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Abstract—

Searching for protein sequence and structural motifs is one of the most
important topics in Bioinformatics, because the motifs are able to determine
the role of the proteins. A fixed window size is usually defined in advance for
the most of motif searching algorithms. The fixed window size may result in
generating a number of similar motifs shifted by one to several bases or
including mismatches. In this study, to confront the mismatched motifs
problem, we use the super-rule concept to construct a Super-Rule-Tree (SRT)
which is generated by the DBSCAN clustering algorithm. This SRT
recognizes the similar motifs. Analysis of the hierarchical DBSCAN
generated Super-Rule-Tree shows a better quality in secondary structure
similarity evaluation than the previous studies’. We believe that the
combination of DBSCAN and SRT concept may provide a new point of view
to similar researches which require predefined fixed window size.
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1. INTRODUCTION

ALL living organisms require proteins to maintain chemical
and physical activities. Proteins are made of 20 types of
amino acids [1]. Each protein has its own unique structure and
function depending on the sequence and the type of its amino
acids. From the point of view of biology and bioinformatics,
to reveal the functionality of a protein, it is necessary to obtain
the structure of the protein. Hence, an understanding of the
formation of amino acids that synthesize the protein is crucial.
Analyzing the sequence of amino acids yields some sequence
patterns called motifs which have biological significance and
repeat frequently. One of the most important Bioinformatics
research fields in sequence analysis is searching for motifs,
since these recurring patterns have the potential to determine a
protein’s conformation, function and activities [2].

Proteins are usually grouped based on their structural
similarities in order to determine their functional properties.
Therefore, to group the proteins, clustering of motif sequences
is important. Just like proteins, discovered protein sequence
motifs are usually categorized into protein families; PROSITE
[3], PRINTS [4], and BLOCKS [5] are three most popular
motifs databases that follows this trend. Since sequence motifs
from PROSITE, PRINTS, and BLOCKS are developed from
multiple alignments, these sequence motifs only search for
conserved elements of sequence alignment from the same
protein family and carry little information about conserved
sequence regions, which transcend protein families [6].

In order to obtain protein sequence motifs which transcend
protein family boundaries, we applied our Super GSVM-FE
model on all of our information granules so that we obtained

541 extracted high-quality protein sequence motifs in our
previous work [7]. However, the most challenging factors of
identifying the motifs by clustering them appropriately emerge
from the ambiguity and the variability of their sizes.
Therefore, a pre-determined size is mostly used in the motif
researches. However, two major problems stem from this
fixed size namely; mismatches and shifted by one base [8].
The first problem can be simply expressed as the probable
similarity of two or more motif groups. The second problem
‘shifted by one base’ causes to identify one motif more than
once as if they are two or more different motifs. For example,
if a biological sequence is longer than the fixed size, it is
possible to identify the front part and the rear part as two
different motifs. In this paper, we try to solve ‘grouping
similar motifs including mismatches’ problem by using super-
rules concept [9]. This problem previously was dealt in [2]. In
their study, they made an improvement of the HHK Clustering
Algorithm [2] and by using the super-rules concept they
clustered the motifs and found the similarities among them in
the form of a Super-Rule-Tree (SRT).

In this paper; however, we worked out the first problem by
using famous clustering algorithm so called Density Based
Spatial Clustering of Applications with Noise (DBSCAN) [10]
in order to acquire more accurate results. We worked on 541
high-quality protein sequence motifs extracted by Super
GSVM-FE model [7]. Then we applied the DBSCAN
algorithm on these motifs at different levels of hierarchy to
obtain the ideal SRT. DBSCAN algorithm requires two
parameters called ‘Eps (epsilon)’ [10] and ‘MinPts (minimum
points)’ [10]. Eps is the maximum radius of the neighborhood
which is to be examined to form a cluster and MinPts is the
minimum number of elements required to form a cluster. We
applied DBSCAN for all possible values of epsilon and minPts
and plotted different graphs taking into consideration minPts,
epsilon, number of outliers, number of -clusters, and
comparatively size of clusters to choose the best pair of
parameters. A comprehensive quality comparison of our new
Super-Rule-Tree (SRT) with the one in the previous study [2]
is also presented.

The remainder of the paper is organized as follows. Section
2 describes the DBSCAN and Super Rule Tree (SRT).
Section 3 discusses how we setup the experiment with the
DBSCAN and an explanation for determination of parameters.
The SRT with comparisons and conclusions are given in
section 4 and section 5.



2. METHODOLOGY
2.1 DBSCAN

Density Based Spatial Clustering of Applications
(DBSCAN) with Noise is a notable clustering algorithm. It
requires two parameters namely Eps and MinPts. Important
terms and their definitions are listed below.

a) Eps: Maximum radius of the neighborhood to be
considered while forming clusters.

b) MinPts: Minimum number of points required to form a
cluster.

c) Eps-neighborhood [10]: A point q is said to be in the
Eps-neighborhood of the point p, if the distance
between p and q is less than or equal to Eps.

d) Core points and Border points [10]: Points inside the
cluster are called core points and points on the border
of the cluster are called border points.

e) Directly density-reachable [10]: A point q is directly
density-reachable from a point p w.r.t Eps and MinPts,
if q belongs to the Eps-neighborhood of p and the
number of points in the Eps-neighborhood of p is
greater than or equal to MinPts (see Figure 2.1). If p
and q are core points, then directly density-reachable is
symmetric i.e., p is directly density-reachable from q
and vice versa. However, this condition fails if either p
or q is a border point.

f) Density-reachable [10]: A point p is density-reachable
from a point q w.r.t Eps and MinPts, if there exists a set
of points between q and p such that every point in this
set is directly density-reachable from its precede.

g) Density-connected [10]: If there exists a point x such that
the points, p and q are both density-reachable from x,
then p is said to be density-connected to q w.r.t Eps and
MinPts.

h) Noise: Noise is a set of points in a database that does not
belong to any cluster. These points are also called as
outliers.
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Figure 2.1: DBSCAN application on a 2D data set [10]

This clustering algorithm follows the procedure of finding
all points density-reachable from an arbitrary starting point,
depending on the Eps and MinPts. If the starting point is a
core point then the procedure begins building a cluster. On the
other hand, if it is a border point the algorithm cannot go
further, i.e., it cannot find any point density-reachable from
the starting point. This procedure is followed until all of the
points in the Eps-neighborhood are touched or visited at least

once. After all of the points in a cluster are visited, the
algorithm chooses a new arbitrary starting point to generate
other clusters.

For the given example in Figure 2.1, it is not complicated to
find the range of parameters and it is not difficult to visualize
the data so that the parameters can be determined by starting
from O to the extreme value, i.e. the distance between the
farthest elements. However, in our case, the elements (points)
have 180 dimensions or attributes; so, it is difficult to visualize
a data in 180 dimensions and challenging to determine the
ideal parameters as well as determining a range for
parameters. Thus, for Eps, we started from 0 in which every
element was found as an outlier. Then we use brute-force
approach to reach a point where all the elements form just a
single cluster. This approach helped us to find the extreme
values for parameters. We further investigated to find the best
parameters. Parameters are considered the best possible when
the cluster to outlier ratio becomes maximum. This is
explained in section 4 with details. ‘Manhattan Distance’ was
used as a distance measure which is the sum of absolute
differences between attributes of two elements.

2.2 Super Rule Tree (SRT):

The data set contains 541 motifs, in which each motif has
some rules. DBSCAN was used to cluster these motifs based
on similarity and then assemble the rules in each motif to
generate super rules. Once the rules are generated, it is
possible to form another layer of super rules (super-super
rules). By this manner, a tree like structure (Super-Rules-Tree
structure) is formed using these super rules. These super rules
represent a harmonic rule pattern and the essential underlying
relationship of classification [9]. Because the super-rules are
generated from each of the motifs, it is easy to understand the
general trend and ignore the noise and also interactively focus
on the important aspects of the domain by using super-rules
and selectively view the original detail rules in the

corresponding motif [9].

3. EXPERIMENTAL SETUP
3.1 Data set:

The original data set including 2710 protein sequences had
been obtained from Protein Sequence Culling Server
(PISCES) by Wang and Dunbrack [11]. This data set was
used in [2] and [7] to generate protein sequence motifs. No
sequence in this database shares more than a 25 per cent
sequence identity. We also obtained the secondary structure
from DSSP [12] which is a database of secondary structure
assignments for all protein entries in PDB. In this database
there are 8 different classes of for secondary structures. Chen
et al. replaced those 8 classes with 3 classes by assigning H, G
and I to H (Helices); B and E to E (Sheets); and all others to C
(Coils).

541 different sequence motifs were generated in [7] with a
window size of nine from the original data set. Each window
is represented by a 9x20 matrix plus additional nine
corresponding representative secondary structure information



and it corresponds to a sequence segment. Twenty amino acids
are represented by 20 columns and each position of the sliding
window is represented by 9 rows. Chen et al. has obtained
541 high quality clusters extracted by super GVSM-SE model
and each cluster is represented in 180 dimensions in the first
data set. In this study, the 541 clusters obtained from [7] have
been used as the data set. In addition to these clusters, the data
set which includes the secondary structure of these clusters
have also been used.

3.2 Dissimilarity Measure

In this paper Manhattan distance has been used as the
dissimilarity measure. Manhattan distance indicates a grid-
like path while traveling from one point to another. It is also
known as the city block metric. According to Zhong et al. [6],
this dissimilarity measure is more suitable for this field of
study since all positions of the frequency profile are
considered equal.

The Manhattan Distance for the data set is calculated by the
following formula:

Dissimilarity= ii\ F (i, j)-F.(i, /)

i=1 j=I

Where L is the window size and N is 20 representing 20
different amino acids. Fk(i,j) is the value of the matrix at row {
and column ;j and represents the sequence segment. Fe(i,j) is
the value of the matrix at row i and column j and represents
the centroids of a give sequence cluster. The lower the
dissimilarity value, the higher similarity the two segments
have.

3.3 Structure Similarity Measure

In order to get the secondary structure and measure the quality
of each cluster the following formula has been used.

WS

Z max( PiusPie>Pic )

i=1

Secondary structural similarity= ws

Where ws is the window size , C;, E; and H; correspond to the
frequency of Coils, Sheets and Helices respectively and P,y
shows the frequency of occurrence of helix among the
segments for the cluster in position i. P;g and P;¢ are defined
in a similar way.

If the structural homology for a cluster exceeds 70%, the
cluster can be considered structurally identical. If the
structural homology for the cluster exceeds 60% and is lower
than 70%, the cluster can be considered weakly structurally
homologous [6].

3.4 Cluster-Outlier Ratio

A ratio has been used as a criterion to find the ideal
parameters Eps and MinPts for DBSCAN. The ratio is
calculated by using the following formula:

Cluster_Outlier ratio =num_cluster / num_outliers

As the ratio increases, the optimum parameters are obtained.
However, this ratio is considered in an interval where number
of outliers does not equal to zero or the number of elements.

4. EXPERIMENTAL RESULTS

4.1 Determination of Eps and MinPts for Super-Rule-Tree
(SRT) construction

Clusters are formed by applying the DBSCAN algorithm on
the original data set. But, before that, the most important issue
is to determine the values of Eps and MinPts. To determine a
logical Eps and MinPts value, the DBSCAN is applied on the
original data with Eps ranging from 100 to 500 and MinPts
ranging from 2 to 7. These possible parameter pairs were
chosen in this range because beyond these boundaries the
algorithm accumulates all elements into one cluster or it
determines all the elements as outliers. Graphs were plotted
for all the values of Eps and MinPts based on the number of
clusters formed and the number of outliers. Since the logical
Eps and MinPts cannot be determined based on the mentioned
criteria, the Cluster-Outlier ratio has been used. This ratio was
compared for each Eps and MinPts value within the range and
determined its maximum values so that the number of clusters
is higher and the number of outliers is less. After graphs were
plotted based on different parameters it was determined that
the appropriate MinPts value is 2, otherwise the number of
clusters declines significantly as shown in the figures below.
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Figure 4.1: Graph for 541 clusters with MinPts=2
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Figure 4.2: Graph for 541 elements with MinPts=3

The x-axis represents Eps. In Figure 4.1, it is revealed that at
Eps =406, the clusters to outliers ratio is maximum and at the
same time the number of clusters is reasonably high (greater
than 1). In Figure 4.2, the ratio of cluster to outlier decreases
significantly. A similar trend is observed for MinPts greater
than 3, so the parameters are Eps =406 and MinPts =2 for 541
clusters.

4.2 Applying DBSCAN on the sub clusters

As the DBSCAN is applied with Eps=406 and MinPts=2,
12 sub clusters have been found, where the first sub clusters
holds 463 elements i.e. 85 percent of the total elements
accumulated in one sub cluster. Therefore, we believe it is
necessary to cluster these 463 elements and form SRT
structure.
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Figure 4.3: Graph for 463 clusters with MinPts=2

In order to apply DBSCAN on this sub cluster we followed
the same procedure to determine the Eps and MinPts. From

Figure 4.3, the optimum Eps value was empirically found to
be 396 and MinPts 2. DBSCAN was applied with these
parameters and found 4 sub clusters, where the first sub cluster
holds 438 elements, which is majority of the data. Needless to
say, we cluster these elements via DBSCAN again.
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Figure 4.4: graph for 438 elements with MinPts = 2

After the determination procedure was followed for Eps and
MinPts and their values are found to be 327 and 2 respectively
(as shown in Figure 4.4). The DBSCAN was applied with
these parameters and found 29 sub clusters with the first sub
cluster holding 126 elements. We stopped further clustering
after level 4 (the parameters are determined through figure 4.5
with Eps=319 and MinPts=2) because there is no sub-clusters
with more than 100 elements after that. Figure 4.6 shows the
multi-layered DBSCAN generated SRT structure, with all the
super rules in each motif at each level of DBSCAN
application.
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Figure 4.5: Graph for 126 elements with MinPts=2
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4.2 Super-Rule-Tree comparison

The Super-Rule-Tree generated in this paper is based on the
top-down approach; while the Super-Rule-Tree made in [2] is
based on the bottom-up method. The major reason causes the
difference is according to the number of clusters generated
from the clustering algorithms. In [2], the HHK clustering
requires no parameters and generates high number of clusters.
For example, the HHK clustering algorithm generates 108
clusters when it is applied on 541 protein sequence motifs.
Due to the fact that the number of clusters is too large to
handle, another level of clustering is applied; thus, a Super-
Rule-Tree is formed to have a more generalized view. On the
contrary, DBSCAN generates 12 clusters when it is applied on
541 protein sequence motifs with first cluster contain over
85% protein sequence motifs. Clearly, it is necessary to apply
DBSCAN on the first cluster. Therefore, a Super-Rule-Tree is
formed to have a more specialized view.

“Which SRT is better?” In order to answer this question,
we evaluate the SRT level by level using secondary structural
similarity. Table 4.1 demonstrates the average cluster quality
for each level. Level 1 indicates the first clustering results
applied on original 541 protein sequence patterns. Level 2
demonstrates the clustering results on the next level. Since the
SRT in [2] contains only 2 levels, we can not compare both
Super-Rule-Trees directly. However, it is clear to see that the
SRT constructed in this paper is better than the previous works
in secondary structure point of view. This mainly because the
DBSCAN has the ability to filter out several outliers by setting
up Eps and MinPts; while the HHK clustering algorithm can
not sieve out outliers because it is a non-parameter approach.

Table 4.1 Secondary structure similarity evaluations on SRT level by level

Average Cluster Quality | LEVEL 1 | LEVEL2 | LEVEL3 | LEVEL 4

SRT in this paper 75.98% | 76.69% | 75.64% | 73.50%

SRT in [2]

69.02% 63.48% NA NA

5. CONCLUSION

In this paper, we propose that DBSCAN can be utilized
to form the Super-Rule-Tree structure. We demonstrate a
detailed process and a high quality Super-Rule-Tree, which
gives a clear big picture of relations between protein sequence
motifs. The improved secondary structure similarity on the
SRT provides a better insight of the discovered protein
sequence motifs that transcend protein family boundaries. We
believe many further researches can be derived from this
work.
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