein sequences. 
Each window corresponds to a sequence segment, which is 
represented by a nine by twenty matrix, plus an additional nine 
places corresponding to the secondary structure data obtained 
from DSSP. Twenty rows represent twenty amino acids and 
nine columns represent each position of the sliding window. 
For the frequency profile (HSSP) representations of the 
protein sequence segments, each position of the matrix 
represents the frequency for a specified amino acid residue in 
a sequence position for the multiple sequence alignment. The 
secondary structure generated from DSSP is simplified from 
its original eight different classes, down to three. In this paper, 
structures denoted by H, G, and I are converted to H (Helices), 
B and E are converted to E (Sheets), and all other structures 
are converted to C (Coils).  

3.3 Distance Measure 
As the FGK-Model contains K-Means at its core, a distance 

formula is imperative. According to various sources[9,15], the 
most appropriate distance formula to use is the city block 
metric, as each position in the generated frequency profile will 
be considered equally. Thus, the following formula is used to 
calculate the distance between two sequence segments when 
clustering [9]:  
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Where L is the window size (in this case nine) and N is 
twenty, representing the twenty different amino acids. Fk(i, j) 
is the value of the matrix at row i and column j, which 
represents, in this case, the sequence segment. Fc(i, j) is the 
value of the matrix at row i and column j, which represents the 
centroid of a given sequence cluster.  

3.4 FGK-Model Parameter Setup 
For the Fuzzy C-Means Clustering that is included in the 

FGK-Model, the fuzzification factor is set to 1.05 and the 
number of clusters is set to ten. These settings yielded the best 
results for this particular dataset. The reason for this being, if 
the fuzzification factor was to remain constant, but the number 
of clusters was set to twenty, the membership function would 
produce nearly equal membership to all clusters for each 
segment. If one was to decrease the fuzzification factor 
instead, overflow becomes probable.  

In order to separate the information granules generated by 
the above Fuzzy C-Means results, the membership threshold is 



 

set to twelve percent. Using this value, fifteen percent of the 
dataset is filtered out and the remaining eighty-five percent is 
assigned to one or more of the clusters. The formula that 
dictates how many clusters should be included in each 
information granule is given below:  
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Where Ck denotes the number of clusters assigned to an 
information granule k. The number of members belong to 
information k is denoted as nk. The number of clusters in FCM 
is denoted as m. Although using this methodology causes the 
total data size to increase from 413 MB to 529 MB, as well as 
an increase in total number of members from 562745 to 
721390, it allows for one to deal with one information granule 
at a time. For example, the largest information granule 
generated contains 136112 members. From that granule, 151 
clusters should be computed from those members, generating 
a data with the size of 99.9 MB. Compared with the original 
dataset, the largest granule is only twenty-five percent the size. 
Therefore, the computation time for all information granules 
(231720 seconds) is a mere twenty percent of the running time 
of other leading research [15] (1285928 seconds). These 
results support the idea that the FGK-Model is a viable one for 
reducing space and time complexities.  

3.5 Decision Tree Induction 
The ID3 decision tree algorithm [14], as most classifying 

algorithms, requires a period of training to produce any level 
of output. For each cluster generated by the overlying FGK-
Model, a decision tree will be trained and generated by 
considering the frequency profile of each segment in a given 
cluster. This training produces a resulting decision tree that 
will now represent the sequential motifs in said cluster. This 
particular implementation of the ID3 algorithm uses the 
general formulas for producing both entropy and information 
gain, both given below: 

 
Entropy(S) = - (SY/SC)log2(SY/SC) – (SN/SC)log2(SN/SC) 

 
Where S is a collection of total size SC, SY is all items 
belonging to a given cluster, and SN is all items not belonging 
to a given cluster. How these items are labeled is described in 
section 3.6. 

 
Gain(S, A) = Entropy(S) – (SV/SC)Entropy(SV) 

 
Where S is a set of each value v of all possible values of 
attribute A, SV is the subset of S in which attribute A has the 
value v, and SC denotes all items in set S. 

3.6 Class Labeling 
To generate each label that will determine whether or not a 

given protein is to be classified as a “yes” protein (that is, it 
belongs to its cluster generated by the FGK-Model) or a “no” 
protein, one must consider the secondary structure. For each 
cluster, a representative secondary structure is generated by 
determining the secondary structural motif (H, E, or C in this 

paper) that is most characteristic (that is, the motif with the 
highest count in that particular column). This is done in each 
of the nine secondary structural positions for that particular 
cluster. Once the representative secondary structure for that 
cluster is generated, each of the proteins are then analyzed for 
their similarity to this representative structure by both position 
and the motif at that position and then given an appropriate 
score. For example, if the representative structure for the 
cluster (assuming only three structural positions) is HHH, and 
an individual protein sequence has a secondary structure HEH, 
then this protein would be given a score of two out of three. 
For this research, the scores range from 0 (that is, the protein 
has no similarity to the given representative structure of the 
cluster) to 9 (which denotes a protein that is fully 
representative of the cluster). Labeling can then be performed 
based on this score, such that any values over a certain 
number, what we will call our label pivot (a parameter 
discussed in section 3.10), are then considered a “yes” protein. 
All others would be considered a “no” protein. 

3.7 Secondary Structural Similarity Measure 
Used in the FGK-Model, the formula to calculate a cluster’s 

secondary structure similarity is given by the following 
formula:  
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Where ‘ws’ is the window size and Pi, H shows the percentage 
of helix (H) occurrences among the segments for the cluster in 
position ‘i.’ Pi, E and Pi, C are defined in a similar way in 
respect to sheets and coils. 

Granted such, if the generated structural homology for a 
given cluster is seventy percent or greater, the cluster can be 
considered structurally identical [19]. If it falls between sixty 
percent and seventy percent, it can be said to be weakly 
structurally homologous [15].  

3.8 Average Node Secondary Structural Similarity Measure 
Decision trees are defined, primarily, by their nodes, not by 

clusters. Given such, it is necessary to also include an average 
node secondary structural similarity measure, given by the 
following formula: 
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Where the “Secondary_Structural_Similarity” is the equation 
defined in section 3.7 and number of decision nodes is denoted 
as ‘n.’  

3.9 Ideal Prediction Accuracy Measure 
To aid in choosing appropriate parameters, another measure 

that is made for each decision tree is its ideal prediction 
accuracy. A twenty-fold cross validation, or similar measure, 
isn’t used in this particular case due to the sheer size of the 
data as well as the fact that each decision tree is tested on 
twenty-one different entropy threshold values (described in 
section 3.10). Instead, the ideal prediction accuracy measure is 
generated by simply running the training data (that is, the 
frequency profile of each protein in a given cluster) through 



 

the same tree it produced. This is done by comparing the 
labels given to the test data by methods explained in section 
3.6, against the decisions made by the decision tree for each 
protein. This summation of all correctly made decisions 
(regardless of whether or not it is a “yes” decision or a “no” 
decision) is divided by the number of decisions made. This 
gives a percentage that shows directly how changing entropy 
thresholds affects the predicting power of a given decision 
tree.  

3.10  Decision Forest Parameter Setup  
The ID3 decision tree, in this particular implementation and 

application, has three primary parameters, some of which have 
already been defined: label pivot, attribute range set, and 
entropy threshold[14]. The label pivot determines what range 
of labels, as described in section 3.6, are considered “yes” 
labels, and, alternatively, the range that denotes “no” labels. 
Naturally, the magnitude of this number has a large effect on 
the outcome of the decision trees. The attribute range set is 
composed of a short list of amino acid frequency ranges that 
serve as the classifying attributes. The length of this list and 
the distance between each of the bounds of the ranges also has 
a prominent effect on the decision tree, and its respective 
measures. The most sensitive parameter, however, is the 
entropy threshold, or, rather, the allowed level of randomness 
before the decision tree can make a decision. As one might 
expect, the closer the threshold is to 1.0, which is the 
maximum entropy a dataset can have, the shorter and less 
effective the decision tree becomes. Yet, an entropy threshold 
that is too restrictive (i.e. close to 0.0) would be detrimental to 
the purposes of this research for reasons explained more in 
depth in the Experimental Results section.  

The parameters tested in this experiment include two label 
pivots (six and seven), two attribute range sets ({0-4, 5-7, 8-
14, 15-29, 30-100}, {0-7, 8-14, 15- 29, 30-100}), and twenty-
one different entropy thresholds, ranging from 0.0 to a 
maximum of 1.0 while incrementing by 0.05 units. All of 
these parameters were tested on all 799 protein clusters, such 
that 268,464 unique tuples were generated, giving various 
measures described in each of the sections above. The results 
of these tests are described in the Experimental Results 
section. 

IV. EXPERIMENTAL RESULTS 

4.1 Parametric Criteria 
For each of the 799 protein clusters generated by the FGK-

Model, and for each of the parameter choices as described in 
section 3.10, an array of measures were recorded. This data 
was used for the purpose of deciding upon the most 
appropriate values for the three parameters for the decision 
tree implementation. These measures included ideal prediction 
accuracy, average node secondary structure similarity, average 
yes node secondary structural similarity, decision node count, 
yes decision node count, and number of proteins classified 
within those yes nodes. Also included was a range of values 
that counted the percentage of decision nodes that had a 
secondary structure similarity measure of over 90%, 90-80%, 

80-70%, 70-60%, and less than 60% structural homology. 
These values were used to determine what combination of 
entropy threshold, attribute range set, and label pivot would 
produce the optimal output for this research, based on various 
criteria. Obviously, one vies for high ideal prediction 
accuracy, because it implies high actual prediction accuracy 
such that parametric combinations that yielded these were 
kept. Likewise, a secondary structural similarity measure that 
is greater is more desirable than one that is not, with more 
emphasis placed on those combinations that yielded high 
average yes node secondary structural similarity measures. 
This is because the nodes that belong to the cluster (i.e. “yes” 
nodes) are statistically more important. 

Inverse to the other measures, it was decided that a lower 
node count (that is, the count of decisions made) would be 
more favorable. This is due to the fact that this research aims 
to find protein sequence motifs that transcend protein families. 
If the node count is too high, and approaches the number of 
proteins, this implies that each node represents approximately 
one protein. As each decision node, ideally, should represent a 
given motif among the proteins it represents, it makes no sense 
to have a system in which each node only represents one 
protein. This, in itself, implies higher entropy and fewer items 
in the attribute range list.  

Finally, it was decided that those parameters that gave 
higher percentages of nodes that have 70% structural 
homology or above (see section 3.7), were ideal.  

4.2 Parametric Results 
Given the parameters, four distinct data sets were created 

from analyzing and averaging the appropriately weighted 
values from the 268,464 generated tuples. The graphs 
denoting these four data sets can be seen in the following 
figures. Ideal prediction accuracy, given by a red line refers to 
the measure described in section 3.9. Its value refers to the 
right y-axis. “Yes” node secondary structural similarity, given 
by a purple line, is exactly that, again referring to the right y-
axis. Total secondary structural similarity, given by a green 
line, is the measure of all nodes’ secondary structure. It, too, 
refers to the right y-axis. Total node count, a light blue line, is 
simply the number of all decision nodes, and it refers to the 
left y-axis. Since high quality nodes are important, we also 
show the percentage of nodes with greater than 90% structural 
similarity, given by a gray-blue line. This, again, is given by 
the right y-axis. Finally, the “yes” node count, denoted by an 
orange line, just refers to the number of yes decision nodes.  
    As one can see in each of the four figures, an entropy 
threshold of 0.75 is marked by a vertical red on the graph, 
noting the various measures at that entropy. One might note 
that the percentage of nodes with a 90% structural similarity 
line falls sharply on all four graphs after an entropy of 0.75. 
One might also note that ideal prediction accuracy follows a 
similar trend, but to a much less severe degree, just as average 
yes node secondary structure similarity measure. An entropy 
threshold of 0.75 also falls in the mid-range of the average 
node count, implying that it would not yield data too far 
dichotomized, nor would it yield completely random output. 
Keeping in mind all criteria spelled out in section 4.1, it would 
appear that an entropy threshold of 0.75 is, indeed, the most 
appropriate for this research.  



 

 

 
Figure 2 Seven Label Pivot, Large Attribute Range set  

 

 
Figure 3 Six Label Pivot, Large Attribute Range Set 

 

 
Figure 4 Seven Label Pivot, Reduced Attribute Range Set 

 

 
Figure 5 Six Label Pivot, Reduced Attribute Range Set 

 

Table 1. Comparison of Decision Node Protein Secondary Structural 
Similarity Percentages. 

 
To determine which label pivot and attribute range set is 

optimal, one can refer to the measures of nodal structural 
similarity percentages given in Table 1, which assumes our 
given entropy threshold of 0.75.  In this table, P7 refers to a 
label pivot of seven, P6 refers to a label pivot of six, R5 refers 
to the large ({0-4, 5-7, 8-14, 15-29, 30-100}) attribute set, and 
alternatively, R4 refers to the small attribute range set. As one 
can see, taking only those percentages that refer to greater than 
70% structural similarity (as, again, they can be considered 
structurally identical [15]), P6-R5 produces the best results, 
with P7-R4 producing the worst results. Note that while P6-R5 
doesn’t produce the optimal percentage of nodes with greater 
than 90% structural similarity, it does produce both the most 
over 70% and has the least percentage of nodes with less than 
60% structural similarity. Taking in consideration other 
measures, such as node count and average yes node secondary 
structural similarity, P6-R5 consistently produces the most 
optimal output.  

4.3 Example Decision Tree Result  
Thus, given the parameters of a 0.75 entropy threshold, and 

the parametric combination denoted as P6-R5 (refer to section 
4.2) one can produce a relatively simple decision tree to 
examine the effectiveness of the FGK-Decision Forest Model. 
The following figure examines a random file whose number of 
decisions was in the lower range, such that it could be easily 
displayed on paper. Note that this tree is not typical in that the 
average range for the node count with the given parameters is 
150:  

 
Figure 6 Granule 6-Cluster 93 Decision Tree 

 
The method by which one would read Figure 6 is very simple. 
One starts at the top node, denoted here as ’69,’ and would 
work their way down to a given decision. The decision states 
whether or not a protein belongs to their FGK-Model 
generated clusters. The ’69,’ ’169,’ ’78,’ ‘1,’ etc. are all 
dimensions for each protein generated by the sliding window 
technique. Each branch from each node denotes the attribute 
range that is used to further classify the data set. For instance, 
starting from the root node, ‘69,’ if the frequency value of this 
dimension is between zero and four, then a “no” decision is 
made. In most cases, however, the decision tree must refer to 

Parameters >90% 90-80% 80-70% 70-60% <60% 
P7-R5 

55.83% 15.56% 7.19% 9.18% 12.24% 
P6-R5 50.27% 15.92% 13.05% 8.97% 11.80% 
P7-R4 50.80% 17.38% 7.92% 10.00% 13.90% 
P6-R4 44.39% 17.45% 14.57% 9.94% 13.65% 



 

other dimensions and check their respective value before a 
decision can be made. The yes decision nodes are denoted as 
percentages, which detail the structural similarity of the 
proteins it describes. The black decision nodes denote a case 
in which no proteins in the training data could be represented 
by that particular path. These are interpreted as “no” decision 
nodes.  

V. CONCLUSION 

A newly proposed model, the FGK-Decision Forest Model, 
utilizes the data organizing prowess and robustness of granule 
computing granted by Fuzzy C-Means and Greedy K-Means 
clustering, and the clear and easily comprehendible analysis of 
the ID3 decision tree. Using this model, one splits the original 
protein data, generated by a sliding window technique, into 
various information granules of protein clusters via various 
iterations of Fuzzy C-Means and Greedy K-Means. Granted 
these clusters, a decision tree is generated for each. These 
decision trees each contain decisions that denote whether or 
not certain proteins belong to a given cluster. They also denote 
structural motifs, presented in the “yes” nodes of each tree. All 
of these decision trees come together to produce a “decision 
forest” in which one could potentially use to predict local 
tertiary structure by finding the decision tree and the motif 
contained therein that best fits the unknown protein, assuming 
paired tertiary structure data.  

This paper focuses heavily on the parametric setup and 
analysis of the results of each. The three primary parameters 
tested were entropy, label pivot, and attribute range set. The 
entropy described the allowed randomness of the tree. It was 
set to 0.75, as it had the greatest tradeoff between all 
parametric criteria. The label was based on secondary 
structural similarity and the idea that 70% and greater 
secondary structural similarity was roughly identical. Two 
label pivots were tested, and a value of 6 was decided based 
on the quality analysis. The attribute range set was based on 
the frequency values produced by the sliding window 
technique. Two sets were tested, and the larger range set was 
used for its increased quality in regards to the parametric 
criteria. 

A decision tree example is also shown, in which its 
usefulness for portraying clear and easily comprehendible 
analysis is examined. As each “yes” node denotes a structural 
motif, each “no” node denotes a set of proteins that need to be 
removed from the training data, and each black (that is, each 
node in which a decision was not generated) node denotes 
sections in which there are no structural motifs, it is clear that 
the decision tree is a promising method, at least graphically, 
for portraying protein data. Also, each decision tree can be 
used, without modification, to decide whether or not a protein 
belongs to the cluster represented by the protein, and with an 
associated prediction accuracy. This implies that the decision 
forest, as stated previously, can be used to generate local 
tertiary structural predictions with measurably accurate 
decisions. 

While further development and research is needed to 
expand the flexibility and applicability of this model, it should 
be clear that it has potential to be adapted due to its promising 
robustness and efficiency, as well as the relative ease of 

comprehending its output, such that its analysis is not 
constrained to one field. With our proposed expansions on the 
original implementation, we believe this model will be used 
widely for the above mentioned reasons.  
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