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    Abstract—Diffusion model is increasingly employed to simulate 
diffusion of biological compounds including nutrient, oxygen and 
chemoattractants in the agent-based model (ABM). However, it 
takes long compute time to employ conventional numerical 
methods such as alternating direction implicit (ADI) method to 
approximate the exact solution of the diffusion processed by 
sequential computing algorithm. To overcome this limitation, our 
study employs cutting-edge graphics processing unit (GPU) 
technology to speed up the conventional sequential numerical 
solver for diffusion and incorporates our proposed parallel 
computing algorithms into our well developed 2D multi-scale and 
multi-resolution agent-based brain cancer model to break 
through the bottleneck of the ABM that it is hard to simulate the 
large system restricted to the limited compute resource and 
memory. Our simulation outputs demonstrate that ABM model 
can be used to simulate real-time actual cancer progression with 
relative fine grids by using GPU based parallel computing 
algorithm. 
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I.  INTRODUCTION  
    Agent-based model (ABM) has become a popular method to 
describe the complex dynamic, adaptive and self-organizing 
cancer system. For example, Mansury and Deisboeck [1, 2]  
employed the ABM to simulate the expansion of brain tumor 

in micro-macro environments. And Zhang et al. [3-6] 
developed multi-scale ABMs to model the growth of glioma 
and investigate incoherent relations of the tumor expansion 
among macroscopic environment, microscopic environment 
and molecular environments. A diffusion module is employed 
to simulate the diffusion of the chemoattractants on the 
macroscopic scale environment. 
    Though conventional finite difference numerical methods 
such as ADI, Gauss–Seidel and Jocobi methods [7-9] for 
diffusion module already have been used to simulate diffusion 
of biological compounds such as nutrients, oxygen and 
chemoattractants [3, 10-15] for years, they all depend on the 
grid size so much that a relative fine grids can better mimic 
the diffusion process but significantly increase the compute 
time. Therefore, previous studies such as the work done by 
Athale et al. [10, 11] and Wang et al.[16] have to employ  
relatively coarse grids to reduce the compute time and the 
work done by Dai et al.[17] and Zhang et al.[18-20] employed 
special numerical scheme such as preconditioned Richardson 
method [21, 22] to sacrifice the compute accuracy in some 
dimensions of coordinates to reduce the compute resource 
request due to the specific aim of these biomedical projects. 
Nonetheless, our well developed 2D multi-scale and multi-
resolution ABM model needs such a fast diffusion module that 
not only can accurately model the diffusion process but also 
costs less compute resource. For this reason, using parallel 
computing algorithm to speed up the conventional numerical 



 

 

solver [23, 24] is the best promising solution. Quite a few 
previous parallel computing algorithms employed Message 
Passing Interface (MPI) [25], a parallel computing scheme 
based on multiple instruction multiple data infrastructure, to 
parallel the sequential numerical diffusion solver. However, 
MPI is not only too expensive to be routinely used for light 
computing project, but also its compute speed is limited by the 
communication rate [26]. Since 2007, NVDIA keeps releasing 
its graphics processing unit (GPU) and the novel Compute 
Unified Device Architecture (CUDA) based on single 
instruction multiple data infrastructure (SIMD). Until now, 
GPU of NVDIA has been evolved into a highly parallel, 
multithreaded, many core processor, with dramatic compute 
ability and high memory bandwidth [27] , especially for the 
recent Fermi GPU [28, 29]. Compared to MPI, GPU 
computing is more affordable, portable and suitable for the 
ABM simulation. 
    In general, the aim of this study is to incorporate the parallel 
diffusion numerical solver based on latest released Fermi 
GPU technology into our previous well developed multi-scale 
and multi-resolution ABM model [5] to resolve its compute 
capability shortage problem. The methods section introduces 
the conventional numerical scheme, alternating direction 
implicit (ADI) method [7, 30] and the GPU implementation 
[31]. And then, we show that our parallel algorithms 
significantly increase the performance when applied to the 2D 
multi-scale and multi-resolution ABM [5].  

II. METHODS 
    This section gives a brief introduction to ADI scheme [7] 
with the standard domain decomposition strategy [32, 33] 
followed by the description of GPU implementations.  

A. Numerical diffusion solver:ADI Scheme 
The diffusion of the chemical cues is described by (1.a), 

where the D is the diffusivity for glucose (DG=6.7×10-7cm2s−1) 
and TGFα (DT=5.18×10-7 cm2 s−1), respectively.   డ௨డ௧ = ݑଶ∇ܦ = ܦ ቀడమ௨డ௫మ + డమ௨డ௬మቁ = ௫௫ݑ൫ܦ +  ௬௬൯. (1.a)ݑ
The Crank–Nicolson method approximates (1.a) by (1.b)  ௨೔ೕ೙శభି௨೔ೕ೙∆௧ = ஽ଶ ቀ ఋమೣ∆௫మ + ఋ೤మ∆௬మቁ ൫ݑ௜௝௡ାଵ + ௜௝௡ݑ ൯. (1.b) 
where ݑ௜௝௡  is the numerical approximation of ݔ)ݑ௜, ,௝ݕ ௜ݔ ௡) andݐ = ,ݔ∆݅ ௝ݕ = ,ݕ∆݆ ௡ݐ = ݐ∆݊ ௫ߜ . and ߜ௬  denote the central 
difference operators [7].  
    Introducing an intermediate level ݑ௜௝௡ାଵ ଶ⁄ , the ADI method 
modifies (1.b) into two separate difference equations with 
implicit scheme, given by (2):  ௨೔ೕ೙శభ మ⁄ ି௨೔ೕ೙∆௧/ଶ = ܦ ቀ ఋమೣ∆௫మ ௜௝௡ାଵݑ ଶ⁄ + ఋ೤మ∆௬మ ௜௝௡ݑ ቁ. (2.a) 
 ௨೔ೕ೙శభି௨೔ೕ೙శభ మ⁄∆௧/ଶ = ܦ ቀ ఋమೣ∆௫మ ௜௝௡ାଵݑ ଶ⁄ + ఋ೤మ∆௬మ  ௜௝௡ାଵቁ. (2.b)ݑ

Writing ߤ௫ = ܦ ∆௧∆௫మ  and ௬ߤ  = ܦ ∆௧∆௬మ  reduces (2) into the 
Peaceman-Rachford ADI scheme [7], shown as (3)   − ఓଶೣ ௜ିଵ,௝௡ାଵݑ ଶ⁄ + (1 + ௜௝௡ାଵݑ(௫ߤ ଶ⁄ − ఓଶೣ ௜ାଵ,௝௡ାଵݑ ଶ⁄ = ఓ೤ଶ ௜,௝ିଵ௡ݑ +                                        ൫1 − ௜௝௡ݑ௬൯ߤ + ఓ೤ଶ ௜,௝ାଵ௡ݑ .  (3.a)  − ఓ೤ଶ ௜,௝ିଵ௡ାଵݑ + ൫1 + ௜௝௡ାଵݑ௬൯ߤ − ఓ೤ଶ ௜,௝ାଵ௡ାଵݑ  = ఓଶೣ ௜ିଵ,௝௡ାଵݑ ଶ⁄ +                                   (1 − ௜௝௡ାଵݑ(௫ߤ ଶ⁄ + ఓଶೣ ௜ାଵ,௝௡ାଵݑ ଶ⁄ .  (3.b) 
The right part of both equations of (3) is explicit formula and 
easily parallelized, while the left part is a symmetric and 
tridiagonal system of equations ݔܣ = ܾ to be solved with the 
Thomas algorithm [7, 34].  

Equation (3) could be written into a general form as (4.a) 
with ݔ଴ = 0 and ݔேାଵ = 0 . 

 ܽ௜ݔ௜ିଵ + ܾ௜ݔ௜ + ܿ௜ݔ௜ାଵ = ݀௜, ݅ = 1,2, … , ܰ. (4.a)

The corresponding matrix form of this tridiagonal system is 
represented by (4.b) 

 
ێێۏ
ଵܾۍێێ ܿଵܽଶ ܾଶ 0 ⋯ܿଶ ⋱ ⋯ 00 ܽଷ⋮ ⋱ ܾଷ ⋱⋱ ⋱ ⋱⋱ 0⋮0 ⋯ ⋱ ⋱⋯ 0 ⋱ ܿேିଵܽே ܾே ۑۑے

ېۑۑ
ێێۏ
ۍێێ
ۑۑےேݔ⋮⋮⋮ଷݔଶݔଵݔ

ېۑۑ =
ێێۏ
ێێێ
ۑۑےଵ݀ଶ݀ଷ⋮⋮⋮݀ே݀ۍ

ۑۑۑ
 (b.4)  .ې

B. Thomas Algorithm 
    The Thomas algorithm is employed to solve (4.a). It has 
two major steps. First is computing coefficients ߚ௞  (5.a) and ߥ௞ (5.b) known as forward sweep. Second is using backward 
substitution to get solutions as (5.c). 

 

௞ߚ = ൞ ܿଵܾଵ ;   ݇ = 1ܿ௞ܾ௞ − ௞ିଵܽ௞ߚ ;   ݇ = 2,3, … , ܰ − 1. 
௞ߥ = ۔ە

ۓ ݀ଵଵܾ ;   ݇ = 1݀௞ − ௞ିଵܽ௞ܾ௞ߥ − ௞ିଵܽ௞ߚ ;   ݇ = 2,3, … , ܰ. 
     (5.a)

(5.b)
 ቄ ேݔ = ௞ݔேߥ = ௞ߥ − ;௞ାଵݔ௞ߚ   ݇ = ܰ − 1, ݊ − 2, … ,1. (5.c) 
The details of the deduction of (5) are described in Morton’s 
book [7].  

C. Domain Decomposition 
For the boundary value problem on a large domain, the 

domain decomposition method decomposes the problem into 
smaller independent boundary value problems on smaller 
subdomains and then employ iterative method to resolve 
differences between the solutions on adjacent subdomains [32, 
33]. We develop such a GPU based parallel computing 



 

 

algorithm with classical alternating Schwarz method [33, 35] 
that can benefit from the advantages of GPU technology. Fig. 
1(b) [31] exhibits the decomposition of a 10 by 10 array with 
an 8 by 8 inner array (green) and four vectors of boundary 
points (red) (Fig .1(a) [31]) into 4 overlapping 6 by 6 sub-
arrays, each of which consists of a 4 by 4 inner array (green) 
and four artificial internal boundaries (red).  Each sub-array is 
iteratively solved to make the artificial boundaries converge [7, 
32, 33, 35, 36]. Here, we use the data transfer between sub-
matrix 1 and sub-matrix 2 as an example. The values of the 
four inner elements on the rightmost side in sub-matrix 1 are 
sent to sub-matrix 2 as the new left artificial boundary as well 
as the values of the four inner elements on the leftmost side in 
sub-matrix 2 are sent to sub-matrix 1 as the new right artificial 
boundary until both artificial boundaries converge. 

 

 
                   (a) 

 
               (b) 
    Figure 1 [31] (a) A 10 by 10 solution matrix with red to indicate boundary 
elements and blue to indicate inner elements and (b) Decomposition of a 10 by 
10 array into 4 overlapping 6 by 6 sub-arrays with red to indicate boundary 
elements, green to indicate inner elements and  the arrows to show how to 
update the boundary data. 

D. Parallel Computing Algorithms to Speed up the diffusion 
solver 

   The first step of ADI is to set up the explicit scheme, shown 
as the right part of (3). Since each element could be computed 
independently, the explicit scheme is easy to be parallelized 

with single-instruction, multiple-thread (SIMT) infrastructure 
of CUDA.  The second step is to solve the implicit scheme of 
ADI by Thomas algorithm. As we discussed in our previous 
research [31], Thomas algorithm is the bottleneck to speed up 
the conventional numerical diffusion solver.  
    CUDA programming has two major steps. The first is 
preparing such data that can be paralleled in the host side 
(CPU). The second is processing these data in the device side 
(GPU) by kernel. CUDA organizes the threads into a two-level 
hierarchy (Fig. 2-1 of NVIDIA CUDA Programming Guide 
[27]).  As shown by Fig. 2-2 of NVIDIA CUDA Programming 
Guide [27], a thread executing on the device has access to the 
device’s (GPU) DRAM and on-chip memory through 6 
different memory spaces such as registers, local memory, 
shared memory, global memory, constant memory, and texture 
memory [27, 37-40]. As a very important memory of GPU, 
global memory is in charge of exchanging the data between 
the host (CPU) and the device (GPU). Moreover, it plays such 
a role that passes the messages between the threads from 
different blocks, since current GPU infrastructure prohibits the 
communication of threads from different blocks [27, 29, 41]. 
However, as an off-chip memory, the latency of global 
memory is very high. As on-chip memory, shared memory, 
registers, and constant-memory caches are much faster with 
much lower latency. Nonetheless, shared memory is very 
limited and it is only allocated to each block. For example, the 
capacity of the latest version of GPU (Fermi) is only 64KB 
[28, 42]. Moreover, another on-chip memory, constant 
memory, is disallowed to be written to during the computation 
[27, 43] though it is cashed.  

CUDA uses a new architecture called SIMT to mange 
threads running different programs. The multiprocessor SIMT 
unit creates, manages, schedules, and executes threads in 
groups of 32 parallel threads we call warps [27]. We have 
developed three parallel computing algorithms to accelerate 
the numerical diffusion solver based on the new features of 
GPU technology [31]. The first is parallel computing 
algorithm with global memory (PGM), which employs only 
global memory to carry out parallel computing. The second is 
parallel computing algorithm with shared memory, global 
memory and CPU synchronization [27, 29, 41, 44] (PSGMC) 
and the third is parallel computing algorithm using shared 
memory, global memory and GPU synchronization [29, 41, 45] 
(PSGMG). PSGMC and PSGMG employ “tiles” strategy to 
partition the data and take advantages of both global memory 
and shared memory with the classical alternating Schwarz 
domain decomposition method [7, 32, 33, 35, 36]. The details 
of these three implementation methods are presented in our 
recent publication [31]. Here, we incorporate our fastest 
parallel diffusion solver into 2D multi-scale and multi-
resolution ABM [5] to speed up the computation of ABM.  

III. RESULTS 
Our source code is implemented by C [46, 47] and NVCC 

[48] programming language and running on the recent Fermi 



 

 

GPU card (GeForce GTX 480) [42, 49, 50] with CUDA 
standard.   

In the beginning, let us briefly show how to use parallel 
computing algorithms [31] based on GPU technology to 
accelerate the numerical diffusion solver as following. 

First, we employ PGM to compute the diffusion on the 
lattice with different number of grid points and compare the 
computing time with the sequential computing. Fig. 2 shows 
PGM computing time is not always faster than sequential 
algorithm for the lattice with small point number but 
dramatically faster than sequential algorithm for the lattice 
with large point number [31]. 

 

 

Figure 2 [31]. Computing time of PGM and sequential computing by 
logarithmic scale. The x axis represents the inner matrix size (number of inner 
grid points) and y axis represents the computing time (logarithmic scale with 
base 10) in millisecond. The blue bar represents the computing time of 
sequential computing and the red bar represents the computing time of PGM. 

Second, we compare the compute time between PSGMC 
and PGM, when simulating the diffusion on a 4098 by 4098 
lattice. Fig. 3 shows PSGMC improves the performance by 58% 
compared with PGM [31]. 

 

 

Figure 3 [31]. Computing time of PSGMC and PGM by logarithmic scale. 
The y axis represents the computing time (logarithmic scale with base 10) in 
millisecond. The blue bar represents the computing time of PGM and the red 
bar represents the optimal computing time of PSGMC.  The number on each 
bar indicates the multiple of acceleration to the sequential computing. 

Third, we compare the performance of PSGMC and 
PSGMG. Fig. 4 exhibits PSGMG improves the performance 
by 11% compared with PSGMC, when processing the 
diffusion on a 4098 by 4098 lattice [31]. 

 

Figure 4 [31]. Computing time of PSGMG and PSGMC by logarithmic 
scale. The y axis represents the computing time (logarithmic scale with base 
10) in millisecond. The blue bar represents the computing time of PSGMC 
and the red bar represents the computing time of PSGMG.  The number on 
each bar indicates the multiple of acceleration to the sequential computing. 

Next, we incorporate the fastest parallel computing method 
(PSGMG) into the well developed multi-scale and multi-
resolution ABM model [5]. The multi-resolution model is 
designed based on two different resolution lattices, namely 
low-resolution lattice and high-resolution lattice. The low-
resolution lattice is set up with a grid size of about 62.5 ݉ߤ, 
on each grid point of which, a 6 by 6 high-resolution lattice 
with a grid size of  approximately 10 ݉ߤ  is superimposed, 
described by Fig. 5 [5].  To demonstrate the advantages of the 
parallel computing algorithm, we scale up the lattice size of 
the previous multi-scale and multi-resolution ABM model [5]. 
Current low-resolution lattice is changed from 100 by 100 to 
683 by 683 and high-resolution lattice is upgraded from 600 
by 600 to 4098 by 4098.  

 

 
Figure 5 [5] Configuration of multi-resolution lattice. 

    The diffusion of the chemical cues is observed on the high-
resolution lattice, with a grid size of approximately 10݉ߤ, 
namely both ∆ݔ and ∆ݕ in the ADI scheme (2) are equal to 
,௫ߤis set to 1s to make max൛ ݐ∆ .݉ߤ10 ௬ൟߤ ൑ 1 regarding to 
the maximum principle [7], thus the ADI scheme needs to be 
computed 3600 times for each time step, which is equivalent 
to 1h. 

And then, Fig. 6 exhibits that parallel computing can 
significantly increase the performance of the compute time 
37.5 folders than sequential computing for multi-scale and 
multi-resolution ABM model [5]. 
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Figure 6. Computing time of parallel and sequential computing by 
logarithmic scale. The y axis represents the computing time (logarithmic scale 
with base 10) in millisecond. The blue bar represents the computing time of 
sequential computing and the red bar represents the optimal computing time 
of parallel computing.  The number on the red bar indicates the multiple of 
acceleration to the sequential computing.  

IV. CONCLUSIONS 
This study demonstrates that it is possible to simulate the 

real-time actual tumor progression in a 2D lattice with relative 
fine grids by using GPU based parallel computing algorithms. 
Our extension research will develop a GPU based parallel 
ODE solver to speed up the molecular pathway module of our 
well developed multi-scale and multi-resolution agent-based 
model [5].  
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