
 

  
Abstract— The role of protein sequence motifs is in predicting 

functional or structural portion of other proteins including prosthetic 
attachment sites, enzyme-binding sites and DNA /RNA binding sites, and 
so on.   A fixed window size is usually predefined to discover protein 
sequence motifs for many algorithms and techniques.  However, the 
predefined window size may deliver a number of similar motifs simply 
shifted by some bases or including mismatches.  In this paper, we use 
the positional association rules algorithm to form motifs network and adapt 
a Structural Clustering Algorithm for Networks named SCAN to recognize 
similar motifs.  Although association rule based algorithms have been 
widely adapted in association analysis and classification, few of those 
are designed as clustering methods.  With the SCAN analysis, the 
qualities of the clusters are further improved.  
 
Index Terms— Positional Association Rules, SCAN, Protein 

Sequence Motifs 

I. INTRODUCTION 

ioinformatics is the science of interpreting data from 
observations of biological process whose data is 
managed and mined [2]. Unlike data generated in 

various fields to support a hypothesis, the biological data is 
generated assuming that it contains vital information, and this 
information might answer several important questions. [3]. 

One of the most important applications of data mining is in 
the field of bioinformatics, because of its huge mass of data 
and hidden patterns particularly in proteomics data. The 
proteomic data consisting of sequence motifs in recurring 
patterns has the capability to predict a protein’s structure and 
functionalities [8]. In order to identify sequence motifs, most 
algorithms need to specify a fixed size for the motif in 
advance. These algorithms deliver a similar number of motifs 
since they have a fixed size (1), include mismatches, or (2) are 
shifted by one base [5].  The problem of mismatches is 
addressed by showing that some groups of protein motifs 
occur in recurring patterns. The first problem implies that 
some group motifs may be similar to one another; the second 
problem probably can be more easily seen in this way: If there 
exists a biological sequence motif with length of 12 and we set 
the window size to 9, it is highly possible that we discovered 
two similar sequence motifs where one motif covers the front 
part of the biological sequence motif and the other one covers 
the rear part [8]. 

 
 

The Association Rule [1, 6, 7] is used to extract important 
information from large repositories of data. For example, 
association rules can discover the support and confidence of 
“if A occurs then B will occur.” This can be expanded to any 
number of item sets whether it is three, four, or more.  To put 
forth this kind of DNA/Protein bioinformatics data into 
Association Rules, each protein is regarded as a transaction 
and the sequence motifs as items in the transaction. Some of 
the papers that were referenced apply the Association Rule in 
this manner [1, 8]. Although Association Rule plays an 
important role in extracting recurring patterns from protein 
sequences, there is still one more criteria to be considered. The 
motifs in a protein occur in specific distance intervals, so it is 
vital to discover the distance between the occurrence of motifs 
A and B. Therefore, a new Positional Association Rule 
Algorithm is proposed in [8]. The Positional Association rule 
is simple extension of the Basic Association rule with a new 
parameter named “Distance Assurance”.  

It is proved that the fixed window size problem can be 
solved by generating clusters with the help of the Positional 
Association Rules Algorithm in [8]. In this paper, Structural 
Clustering Algorithm for Networks (SCAN) [10], a new 
clustering algorithm for networks, is applied to generate 
clusters from the Positional Association Rules. SCAN is a 
popular tool for analyzing graphs. SCAN’s ultimate goal is to 
divide the nodes in the graph into three categories: clusters, 
hubs, and outliers. It creates clusters from structurally similar 
nodes [10]. For example, social networks may suggest a friend 
to you because you share similar friends with that person (i.e. 
you both belong to the same cluster). Nodes that belong to 
more than one cluster may bridge the two clusters together. 
SCAN identifies nodes of this pattern as hubs. Finally, SCAN 
marks structurally dissimilar nodes as outliers, which may be 
discarded as noise data [10].   

In this paper, we propose that one can use SCAN to refine 
positional association rule results in order to increase the 
quality of the resulting clusters. We apply proposed approach 
to alleviate the first problem “include mismatches” caused by 
the fixed window size approach. The set of rules produced 
using the positional association rule are fed into SCAN, to 
generate clusters, outliers, and hubs. The outliers and hubs 
were discarded while the clusters were retained since the 
primary goal is to increase the quality of the clusters that 
SCAN revealed. Higher-quality SCAN clusters are verified 
with the quality of the positional association rule clusters. 

The rest of the paper is organized into four more sections. 
Section II provides a detailed explanation of the algorithm. 
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Section III follows with details about the Experiment. Section 
IV shows the results of this work. Finally, the paper is 
concluded with Section V. 

II. ALGORITHM 

2.1 Positional Association Rules Algorithm 
 

 
Figure 1 The Pseudocode of Positional Association Rule with the 

Apriori concept 
 
The Association Rule in Data Mining generates item sets 

which occur frequently with certain rules occurring in a 
particular format, say (X=>Y) i.e. “if X occurs then Y occurs” 
with the condition that all of these item sets must pass a 
minimum support and confidence. A new Positional 
Association Rule, proposed in [8], has another parameter 
called “distance assurance.” The Positional Association Rule 
identifies a frequent item set with a certain frequent distance 
(d) and applies this distance once it obtains strong Association 
rules with a minimum confidence and minimum support. 
Where support and confidence is defined as: 
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Where |T| is the total number of transactions, |X| is the 
number of transactions in T that contains at least one X, 
|X∪ Y| is the number of the transactions in T that contain both 
X and Y. The newly proposed “distance assurance” is defined 
as: 
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Where ||X|| is the total number of times that X appears in T, d 

indicates the distance, -∞ < d < ∞. Where X 
d

⇒ Y denotes “if 

X appears, then after the distance of d, Y appears,” ||X
d

∪ Y|| is 
the total number of times in T that when X occurs and after the 
distance of d, Y occurs. Figure 1 shows pseudo code for the 
Positional Association Rule Algorithm and a detailed 
description is available in [8]. 
 
2.2 SCAN Algorithm 

SCAN is short for Structural Clustering Algorithm for 
Networks. While many algorithms find just the clusters in a 
network, SCAN finds the hubs and outliers. The identification 
of hubs is the real strength of SCAN, as hubs bridge clusters, 
and spread its influence from cluster to cluster. The usefulness 
on identifying outliers on the other hand, is simply in knowing 
that the outliers can be ignored. Outliers have little influence 
on their connected cluster, or on the cluster’s network. 

SCAN works by looking at the neighborhood of vertices 
instead of only their direct connections. This allows the 
detection of hubs and outliers. Not only is the algorithm 
useful, but it is also efficient with a running time of O(n). 

When running SCAN, the algorithm labels a newly found 
vertex as unclassified. From here it checks to see if this vertex 
has a minimum amount of connections in a cluster. If so, it 
uses this new found core as a springboard to search for more 
vertices. Finally, once SCAN visits all vertices, it identifies 
the vertices that connect to two or more clusters as hubs, and 
vertices that connect to only one cluster as outliers. The more 
connections a vertex has to a cluster, the more influence that 
vertex has on the cluster. 

 
2.3The combination of Positional Association Rules 

algorithm and SCAN Algorithm 
In this paper, in order to alleviate the first problem “include 

mismatches” caused by the fixed window size approach, we 
combine the positional association rules algorithm with SCAN 
to identify protein sequence motifs that similar to each other. 
First of all, positional association rule algorithm with distance 
equals to zero is implemented to identify protein sequence 
motifs that occur on the same position. The rationale behind 
this is that if two (or more) motifs occur on the same position 
frequently enough (pass the minimum distance assurance), 
they should be similar to one another. As the result, the 
network-like graph such as Figure 2 is generated. Next, the 
associations were converted into two columns of data for input 
into SCAN (as showed in Results). The data was used to run 
SCAN multiple times for each distance assurance with 
different values of µ and ε. Finally, clusters are generated by 
the proposed approach, which combines the positional 
association rules algorithm and SCAN. Secondary structure 
information is taken and analyzed the quality of each SCAN-
generated cluster. Detail results with different parameters are 
available in Results.  

 



 

Figure 2: Directed graph generated from positional association rules based on minimum support, confidence, and 
distance assurance equal to 20%, 70% and 50% respectively. 

 

III. EXPERIMENT AND PARAMETERS SETUP 

3.1 Dataset 
  The original dataset used in this work includes 2710 protein 
sequences obtained from Protein Sequence Culling Server 
(PISCES) [11]. It is the dataset that was used in [8,12] to 
generate protein sequence motifs. No sequence in this 
database shares more than 25% sequence identity. The 
frequency profile from the HSSP [13] is constructed based on 

the alignment of each protein sequence from the protein data 
bank (PDB) where all the sequences are considered 
homologous in the sequence database. For the frequency 
profiles (HSSP) representation for sequence segments, each 
position of the matrix represents the frequency for a specified 
amino acid residue in a sequence position for the multiple 
sequence alignment. Twenty rows represent 20 amino acids 
and 9 columns represent each position of the sliding window. 
Secondary structure was also obtained from DSSP [14], which 



 

is a database of secondary structure assignments for all protein 
entries in the Protein Data Bank, for evaluation purposes. 
DSSP originally assigns the secondary structure to eight 
different classes. According to previous related research [12, 
15], those eight classes were converted into three based on the 
following method: H, G and I to H (Helices); B and E to E 
(Sheets); all others to C (Coils). 343 different sequence motifs 
with window size of nine generated from previous work [12] 
are included in this paper. The dataset actually used in this 
work comes from [8] and contains more than 2000 protein 
sequence as transactions vary in amount of motifs (items). 
Each transaction sequence is sorted and organized by distance 
value, the items on the same line having a distance of zero 
from one another. The secondary structure data contained nine 
values for each 343 motifs, each value corresponding to its H, 
E, or C secondary structure percentage. 
 
3.2 Positional Association Rule 

The protein sequences are treated as transactions and the 
sequence motifs are treated as items of the transaction. Firstly, 
the association rules are generated from the data. As we 
mentioned in section 2.1, only tradition association rules are 
not sufficient due to the protein motifs occurring at positions.  
“Distance assurance” measure is incorporated. In this paper 
only a distance measure of zero is taken into account which 
means the protein sequence motifs which occur at same 
positions are considered. 
 
3.3 Running SCAN for refining clusters 
 The SCAN proposed in [10] is used to generate clusters 
from the rules generated as described in section 3.2. When a 
member of the generated clusters is identical to a neighboring 
cluster, their combined structure will add up to a bigger 
cluster. So, the number of common neighbors is normalized by 
the geometric mean of the two neighborhood sizes. 
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where, )(vΓ and )(wΓ  denotes the neighborhood of v and w  
respectively. When assigning a member to a cluster a 
threshold ε is applied to the computed structural similarity. 
Also µ number of neighbors with a structural similarity and 
exceeding the neighborhood threshold ε is required to decide 
whether a vertex is a core.  
 The values of ε and µ are varied to generate various 
clustered files. The ε is varied from 0 to 0.5 and µ is varied 
between 1 and 2 only although various values of µ has been 
used they, all proved to be ineffective. 
 
3.4 Dissimilarity Measure 
The following formula is used to calculate the dissimilarity 
between two sequence segments: 

Dissimilarity= ( ) ( )∑∑
= =

−
L

i

N

j
ck jiFjiF

1 1

,,  

Where L is the window size and N is 20 which represent 20 
different amino acids. Fk(i,j) is the value of the matrix at row i 
and column j used to represent the sequence segment. Fc(i,j) is 

the value of the matrix at row i and column j used to represent 
the centroid of a give sequence cluster. The lower dissimilarity 
value is, the higher similarity two segments have. 
 
3.5 Structural Similarity Measure 

Cluster’s average structure is calculated using the following 
formula: 
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Where ws is the window size and Pi,H shows the frequency 
of occurrence of helix among the segments for the cluster in 
position i. Pi,E and Pi,C are defined in a similar way. If the 
structural homology for a cluster exceeds 70%, the cluster can 
be considered structurally identical [13]. If the structural 
homology for the cluster exceeds 60% and lower than 70%, 
the cluster can be considered weakly structurally homologous 
[15]. 

IV. RESULTS 

The positional association rule runs six times with distance 
assurance values of 10%, 20%, 30%, 40%, 50%, and 60%; 
while the minimum support and confidence is set as 20% and 
70% based on the optimal parameter setup of previous work 
[1]. Once complete, the file was translated into a two-column 
format representing the associations. For example, A

0

→ B 
would become line “A B.” The two column files were then fed 
into SCAN. An example is given in Figure 3 with minimum 
distance assurance equals to zero.  

 

 
Figure 3: Conversion of the Positional Association Rules 
output to SCAN input 
 

However, besides the data, SCAN requires two other 
parameters: ε and µ. µ is varied between 0 and 3 with step-size 
of 1. ε is between 0 and 1 to generate various clustering files 
and optimum clustered data is chosen. In the first run of 
SCAN, some limitations on the parameters were determined. 
First, Mu seems to only be effective at values 1 or 2. A value 
of zero results in all clusters and no outliers, a value higher 
than two results in all outliers and no clusters. SCAN produces 
hubs with values of ε greater than 0.5, so ε was restricted to 
lower values.  

Hubs were determined to be an undesirable component in 
this research because they were not included with the clusters. 
This caused isolation of major cluster components. For 
example, Figure 4 shows four motifs that should belong to the 
same cluster. If ε was set too high, Motif #6 would be 



 

classified as a hub, removing it from the cluster. Since 282, 
337, and 277 are not associated with any other motifs, they are 
removed as outliers. 

 

 
Figure 4: A Cluster with a Potential Hub 

 
In the end, SCAN was run with distance assurance between 

10% and 60%, Μ between 1 and 2, and Ε between 0.1 and 0.5. 
To ease the process of running SCAN on all of these 
parameter combinations, a script was created to run them in 
batch. The SCAN algorithm is a pre-packaged Java 
application. the algorithm was called with the appropriate 
combination of parameters and it gave the output files 
containing the clusters, hubs, and outliers obtained from the 
association rule data.  

Next, a second script was ran, which fed each SCAN output 
file into the quality algorithm. The quality algorithm 
implements the Structural Similarity Measure discussed in 
section 3.5. The algorithm takes the SCAN output file and file 
containing motif structure information as parameters. Once 
complete, the algorithm produced an output file containing a 
percentage on each line representing a cluster’s quality. 
Finally, a third, simple script was run to summarize the quality 
results and place them into range groups including >80, 70-80, 
60-70, and <60. An example summary is shown in Figure 5. 
 

 
Figure 5: Sample Quality Summary 
 

Initially, all of the summary files were combined to 
determine which parameters gave the best results. The most 
favorable combination was a distance assurance of 50%, Μ of 
1, and Ε of 0.3. Distance assurance had the most significant 
impact on cluster quality. ε, as shown in Figure 6, has little or 
no effect on quality. 

 
Figure 6: Dist. Assurance & ε Quality, Μ = 1 
  
Μ has a slight effect on quality, but still does not compare to 
distance assurance. Figure 7 shows Μ’s effect.  
 

 
Figure 7: Dist. Assurance & µ's Quality, EPS = 0.3 
 

With these new findings, it can be concluded that the SCAN 
parameters ε and µ have little effect on cluster quality as long 
as they stay within the range tested above. Distance 
assurance’s effect on the result demonstrates the impact of the 
positional association rule analysis method. Running SCAN 
on the data provided two important pieces of information: 
clusters and outliers. Each cluster provides a graph structure 
containing the original associations. This allows observations 
to be made on groups of associations rather than one at a time. 
The outliers remove noise, or associations of little 
significance. The positional association rule does a good job 
of eliminating outliers based on occurrence statistics, but 
SCAN takes it a step further and analyzes relationship 
structures.  

 

Mu 

EPS 



 

V. CONCLUSION 

  For data mining in the field of bioinformatics, the ability to 
find recurring patterns in proteomics data enables the 
discovery of a protein’s structure and functionality. Most 
enumerative algorithms require the size of the motif to be set 
in advance. This can cause errors such as mismatches and 
bases that are off by one. However, the Positional Association 
Rule can be used as a remedy to these problems through the 
use of a distance assurance. 
  It is known that Association Rules can already be well used 
in Classification techniques, and Chen et al. [1] proved that it 
can also be used for Clustering purposes. In this paper, we 
further combine the positional association rules algorithm with 
the SCAN algorithm. With the SCAN data sorted, 
concentration solely on the clusters further increased the 
cluster quality. 
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