
 
 
 
 

 Abstract— 
Searching for protein sequence and structural motifs is one of the most 

important topics in Bioinformatics, because the motifs are able to determine 
the role of the proteins.  A fixed window size is usually defined in advance for 
the most of motif searching algorithms. The fixed window size may result in 
generating a number of similar motifs shifted by one to several bases or 
including mismatches.  In this study, to confront the mismatched motifs 
problem, we use the super-rule concept to construct a Super-Rule-Tree (SRT) 
which is generated by the DBSCAN clustering algorithm. This SRT 
recognizes the similar motifs. Analysis of the hierarchical DBSCAN 
generated Super-Rule-Tree shows a better quality in secondary structure 
similarity evaluation than the previous studies’. We believe that the 
combination of DBSCAN and SRT concept may provide a new point of view 
to similar researches which require predefined fixed window size. 
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1. INTRODUCTION 

LL living organisms require proteins to maintain  chemical 
and physical activities. Proteins are made of 20 types of 

amino acids [1]. Each protein has its own unique structure and 
function depending on the sequence and the type of its amino 
acids. From the point of view of biology and bioinformatics, 
to reveal the functionality of a protein, it is necessary to obtain 
the structure of the protein. Hence, an understanding of the 
formation of amino acids that synthesize the protein is crucial. 
Analyzing the sequence of amino acids yields some sequence 
patterns called motifs which have biological significance and 
repeat frequently. One of the most important Bioinformatics 
research fields in sequence analysis is searching for motifs, 
since these recurring patterns have the potential to determine a 
protein’s conformation, function and activities [2]. 
    Proteins are usually grouped based on their structural 
similarities in order to determine their functional properties. 
Therefore, to group the proteins, clustering of motif sequences 
is important. Just like proteins, discovered protein sequence 
motifs are usually categorized into protein families; PROSITE 
[3], PRINTS [4], and BLOCKS [5] are three most popular 
motifs databases that follows this trend. Since sequence motifs 
from PROSITE, PRINTS, and BLOCKS are developed from 
multiple alignments, these sequence motifs only search for 
conserved elements of sequence alignment from the same 
protein family and carry little information about conserved 
sequence regions, which transcend protein families [6]. 
    In order to obtain protein sequence motifs which transcend 
protein family boundaries, we applied our Super GSVM-FE 
model on all of our information granules so that we obtained 

 
 

541 extracted high-quality protein sequence motifs in our 
previous work [7]. However, the most challenging factors of 
identifying the motifs by clustering them appropriately emerge 
from the ambiguity and the variability of their sizes. 
Therefore, a pre-determined size is mostly used in the motif 
researches. However, two major problems stem from this 
fixed size namely; mismatches and shifted by one base [8].  
The first problem can be simply expressed as the probable 
similarity of two or more motif groups. The second problem 
‘shifted by one base’ causes to identify one motif more than 
once as if they are two or more different motifs. For example, 
if a biological sequence is longer than the fixed size, it is 
possible to identify the front part and the rear part as two 
different motifs. In this paper, we try to solve ‘grouping 
similar motifs including mismatches’ problem by using super- 
rules concept [9]. This problem previously was dealt in [2]. In 
their study, they made an improvement of the HHK Clustering 
Algorithm [2] and by using the super-rules concept they 
clustered the motifs and found the similarities among them in 
the form of a Super-Rule-Tree (SRT).  

In this paper; however, we worked out the first problem by 
using famous clustering algorithm so called Density Based 
Spatial Clustering of Applications with Noise (DBSCAN) [10] 
in order to acquire more accurate results. We worked on 541 
high-quality protein sequence motifs extracted by Super 
GSVM-FE model [7]. Then we applied the DBSCAN 
algorithm on these motifs at different levels of hierarchy to 
obtain the ideal SRT. DBSCAN algorithm requires two 
parameters called ‘Eps (epsilon)’ [10] and ‘MinPts (minimum 
points)’ [10]. Eps is the maximum radius of the neighborhood 
which is to be examined to form a cluster and MinPts is the 
minimum number of elements required to form a cluster. We 
applied DBSCAN for all possible values of epsilon and minPts 
and plotted different graphs taking into consideration minPts, 
epsilon, number of outliers, number of clusters, and 
comparatively size of clusters to choose the best pair of 
parameters.  A comprehensive quality comparison of our new 
Super-Rule-Tree (SRT) with the one in the previous study [2] 
is also presented.   

 The remainder of the paper is organized as follows. Section 
2 describes the DBSCAN and Super Rule Tree (SRT).  
Section 3 discusses how we setup the experiment with the 
DBSCAN and an explanation for determination of parameters. 
The SRT with comparisons and conclusions are given in 
section 4 and section 5. 
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2. METHODOLOGY 

2.1 DBSCAN 
 

Density Based Spatial Clustering of Applications 
(DBSCAN) with Noise is a notable clustering algorithm. It 
requires two parameters namely Eps and MinPts.   Important 
terms and their definitions are listed below. 
 

a) Eps: Maximum radius of the neighborhood to be 
considered while forming clusters. 

b) MinPts: Minimum number of points required to form a 
cluster. 

c)  Eps-neighborhood [10]: A point q is said to be in the 
Eps-neighborhood of the point p, if the distance 
between p and q is less than or equal to Eps. 

d) Core points and Border points [10]: Points inside the 
cluster are called core points and points on the border 
of the cluster are called border points. 

e) Directly density-reachable [10]: A point q is directly 
density-reachable from a point p w.r.t Eps and MinPts, 
if q belongs to the Eps-neighborhood of p and the 
number of points in the Eps-neighborhood of p is 
greater than or equal to MinPts (see Figure 2.1). If p 
and q are core points, then directly density-reachable is 
symmetric i.e., p is directly density-reachable from q 
and vice versa. However, this condition fails if either p 
or q is a border point. 

f) Density-reachable [10]:  A point p is density-reachable 
from a point q w.r.t Eps and MinPts, if there exists a set 
of points between q and p such that every point in this 
set is directly density-reachable from its precede.  

g) Density-connected [10]: If there exists a point x such that 
the points, p and q are both density-reachable from x, 
then p is said to be density-connected to q w.r.t Eps and 
MinPts. 

h) Noise: Noise is a set of points in a database that does not 
belong to any cluster. These points are also called as 
outliers. 

 

 
Figure 2.1: DBSCAN application on a 2D data set [10] 

 
This clustering algorithm follows the procedure of finding 

all points density-reachable from an arbitrary starting point, 
depending on the Eps and MinPts.  If the starting point is a 
core point then the procedure begins building a cluster. On the 
other hand, if it is a border point the algorithm cannot go 
further, i.e., it cannot find any point density-reachable from 
the starting point. This procedure is followed until all of the 
points in the Eps-neighborhood are touched or visited at least 

once. After all of the points in a cluster are visited, the 
algorithm chooses a new arbitrary starting point to generate 
other clusters.  
    For the given example in Figure 2.1, it is not complicated to 
find the range of parameters and it is not difficult to visualize 
the data so that the parameters can be determined by starting 
from 0 to the extreme value, i.e. the distance between the 
farthest elements.  However, in our case, the elements (points) 
have 180 dimensions or attributes; so, it is difficult to visualize 
a data in 180 dimensions and challenging to determine the 
ideal parameters as well as determining a range for 
parameters.  Thus, for Eps, we started from 0 in which every 
element was found as an outlier.  Then we use brute-force 
approach to reach a point where all the elements form just a 
single cluster. This approach helped us to find the extreme 
values for parameters. We further investigated to find the best 
parameters.  Parameters are considered the best possible when 
the cluster to outlier ratio becomes maximum.  This is 
explained in section 4 with details. ‘Manhattan Distance’ was 
used as a distance measure which is the sum of absolute 
differences between attributes of two elements.  
 

2.2 Super Rule Tree (SRT): 
 
The data set contains 541 motifs, in which each motif has 

some rules.  DBSCAN was used to cluster these motifs based 
on similarity and then assemble the rules in each motif to 
generate super rules. Once the rules are generated, it is 
possible to form another layer of super rules (super-super 
rules).  By this manner, a tree like structure (Super-Rules-Tree 
structure) is formed using these super rules. These super rules 
represent a harmonic rule pattern and the essential underlying 
relationship of classification [9]. Because the super-rules are 
generated from each of the motifs, it is easy to understand the 
general trend and ignore the noise and also interactively focus 
on the important aspects of the domain by using super-rules 
and selectively view the original detail rules in the 
corresponding motif [9].  

3. EXPERIMENTAL SETUP 

3.1 Data set:  
 

The original data set including 2710 protein sequences had 
been obtained from Protein Sequence Culling Server 
(PISCES) by Wang and Dunbrack [11].  This data set was 
used in [2] and [7] to generate protein sequence motifs.  No 
sequence in this database shares more than a 25 per cent 
sequence identity.   We also obtained the secondary structure 
from DSSP [12] which is a database of secondary structure 
assignments for all protein entries in PDB.  In this database 
there are 8 different classes of for secondary structures.  Chen 
et al. replaced those 8 classes with 3 classes by assigning H, G 
and I to H (Helices); B and E to E (Sheets); and all others to C 
(Coils). 

541 different sequence motifs were generated in [7] with a 
window size of nine from the original data set. Each window 
is represented by a 9x20 matrix plus additional nine 
corresponding representative secondary structure information 



 
 
 
 
and it corresponds to a sequence segment. Twenty amino acids 
are represented by 20 columns and each position of the sliding 
window is represented by 9 rows.  Chen et al. has obtained 
541 high quality clusters extracted by super GVSM-SE model 
and each cluster is represented in 180 dimensions in the first 
data set.  In this study, the 541 clusters obtained from [7] have 
been used as the data set.  In addition to these clusters, the data 
set which includes the secondary structure of these clusters 
have also been used. 

 
 
3.2 Dissimilarity Measure 
 

In this paper Manhattan distance has been used as the 
dissimilarity measure.  Manhattan distance indicates a grid-
like path while traveling from one point to another. It is also 
known as the city block metric. According to Zhong et al. [6], 
this dissimilarity measure is more suitable for this field of 
study since all positions of the frequency profile are 
considered equal.  
 
The Manhattan Distance for the data set is calculated by the 
following formula: 
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    Where L is the window size and N is 20 representing 20 
different amino acids. Fk(i,j) is the value of the matrix at row i 
and column j and represents the sequence segment. Fc(i,j) is 
the value of the matrix at row i and column j and represents 
the centroids of a give sequence cluster. The lower the 
dissimilarity value, the higher similarity the two segments 
have. 
 
3.3 Structure Similarity Measure 
 
In order to get the secondary structure and measure the quality 
of each cluster the following formula has been used.  

Secondary structural similarity=       ws
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Where ws is the window size , Ci, Ei and Hi correspond to the 
frequency of Coils, Sheets and Helices respectively and Pi,H  
shows the frequency of occurrence of helix among the 
segments for the cluster in position i. Pi,E and Pi,C are defined 
in a similar way.  

If the structural homology for a cluster exceeds 70%, the 
cluster can be considered structurally identical. If the 
structural homology for the cluster exceeds 60% and is lower 
than 70%, the cluster can be considered weakly structurally 
homologous [6]. 
 
 
3.4 Cluster-Outlier Ratio  

A ratio has been used as a criterion to find the ideal 
parameters Eps and MinPts for DBSCAN. The ratio is 
calculated by using the following formula: 
 
Cluster_Outlier_ratio = num_cluster / num_outliers 
 
As the ratio increases, the optimum parameters are obtained.   
However, this ratio is considered in an interval where number 
of outliers does not equal to zero or the number of elements.   
 

4. EXPERIMENTAL RESULTS 

 
4.1 Determination of Eps and MinPts for Super-Rule-Tree 
(SRT) construction 
 

Clusters are formed by applying the DBSCAN algorithm on 
the original data set. But, before that, the most important issue 
is to determine the values of Eps and MinPts.  To determine a 
logical Eps and MinPts value, the DBSCAN is applied on the 
original data with Eps ranging from 100 to 500 and MinPts 
ranging from 2 to 7.  These possible parameter pairs were 
chosen in this range because beyond these boundaries the 
algorithm accumulates all elements into one cluster or it 
determines all the elements as outliers.  Graphs were plotted 
for all the values of Eps and MinPts based on the number of 
clusters formed and the number of outliers.  Since the logical 
Eps and MinPts cannot be determined based on the mentioned 
criteria, the Cluster-Outlier ratio has been used.  This ratio was 
compared for each Eps and MinPts value within the range and 
determined its maximum values so that the number of clusters 
is higher and the number of outliers is less.  After graphs were 
plotted based on different parameters it was determined that 
the appropriate MinPts value is 2, otherwise the number of 
clusters declines significantly as shown in the figures below.  
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Figure 4.1: Graph for 541 clusters with MinPts=2 

 



 
 
 
 

300 320 340 360 380 400 420 440 460 480 500
0

50

100

150

200

250

300

350

400

450
541 minpoint 3.txt

 

 
outlier
cluster
(clstr/outlr)*100

 
Figure 4.2: Graph for 541 elements with MinPts=3 

 
The x-axis represents Eps. In Figure 4.1, it is revealed that at 
Eps =406, the clusters to outliers ratio is maximum and at the 
same time the number of clusters is reasonably high (greater 
than 1). In Figure 4.2, the ratio of cluster to outlier decreases 
significantly. A similar trend is observed for MinPts greater 
than 3, so the parameters are Eps =406 and MinPts =2 for 541 
clusters.  
 
 
4.2 Applying DBSCAN on the sub clusters 
 

As the DBSCAN is applied with Eps=406 and MinPts=2, 
12 sub clusters have been found, where the first sub clusters 
holds 463 elements i.e. 85 percent of the total elements 
accumulated in one sub cluster.  Therefore, we believe it is 
necessary to cluster these 463 elements and form SRT 
structure.   
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Figure 4.3: Graph for 463 clusters with MinPts=2 

 
In order to apply DBSCAN on this sub cluster we followed 

the same procedure to determine the Eps and MinPts. From 

Figure 4.3, the optimum Eps value was empirically found to 
be 396 and MinPts 2. DBSCAN was applied with these 
parameters and found 4 sub clusters, where the first sub cluster 
holds 438 elements, which is majority of the data. Needless to 
say, we cluster these elements via DBSCAN again.   
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Figure 4.4: graph for 438 elements with MinPts = 2 

 
After the determination procedure was followed for Eps and 

MinPts and their values are found to be 327 and 2 respectively 
(as shown in Figure 4.4). The DBSCAN was applied with 
these parameters and found 29 sub clusters with the first sub 
cluster holding 126 elements.  We stopped further clustering 
after level 4 (the parameters are determined through figure 4.5 
with Eps=319 and MinPts=2) because there is no sub-clusters 
with more than 100 elements after that. Figure 4.6 shows the 
multi-layered DBSCAN generated SRT structure, with all the 
super rules in each motif at each level of DBSCAN 
application.  
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Figure 4.5: Graph for 126 elements with MinPts=2 

 



 
 
 
 

 
Figure 4.6: A Super Rule Tree with 4 levels of hierarchy 

 

 

 

 



 
 
 
 
4.2 Super-Rule-Tree comparison 
   The Super-Rule-Tree generated in this paper is based on the 
top-down approach; while the Super-Rule-Tree made in [2] is 
based on the bottom-up method. The major reason causes the 
difference is according to the number of clusters generated 
from the clustering algorithms. In [2], the HHK clustering 
requires no parameters and generates high number of clusters.  
For example, the HHK clustering algorithm generates 108 
clusters when it is applied on 541 protein sequence motifs.  
Due to the fact that the number of clusters is too large to 
handle, another level of clustering is applied; thus, a Super-
Rule-Tree is formed to have a more generalized view. On the 
contrary, DBSCAN generates 12 clusters when it is applied on 
541 protein sequence motifs with first cluster contain over 
85% protein sequence motifs. Clearly, it is necessary to apply 
DBSCAN on the first cluster. Therefore, a Super-Rule-Tree is 
formed to have a more specialized view.     
    “Which SRT is better?”  In order to answer this question, 
we evaluate the SRT level by level using secondary structural 
similarity. Table 4.1 demonstrates the average cluster quality 
for each level.  Level 1 indicates the first clustering results 
applied on original 541 protein sequence patterns. Level 2 
demonstrates the clustering results on the next level.  Since the 
SRT in [2] contains only 2 levels, we can not compare both 
Super-Rule-Trees directly. However, it is clear to see that the 
SRT constructed in this paper is better than the previous works 
in secondary structure point of view. This mainly because the 
DBSCAN has the ability to filter out several outliers by setting 
up Eps and MinPts; while the HHK clustering algorithm can 
not sieve out outliers because it is a non-parameter approach.   
 

Table 4.1 Secondary structure similarity evaluations on SRT level by level 

Average Cluster Quality LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 

SRT in this paper 75.98% 76.69% 75.64% 73.50% 

SRT in [2] 69.02% 63.48% NA NA 

 

5. CONCLUSION 

    In this paper, we propose that DBSCAN can be utilized 
to form the Super-Rule-Tree structure. We demonstrate a 
detailed process and a high quality Super-Rule-Tree, which 
gives a clear big picture of relations between protein sequence 
motifs. The improved secondary structure similarity on the 
SRT provides a better insight of the discovered protein 
sequence motifs that transcend protein family boundaries. We 
believe many further researches can be derived from this 
work. 
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